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Abstract—We present a MIP-based airspace sectorization
framework for Terminal Maneuvering Areas (TMAs) incorporat-
ing a complexity representation. It is also the first step towards
an integrated design of routes, the resulting complexity, and a
sectorization. We present results for Stockholm TMA.
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I. INTRODUCTION

Over the last decades air traffic volumes have increased,
and projections indicate that the growth will continue: the
International Air Transport Association (IATA) [1] estimates
that the number of passengers will double until 2034, and
the Statistics and Forecasts (STATFOR) unit of EUROCON-
TROL [9] predicts an increase of 40-120% in flight movements
in Europe from 2010 to 2030 (where the range stems from
various scenarios from limited resources to strong economic
growth). The resulting congestion is particularly concentrated
on Terminal Maneuvering Areas (TMAs), that is, the area
surrounding one or more neighboring aerodromes, as traffic
converges towards a point near the runway. This results
in significant delays and operation expenses. A possibility
to increase capacity is to use the existing resources more
efficiently. Thus, an optimized design of the TMA control
sectors is essential for coping with ever increasing numbers
of aircraft movements. The constructed sectorization partitions
the airspace into a certain number of sectors, where each sector
is assigned to an air traffic controller.

A major challenge is posed by the central role of these
humans-in-the-loop: each sector is monitored by an air traffic
controller (ATCO) who guarantees safe separation of aircraft
in the sector at all times. The mental workload associated with
working in such a complex system gives rise to the major
constraints of an airspace sectorization: the workload should
be balanced and not exceed thresholds for every single ATCO.
Moreover, any design must be valid w.r.t. the sector shape
and how the sector boundaries interact with standard flows
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and critical points. The problem of accessing the workload
associated with a sector and deciding when it exceeds a safe
threshold is a complex question that has been investigated by
several researchers, see Loft et al. [19] for an overview.

Today, the airspace layout at most airports is done manu-
ally, based on expert opinions. However, this will generally
not yield an optimal sectorization for given criteria. Many
papers presented suggestions for automatic design methods for
airspace sectorization, see Section I-B for a detailed review,
but the vast majority of approaches concentrates on en-route
airspace.

In this paper, we present a general framework for integrating
a complexity representation in a TMA’s sectorization: we give
a mathematical programming approach to compute optimal
TMA sectorizations. The formulation as a mixed integer pro-
gram (MIP) is by far not new—many earlier works employed
integer or constraint programming to produce sectors, see Sec-
tion I-B. However, all such prior work used synthesis methods:
the IPs employed a variable per elementary airspace piece, and
these pieces were glued together to constitute sectors. Our IP
formulation, by contrast, uses a variable per potential edge of
sector boundary. As input, we use the coordinates of the TMA,
a numerical representation of the complexity, and constraints
on the resulting sectorization. Our method is exact. Apart from
computing optimal sectorizations based on a given complexity
representation, this is also the first step towards an integrated
design of routes, the resulting complexity, and a sectorization.
Our approach is particular fitting for a TMA, as we—on the
one hand—deal with a limited number of sectors, which makes
solving our IP computationally feasible, but—on the other
hand—we want to be able to have a fine-grained approach
that encompasses a multitude of constraints representing the
ATCO’s operational requirements, and has polygonal sectors
(in contrast to elongated sectors with highly parallel traffic
patterns where aircraft enter/leave the sector from a common
direction).

A. Roadmap

In the remainder of this section we review related work.
In Section II we discuss taskload and workload, and formally



introduce our problem in Section III. Section IV presents our
main tool: a grid-based mixed integer programming (MIP) for-
mulation of the sectorization problem with various constraints.
In Section V we apply the MIP to Stockholm TMA using
several constraint sets. We conclude in Section VI.

B. Related work

Various papers considered automated airspace sectorization,
for an extensive survey see Flener and Pearson [11]. Most
research concentrated on sectorization of en-route airspace.
Authors used fairly different definitions of taskload/workload,
as no universal workload metric has been agreed on so far.
US-based studies often have a focus on convective weather,
which plays a smaller role in European studies.

The approaches can mostly be split in graph- or region-
based models, where the former builds on partitioning a
graph representing existing trajectories and constructing sector
boundaries based on the partition, and the latter partitions
the airspace into regions. Various sets of constraints on the
resulting sectorization are considered, including constraints
on the workload, the sector’s geometry and size, and on the
interaction with routes, e.g., each trajectory must intersect a
sector for a minimum distance.

Kostitsyna [16] proves that most formulations of the
airspace sectorization problem are NP-hard. In addition, she
presents a method to redesign sectors that improves a given
sectorization by locally adjusting sector boundaries. Sabhnani
et al. [22] present a flow conforming design, where they
consider constraints on flow-sector boundary crossings, on
flow-flow crossings, on convexity, and constraints that forbid
too acute sector angles; in addition, they integrate constraints
on the interplay with Special Use Airspace (SUA). The authors
then use a discretized search space—a uniform grid plus nodes
approximating the medial axis of standard flows—, and search
for cuts in the complete graph on these nodes that conform
to the constraints. Recently, Gerdes et al. [12] presented an
approach that first clusters flight data using fuzzy clustering,
then computes a Voronoi diagram based on the resulting clus-
ter centers, and then takes respect to the controller workload
using an evolutionary algorithm. They in particular make
sure that the convex Voronoi cells are also able to handle
non-convexity. Other authors also presented geometry-based
approaches. Xue’s [24] design extends a pure Voronoi diagram
computation. Brinton et al. [4] give a three stage algorithm
that grows cells into clusters and straightens out boundaries in
the final step. Their workload definition is based on dynamic
density, see Kopardekar and Magyarits [15] for a comparison
of four different dynamic density metrics. Conker et al. [5]
present another three stage algorithm that uses a modified k-
means clustering to obtain an initial sectorization, followed by
an SLS heuristic to improve the workload balance and a final
phase that straightens out sector boundaries. Gianazza [13]
combines elementary airspace modules for sectors, predicting
the workload of configurations with a neural network. Leiden
et al. [18] give a method based on a monitor alert parameter:
once this threshold is exceeded for a sector it is split, and

the algorithm picks the better of the solutions from a greedy
bottom-up and a greedy top-down phase. The authors evaluate
their sectorizations based on a transition cost, but do not
include that cost in computing new sectors. Both Bloem
and Gupta [3] and Kulkarni et al. [17] propose approxi-
mate dynamic programming methods. Drew [8] gives a MIP-
based procedure that combines under-utilized sectors to larger
sectors, without integrating shape constraints. An approach
using constraint programming is presented by Jägare [14]:
hexagonal cells are merged to build sectors using constraints
on the workload, entry points etc.. A graph-based constraint
programming method is presented by Trandac et al. [23].
We refer to the survey of Allignol et al. [2] for constraint
programming approaches in air traffic management. Various
further graph-based approaches have been proposed. One of
the oldest works on sectorization by Delahaye et al. [6] uses
3D Voronoi diagrams in postprocessing to construct the sector
boundaries. Martinez et al. [20] assign spatial cells to the nodes
of a flow network, and partition the flow network subsequently
until all sub-graphs comply with an upper bound on the
workload (measured as a peak traffic count).

Zelinski and Li [26] present a comparison of seven algo-
rithms to a baseline, the current solution: they compare the
delay resulting from the constructed sectorization, and the
traffic pattern and reconfiguration complexity. All but one
algorithm achieve better results for the delay.

In contrast to all these approaches, we focus on a sec-
torization of a TMA, which has fewer sectors than the en-
route airspace of air traffic control centres (ATCC). Thus,
it is feasible to choose an approach that may become more
computationally complex with increased number of sectors.
On the other hand, our method integrates various constraints,
and is flexible as it can be based on different complexity
representations.

II. TASKLOAD/WORKLOAD

ATCOs must first and foremost ensure safe separation of
aircraft, in addition, they enable aircraft to reach their destina-
tions in a timely manner. To do so, they permanently monitor
air traffic, anticipate and detect (potential) conflicts, intervene
to resolve them, communicate with pilots and ATCOs of
neighboring sectors for handover, and perform various other
tasks that contribute to the airspace’s complexity and drive
an ATCO’s mental workload. Both workload and taskload
reflect the demand of the air traffic controller’s monitoring
task: the taskload measures the objective demands, while the
workload reflects the subjective demand experienced during
that task. Loft et al. [19] give an overview on different methods
that study the elaborate problem of determining the workload
associated with a sector. Meckiff et al. [21] describe workload
as a function of the air traffic’s geometry, the operational
procedures and practices used to handle the air traffic, and the
characteristics of individual ATCOs. Yousefi et al. [25] and
Kopardekar and Magyarits [15] compare various air traffic
management (ATM) modeling metrics and dynamic density
metrics, respectively.



Recently, Zohrevandi et al. [28], [27] presented a novel
model for relating the controller’s taskload to the airspace
complexity, represented by eight complexity factors. The au-
thors use ATCO’s clicks on the radar screen as a measure to
quantify the taskload. All tasks are classified into four types
that require different time periods to perform (from 2 seconds
for background tasks to 50 seconds for control tasks), and the
taskload is defined as a weighted combination of these clicks.
The authors compared their taskload measure of (weighted)
clicks with the model by Djokic et al. [7], who used controller
pilot data link communication (CPDLC) and controller-pilot
voice communications. Using a linear regression Zohrevandi et
al. were able to explain airspace complexity, given by the eight
complexity factors, about 40% better than the model by Djokic
et al.; for terminal airspace they achieved an improvement
of about 70% (regression analysis factor R2 = 0.84). Thus,
the weighted radar screen clicks are a very good model for
terminal airspace complexity. The authors presented heat maps
that visualize the density of weighted clicks. We use these heat
maps as an input for our sectorization.

The radar screen clicks are closely related to aircraft tra-
jectories in the considered airspace, thus, when we base our
sectorization on the heat maps, we integrate the interaction
with routes.

Note, that our model does not depend on these specific
heat maps, it is a general model that integrates complexity.
In particular, it can be used as a building block in a common
design of routes (with resulting complexity) and sectors.

In the remainder of this paper, we will refer to both work-
and taskload as taskload.

III. NOTATION AND PRELIMINARIES

A simple polygon P is given by a set of n vertices
v1, v2, . . . , vn and n edges v1v2, v2v3, . . . , vn−1vn, vnv1 such
that vivj and vkvl for j 6= k, i 6= l do not share a point. The
polygon is the closed finite region bounded by the vertices
and edges. The edges and vertices form the boundary of P .
A sectorization is a partition of the polygon P into k disjoint
subpolygons S1 . . . Sk, with Si ∩ Sj = ∅ ∀i 6= j, such that
∪ki=1Si = P . The subpolygons Si are called sectors.
Sectorization Problem:
Given: The coordinates of the TMA, defining a polygon P ,
the number of sectors |S|, and a set C of constraints on the
resulting sectors.
Find: A sectorization of P with k = |S|, fulfilling all
constraints in C.

IV. GRID-BASED MIP FORMULATION FOR THE
SECTORIZATION PROBLEM

We discretize the search space by laying out a square grid
in the TMA. Every grid node is connected to its 8 neighbors.
The resulting graph G = (V,E) is bi-directed, i.e., for any
two neighbors i and j both edge (i, j) and (j, i) are included
in the edge set E. The length of an edge (i, j) ∈ E is denoted
by `i,j .

Fig. 1. The artificial sector S0 is shown in black. A sectorization with
five sectors is given. Edges are slightly offset to enhance visibility.

The main idea for the sectors is to use an artificial sector,
S0, that encompasses the complete boundary of P , using all
counterclockwise edges. For all edges (i, j) used for sector
boundary of any sector, we then enforce that also the opposite
edge, (j, i), is used for another sector, see Figure 1. Thus, all
edges of an (interior) sector are clockwise.

We use decision variables yi,j,s, where yi,j,s = 1 indicates
that edge (i, j) is a boundary edge for sector s. We add the
following constraints:

yi,j,0 = 1 ∀(i, j) ∈ S0 (1)∑
s∈S

yi,j,s −
∑
s∈S

yj,i,s = 0 ∀(i, j) ∈ E (2)

yi,j,s + yj,i,s ≤ 1 ∀(i, j) ∈ E,∀s ∈ S (3)∑
s∈S

yi,j,s ≤ 1 ∀(i, j) ∈ E (4)∑
(i,j)∈E

yi,j,s ≥ 3 ∀s ∈ S (5)

yi,j,s ∈{0, 1} ∀(i, j) ∈ E,∀s ∈ S (6)

Equation (1) ensures that all counterclockwise oriented
boundary edges belong to the artificial sector S0. Consistency
between edges is given by Equation (2): if (i, j) is used for
some sector, edge (j, i) has to be used as well. Equation (3)
ensures that a sector cannot contain both edges (i, j) and
(j, i), that is, enclose an area of zero. In combination with
Equation (2) it ensures that if an edge (i, j) is used for sector
S`, the edge (j, i) has to be used by some sector Sk 6= S`.
Equation (4) enforces that one edge (i, j) cannot participate
in two sectors. Equation (5) enforces a minimum size for all



(a) (b)

Fig. 2. Area of a polygon P (in bold): each (directed) edge of P forms
an oriented triangle with a reference point r. Clockwise triangles
contribute positive (a), counterclockwise triangles negative (b).

sectors: each sector consists of at least 3 edges. Moreover, we
add constraints on the degree of vertices on sector boundaries:

∑
l∈V :(l,i)∈E

yl,i,s −
∑

j∈V :(i,j)∈E

yi,j,s=0 ∀i ∈ V,∀s ∈ S (7)

∑
l∈N :(l,i)∈E

yl,i,s ≤1 ∀i ∈ V,∀s ∈ S (8)

Equation (7) ensures balance in all nodes, that is, all
nodes have the same number of ingoing and outgoing edges.
Equation (8) enforces that for each sector a node can have at
most one ingoing edge.

A. Sectorization Constraints

The constraints (1)-(8) guarantee that the union of the
|S| sectors completely covers the TMA, that the sectors are
pairwise disjoint, and that each of them has a non-zero area. Of
course, there are various other constraints for a sectorization,
see for example the survey article of Flener and Pearson [11].
The constraints we consider can roughly be split in two
categories: geometric and balancing constraints. The former
class could also incorporate interaction with routes.

1) Balancing Constraints: Balancing constraints are related
to two factors: size/area and taskload. We consider the follow-
ing constraints:
a) Balanced size: The area of each sector, thus, the area

that must be monitored by a single air traffic controller
must be balanced out with the area of other sectors.

b) Bounded taskload: There is an upper bound of move-
ments that an air traffic controller can handle per time
unit (hour), which might differ for air traffic controllers
with varying experience. The taskload of each sector
may not exceed this upper bound.

c) Balanced taskload: The taskload of each sector, and,
thus, of each air traffic controller, must be balanced out
with the taskload of other sectors.

For constraint a, balanced size, we need to be able to asso-
ciate an area with the sector selected by the boundary edges.
The area of a polygon P with rational vertices is rational,

and can be computed efficiently (see Fekete et al. [10]): we
introduce a reference point r, and compute the area of the
triangle of each directed edge e of P and r, see Figure 2. We
then sum up the triangle area for all edges of the polygon:
clockwise (cw) triangles contribute positive, counterclockwise
(ccw) triangles contribute negative. Let fi,j denote the signed
area of the triangle formed by edge (i, j) and r.

∑
(i,j)∈E

fi,j yi,j,s − as = 0 ∀s ∈ S \ S0 (9)

∑
s∈S\S0

as =a0 (10)

Constraint (9) assigns the area of sector s to the variable
as, constraint (10) ensures that the sum of the areas of all
sectors equals the area of the complete TMA, a0. If we want
to balance the sector size, we add the following constraint to
the IP:

as ≥aLB ∀s ∈ S \ S0 (11)

With this constraint we introduce a lower bound on the
size of each sector, this could be a constant, or we can choose
aLB = c1 ·a0/|S\S0|, where we can choose c1, e.g., c1 = 0.9.

For constraints b and c we need to be able to associate
a taskload with a sector. For this section we assume that a
heatmap representing the controller’s taskload is given, see
Section II. Given this heatmap we overlay it with a grid, see
Figure 3(a), extract the value at the grid points, see Figure 3(b),
and use this discretized heatmap, see Figure 3(c), for further
computations. We associate each discrete heatmap point, q,
with a “heat value”, hq . Again, we consider triangles for each
directed edge (i, j) of P and the reference point r, see for
example Figure 3(d): we sum up the heat values for all grid
points within the triangle (hq∀q ∈ ∆(i, j, r)). The sign of the
heat value for a triangle is determined by the sign of fi,j ,
denoted by pi,j , e.g., the triangle highlighted in Figure 3(d)
is oriented clockwise (indicated by the red boundary), its heat
value is positive (pi,j = +1). Let hi,j denote the signed heat
value of the triangle formed by edge (i, j) and r, that is:

hi,j = pi,j
∑

q∈∆(i,j,r)

hq.

If the taskload is of interest, we add constraint (12), which
assigns each sector s a taskload ts. In analogy to the balanced
size, we add constraint (13) to achieve a balanced taskload.
Here, tLB = c2 ·t0/|S\S0| with, e.g., c2 = 0.9. For a bounded
taskload we add constraint (14), with some fixed value tUB

giving the upper bound for the taskload in any sector. (In
case the upper bounds for different sectors differ because of
controllers with varying experience we can use sector-specific
upper bounds tsUB for all s ∈ S \ S0.)



(a) (b) (c) (d)

Fig. 3. (a) (Artificial) Heat map overlaid with a grid shown in white, (b) heat values extracted at grid points. (c) Shows the discretized heat
map for the area of interest for P : the heat values at grid points for all grid points within some triangle of an edge e of P and the reference
point r. (d) The highlighted triangle is clockwise, thus, also its heat value is positive.

∑
(i,j)∈E

hi,j yi,j,s − ts = 0 ∀s ∈ S \ S0 (12)

ts ≥tLB ∀s ∈ S \ S0 (13)
ts ≤tUB ∀s ∈ S \ S0 (14)

2) Geometric Constraints:
d) Connected sectors: A sector must be a connected portion

of airspace, that is, from each point in a sector each other
point in a sector must be reachable via a path that runs
only in the same sector. Thus, a sector should not be
fragmented into a union of several unconnected airspace
units, see Flener and Pearson [11].

e) Nice shape: A sector’s boundary should not be jagged.
The sector’s geometric shape should be easy to remember,
see Flener and Pearson [11].

f) Interior Conflict points: Points that require increased
attention from air traffic controllers should lie in the
sector’s interior, that is within a certain threshold from
the sector boundary.

g) Convex sectors: The sectors should be convex. Where
convexity can, for example, be defined either geomet-
rically, that is, for any pair of points in the sector the
straight line connection between these points is also fully
contained in the sector, or trajectory-based, that is, no
route enters the same sector more than once, see Flener
and Pearson [11]. As mentioned in the introduction, we
can easily integrate this constraint, and will present our
results in a forthcoming publication.

For constraint d we chose to use the length of the sector
boundary as an objective function instead of using subtour
elimination constraints, see Section IV-B.

Constraint f essentially asks to have points with higher com-
plexity to be located within the sector’s interior. In particular,
this is in relation to the complexity of other points and we
cannot consider an absolute threshold value for the complexity
of points on the sector boundary. Rather, we like to enforce
points of (relatively) high complexity to be in the interior,

and treat it as a softer constraint. We again make use of the
objective function, see Section IV-B.

We take care of constraint e in postprocessing: Given our
constraint set C ⊆ {a, b, c, d, e, f, g}, we solve the IP with
C \ {e} and then use shortcuts by removing vertices as long
as the constraints in C \ {e} are not violated.

B. Objective Function

As opposed to most mathematical programming approaches,
in our case, it is not obvious what kind of objective function
should be used. Cost functions used in literature are, e.g.,
taskload imbalance (which we use as a constraint), number of
sectors (which we consider as input), and costs resulting from
the interaction between the controllers of different sectors.

Because no obvious objective function exists, we consider
different functions, all of which integrate constraint d.

1) Basic Objective Function: Our basic objective function
is:

min
∑
s∈S

∑
(i,j)∈E

`i,jyi,j,s (15)

If for the balancing constraints we have a ∈ C, b, c /∈ C,
that is, we want to balance the area of the sectors, but are
not interested in the sector taskload, objective function (15)
ensures that sectors are connected, that is, we take care of
constraint d, see Figure 4.

The objective function resembles the Traveling Salesman
Problem (TSP), another resemblance is the search for a
connected tour for the TSP. But we make use of this objective
function exactly to yield the latter: connectedness. We do not
need to cover specific points with our sector boundaries, but
the sectors must completely cover the TMA. Thus, despite the
superficial resemblance, we do not need subtour elimination
constraints for all nonempty subsets to ensure connected
sectors.

If we consider taskload, objective function (15) only yields
connected sectors if c2 in tLB = c2 · t0/|S \ S0| of con-
straint (13) allows it: for example c2 = 0.9 may not allow
a “c2-balanced” sectorization with connected sectors, but if



Fig. 4. Disconnected sectors are not optimal for the objective function
of minimizing the perimeter of all sectors, (15) . The sectors must
completely cover the TMA. Assume there is a disconnected sector,
like the green sector in the left, we can merge it and decrease the
total perimeter, we have: (y + z + 2x)+(2x)≤ (y + z) +(2y + 2z)
by triangle inequality.

we allow for larger disparities between sectors, making a
connected solution feasible, by lowering the parameter, e.g.,
c2 = 0.7, we again obtain connected sectors. Essentially,
this translates to: given the current complexity map a user
must allow larger imbalances between controller’s taskload, if
having connected sectors is a necessary condition.

2) Integration of Constraint f: In Section IV-A we de-
scribed that the objective function also takes care of constraint
f: interior conflict points. If f ∈ C we use the following
objective function (an extension of the basic objective func-
tion (15)):

min
∑
s∈S

∑
(i,j)∈E

(γ`i,j + (1− γ)wi,j) yi,j,s, 0 ≤ γ < 1 (16)

Where wi,j represents an edge weight that depends on the
heat-values of its endpoints. We choose:

• wi,j = hi + hj
• wi,j =

∑
k∈N(i) hk +

∑
l∈N(j) hl, with N(i) denoting

the neighbors of i in G (including i itself)

The former ensures that relatively large heat values are not
located on the sector boundary, the latter pushes larger values
further into the interior. An alternative to using objective
function (16) instead of objective function (15) is to push
this into a constraint with an upper bound, WUB , on the
(sum of the) wi,j of sector boundary edges. This again shows
that the resulting sectors must not necessarily be connected
anymore, apart from c2 the value of WUB may make a
connected solution infeasible. Thus, we obtain an optimal
connected solution, if, given c2 and WUB , there exists a
feasible connected solution.

C. The Complete MIP

To enhance readability, we present the complete MIP in
this section. From the balancing constraints we present here
the constraints for c, balanced taskload.

min
∑
s∈S

∑
(i,j)∈E

`i,jyi,j,s (15)

s.t.
yi,j,0 = 1 ∀(i, j) ∈ S0 (1)∑

s∈S

yi,j,s −
∑
s∈S

yj,i,s = 0 ∀(i, j) ∈ E (2)

yi,j,s + yj,i,s ≤ 1 ∀(i, j) ∈ E,∀s ∈ S (3)∑
s∈S

yi,j,s ≤ 1 ∀(i, j) ∈ E (4)

∑
(i,j)∈E

yi,j,s ≥ 3 ∀s ∈ S (5)

yi,j,s ∈{0, 1} ∀(i, j) ∈ E, ∀s ∈ S (6)∑
l∈V :(l,i)∈E

yl,i,s

−
∑

j∈V :(i,j)∈E

yi,j,s = 0 ∀i ∈ V, ∀s ∈ S (7)

∑
l∈N :(l,i)∈E

yl,i,s ≤ 1 ∀i ∈ V, ∀s ∈ S (8)

∑
(i,j)∈E

fi,j yi,j,s − as = 0 ∀s ∈ S \ S0 (9)

∑
s∈S\S0

as = a0 (10)

∑
(i,j)∈E

hi,j yi,j,s − ts = 0 ∀s ∈ S (12)

ts ≥ tLB ∀s ∈ S \ S0 (13)

In case we want to have interior conflict points, we substi-
tute the objective function (15), by (16):

min
∑
s∈S

∑
(i,j)∈E

(γ`i,j + (1− γ)wi,j) yi,j,s, 0 ≤ γ < 1 (16)

V. EXPERIMENTAL STUDY: ARLANDA AIRPORT

We consider C1 = {c, d, e} and C2 = {c, d, e, f}, with wi,j =
hi + hj . If not mentioned otherwise we use c2 = 0.9.

The model was solved using AMPL and CPLEX 12.6 on
a single server with 24GB RAM and four kernels running on
Linux. Each instance was run until a solution with less than
1% gap had been found, or for a maximum of one CPU-hour.
No instance finished with an optimality gap of more than 6%.

Figure 5 depicts solutions for C1 = {c, d, e}, that is, objec-
tive function (15). In Figure 6 we present our sectorizations for
|S| = 4, and C2 = {c, d, e, f}, that is, objective function (16)
with wi,j = hi + hj , for different values of γ.

Comparing Figure 6(a) with Figure 5(a) we can observe
that the objective to have interior conflict points avoids the
heat value of “10” in the center; for γ = 0.5, Figure 6(b),
both hotspots are avoided by sector boundaries, that is, we
yield a sectorization with interior conflict points.

Figure 7(a) shows that this instance does not have a “c2-
balanced” solution for c2 = 0.9. On the other hand, if we
substitute constraint c by a, we can ensure connected sectors,
see Figure 7(b).

A. Influence of choosing wi,j

In this subsection, we present an instance that is not
connected to Stockholm TMA, to highlight the influence of the
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Fig. 5. C1 = {c, d, e}, that is, objective function (15). (a) |S| = 4, and (b) |S| = 5.

(a) (b)

Fig. 6. |S| = 4, and C2 = {c, d, e, f}, that is, objective function (16) (min
∑

s∈S
∑

(i,j)∈E (γ`i,j + (1− γ)wi,j) yi,j,s, 0 ≤ γ < 1), with
wi,j = hi + hj . In (a) we use γ = 0.9, in (b) γ = 0.5. Thus, in (b) the objective of interior conflict points/hotspot avoidance has a higher
weight than in (a).

two definitions for the weight wi,j . As this example is chosen
to show that relation, we present results for |S| = 2 to ease per-
ception. Consequently, we pick one cut through the rectangle
representing the square as the boundary between the two sec-
tors. We consider C2 = {c, d, e, f}, and apply both wi,j = hi +
hj and wi,j =

∑
k∈N(i) hk +

∑
l∈N(j) hl for f ∈ C2. That is,

we use min
∑

s∈S
∑

(i,j)∈E (γ`i,j + (1− γ)wi,j) yi,j,s, 0 ≤
γ < 1 as objective function. In Figure 8 (a) we use γ = 1,
i.e., we do not try to avoid sector boundaries running through
hotspots. Consequently, the cut runs along the shortest con-
nection that balances workload. In Figure 8 (b) and (c) we
use γ = 0, 5. So, we use a linear combination of length and
hotspot avoidance as our objective function. In (b) we use

wi,j = hi + hj , and in (c) wi,j =
∑

k∈N(i) hk +
∑

l∈N(j) hl.
That is, in (b) we want to avoid that the sector boundary runs
through hotspots; in the solution, we see that the low heat
points of value 2 are chosen. In the center the cut avoids
the 25, and runs through one of the (inevitable) 20’s on
the central vertical line (as in the objective value we have
1
2 · 2 ·

√
2 < 1

2 · 5). In (c), we also account for the weight
of the neighbors of vertices on the cut. Thus, the cut that
was optimal for wi,j = hi + hj has a high weight, due to
the neighboring 20’s and 25’s. The optimal solution now runs
through the areas of low complexity, with heat values of 5,
and avoids the hotspots.



(a) (b)

Fig. 7. |S| = 5: (a) For c2 = 0.9, γ = 0.5 and wi,j = hi + hj , (C2 = {c, d, e, f}) no “c2-balanced” sectorization with connected sectors
exists. (b) In contrast, if we look at area balance, C3 = {a, d, e, f}, c1 = 0.7, we obtain connected sectors.

VI. CONCLUSION AND DISCUSSION

In this paper we presented a sectorization method that
balances or bounds the taskload for the sectors, based on a
complexity representation. Moreover, we show how to inte-
grate further geometric constraints on the resulting sectors:
connectedness, nice boundary, and interior conflict points.
We apply our techniques to sectorize Stockholm Terminal
Maneuvering Area (TMA), and highlight the options for
interior conflict points with a tailored instance. Our method
is highly flexible, and allows a fine-grained view on the
TMA. It also constitutes the first step towards an integrated
design of aircraft routes, the induced complexity, and the
sectors. In a forthcoming paper, we will show that we naturally
can integrate a convexity constraint, or limit the number of
reflex vertices (the rationale behind the latter being that a
sectorization as shown in Figure 1 is not problematic). Note
that our approach can easily integrate SUA: we simply force
(the edges of) an additional sector, the SUA plus a threshold,
and exclude this sector from the workload balancing.
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