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Abstract—The availability of reliable and efficient algorithms to 
avoid obstacles, geofences, and other traffic is an essential 
functionality for safe autonomous operation of Unmanned Aircraft 
Systems (UAS) in low altitude airspace beyond visual line of sight. 
This paper presents a path planning algorithm that enables UAS to 
fly specified missions while accommodating real time traffic and 
geofence constraints. This planning algorithm integrates a rapidly 
exploring random tree planning technique with formally verified 
algorithms for maintaining well clear with respect to traffic aircraft 
and for detecting geofence conflicts. A simple heuristic that 
determines when to terminate tree expansion leads to low average 
computation times making this approach suitable for UAS with 
limited onboard computing power.  

Keywords – unmanned aircraft systems (UAS), detect and avoid 
(DAA), geofencing, path planning, autonomous systems  

I.  INTRODUCTION 
Advances in embedded hardware and sensors have made it 
possible to build low cost Unmanned Aircraft Systems (UAS) 
that can be used for a wide range of applications such as 
package delivery, search and rescue, surveillance, infrastructure 
inspection, and data gathering. As more UAS take to the skies 
to perform these tasks, it is essential that they operate safely  
and within approved airspace constraints. For beyond visual 
line of sight (BVLOS) missions, where human intervention is 
unavailable, the capability to autonomously navigate and avoid 
obstacles, avoid keep-out geofences, stay within keep-in 
geofences, and detect and avoid other traffic aircraft is 
fundamental. 
 
Mission planning when complete terrain and plan information 
are known a priori can be done efficiently offline. However, 
when traffic flight plans are unknown or when new constraints 
are imposed on the mission in real time, the original flight plan 
computed offline needs to be changed dynamically to 
accommodate the new constraints. This paper presents a 
planning algorithm that supports on-the-fly generation of local 
flight plans for solving real time geofencing and traffic 
constraints. 
 
Large UAS, capable of flying in non-segregated airspace with 
manned aircraft, are required to be equipped with Detect and 
Avoid (DAA) systems [1] to aid remote pilots to comply with 
federal regulations to “see and avoid” other aircraft. DAA 
systems provide situational awareness in the form of traffic 
alerts and maneuver guidance intended to aid remote pilots in 

maintaining or regaining “well clear” separation with traffic 
aircraft. Small UAS (sUAS), operating at low altitudes (at or 
below 400 ft.) in uncontrolled airspace are also expected to 
maintain safe separation from other users of the airspace. While 
current safety regulations (FAA sUAS Rule (Title 14, Part 
107)) [2] limit sUAS to remain within visual line-of-sight 
(VLOS) of the pilot-in-command at all times, it is expected that 
beyond visual line-of-fight (BVLOS) missions will have the 
greatest potential for economic impact. New regulatory 
guidelines are needed to help the implementation of these 
missions but in the meantime, it is clear that these tactical, 
contingency functions will have to be autonomously executed 
by the on board systems.  
Autonomous maneuver execution requires the implementation 
of new DAA functions that, for large UAS DAA systems were 
the responsibility of the pilot-in-command (PIC). This new 
functionality includes selecting a safe avoidance maneuver as 
well as a safe and efficient return to path maneuver.   
 
After execution of these maneuvers, the UAS must return to its 
original flight plan without human intervention. In low altitude 
airspace, in addition to avoiding other traffic, the UAS must 
also satisfy geofence constraints and avoid obstacles. 
Consequently, the integration of DAA algorithms with motion 
planning algorithms is essential for the safe autonomous 
BVLOS operation of UAS in low altitude airspace. 
 
This paper presents the integration of a rapidly exploring 
random tree planning technique with DAIDALUS (Detect and 
Avoid Alerting Logic for Unmanned Systems) [3], a detect and 
avoid algorithm, and PolyCARP (Algorithms and Software for 
Computation with Polygons) [4], a geofence conflict detection 
algorithm. This integration yields a path planning algorithm that 
safely and efficiently computes alternate flight plans to resolve 
conflicts with other air traffic while satisfying geofence and 
obstacle constraints. A simple heuristic is used to determine 
when to stop exploring the search space which in turn 
significantly decreases the average computation time. The 
resulting algorithm is suitable for UAS with limited onboard 
computing resources. In cases where there is not enough time 
to compute a complete path to the goal, the algorithm provides 
a conflict free path to an intermediate goal state. Upon 
completion of the intermediate goal, the path planning process 
is repeated until the final goal is reached. The proposed 
algorithm is applied to encounter scenarios involving multiple 



traffic and various geofence geometries. Computation time 
results for each of the encounter scenarios are presented.  
 
The safety critical nature of several UAS applications mandates 
a rigorous understanding of the properties of the integrated 
approach. Consequently, the proposed planning algorithm uses 
highly assured algorithms DAIDALUS and PolyCARP, whose 
key safety properties have been formally verified in the 
Prototype Verification System (PVS) [5]. The path planning 
algorithm itself is formally specified in PVS and its safety 
properties are being formally verified as well.  
 
The algorithm presented in this work is integrated as part of a 
decision making framework for UAS called ICAROUS 
(Integrated Configurable Algorithms for Reliable Operations of 
Unmanned Systems) [6]1. This paper is organized as follows. 
Section II discusses related work. A brief overview of the key 
components and tools used in this work are reviewed in Section 
III. A detailed description of the path generation algorithm is 
presented in Section IV. Case study results are presented in 
Section V. The formalization of the proposed system in PVS is 
discussed in Section VI. Section VII provides discussions and 
future work. Finally, conclusions are provided in Section VIII. 

II. RELATED WORK 

A. Motion planning 
The problem of finding a path from a given start configuration 
to a final configuration has been explored in depth in the 
literature [7, 8, 9, 10, 11, 12, 13, 14]. The various solution 
techniques in the literature can be roughly classified into two 
classes: graph based search methods and optimal control based 
methods. The graph based search methods discretize the search 
space into nodes. The nodes are connected based on some 
relevant criteria, e.g., reachability, to create a tree that spans the 
entire search space. This tree can then be searched for the 
shortest path using a graph based search algorithm, e.g., 
Dijkstra, A*, depth/breadth first, etc. In the optimal control 
based methods, the problem objective, e.g., shortest path, 
shortest time, minimum fuel, is typically encoded as a cost 
function. A parametric representation for the path or the control 
inputs to the system is chosen. Then, an optimization algorithm 
solves for the parameters that minimize the cost function 
subject to various constraints on the environment and dynamics.  
 
The graph based methods suffer from the curse of 
dimensionality, i.e., the complexity of these algorithms 
typically increases exponentially as the dimensionality of the 
search space increases. The optimal control methods can be 
difficult to solve analytically. Hence, they are often based on 
numerical techniques. The presence of nonlinear constraints 
makes the optimization problem harder to solve. Furthermore, 
some minimization methods may yield locally optimal 
solutions. Certain optimal control techniques like Dynamic 
Programming also suffer from the curse of dimensionality.  
 

                                                             
1 https://github.com/nasa/icarous 

Sampling based methods such as Probabilistic Road Maps 
(PRMs) [8] and Rapidly Exploring Random Trees (RRT) [10] 
were introduced to alleviate the complexity challenges of graph 
based search methods. These techniques have been used 
successfully in several applications to generate motion plans in 
real time. Some researchers have explored the application of 
sampling based planners to problems involving moving 
obstacles [11, 12].  
 

B. Geofencing 
Geofencing strategies for small UAS have been explored by 
some authors [15, 16]. The main focus so far has been on 
detecting geofence conflicts for remotely piloted UAS and 
preventing these vehicles from violating geofence constraints 
using predetermined maneuvers such as landing, return to 
home, or bouncing back from the fence. For fully autonomous 
operation, geofence conflict resolution must consider the 
mission requirements and dynamically compute new flight 
plans to avoid or go around geofences when possible.  
 

C. Detect and Avoid 
In the case of manned aircraft, several approaches have been 
proposed for ground-based and, more recently, airborne 
separation assurance systems (see, for example, [17]). Airborne 
technology for collision avoidance such as TCAS (Traffic 
Alerting and Collision Avoidance System) [18] has been 
successfully adopted by the commercial aviation industry. 
TCAS II, the second generation of TCAS, issues aural and 
visual alerts that direct pilots to maintain or increase vertical 
separation with intruders that are considered collision threats. 
The TCAS II system is based on an interrogation mechanism 
between transponders onboard the aircraft and a set of distance 
and time thresholds that determine the type of resolution 
advisories. A new generation of collision avoidance system, 
called ACAS X (Advance Collision Avoidance System), has 
been recently proposed [19]. In contrast to TCAS II, the alerting 
and advisory logic on ACAS is based on numerical look up 
tables optimized with respect to a probabilistic model of the 
airspace.  
 
For UAS, the final report of the Federal Aviation 
Administration (FAA) Sense and Avoid (SAA) Workshop [20] 
defines the concept of sense and avoid as “the capability of a 
UAS to remain well clear from and avoid collisions with other 
airborne traffic.” Based on this definition, the UAS Sense and 
Avoid Science and Research Panel (SARP) made a 
recommendation for a quantitative definition of UAS Well 
Clear that uses distance and time functions similar to those used 
in the TCAS II resolution advisory logic [21]. For large, 
remotely piloted UAS, the RTCA Special Committee 228 has 
developed minimum operational requirements for detect and 
avoid that uses SARP’s well clear definition [22].  DAIDALUS  
[3] is a NASA developed software that serves as a reference 
implementation of the detect and avoid concept provided by the 



RTCA SC-228 MOPS. This paper focuses on integrating detect 
and avoid systems, such as DAIDALUS, into a motion planning 
algorithm to facilitate low altitude autonomous UAS operations 
beyond visual line of sight. 
 

III. BACKGROUND 
This section gives an overview of the main components of the 
proposed path planning algorithms. 

A. Rapidly Exploring Random Trees 
Introduced by LaValle [10], a rapidly exploring random tree 
(RTT) is a data structure that can be used for path planning. 
Starting from an initial position, a tree is incrementally expanded 
towards randomly chosen samples in the search space. The tree 
expansion can be monitored at each iteration to ensure new 
nodes being added to the tree are consistent with any imposed 
constraints. If the random samples are chosen uniformly, each 
expansion step biases the tree towards the unexplored regions. 
Consequently, after several expansion steps, the tree spans the 
search space uniformly. Figure 1 illustrates a RTT generated 
from an initial position. The dark rectangles in the figure 
represent geofence obstacles. The tree data structure can then be 
utilized in conjunction with other graph based search algorithms 
to find a path from the root to any given node in the tree. The 
RRT data structure has many other properties that make it 
suitable for path planning. Interested readers are referred to [10] 
for more information. 

 
Figure 1: Exploration of search space using RRT 

B. DAIDALUS 
The detect and avoid functionality needed to implement the 
proposed path planning algorithm is provided by DAIDALUS 
[3]. DAIDALUS is a software library that serves as a reference 
implementation of the DAA concept described in the RTCA 
SC-228 Minimum Operational Performance Standards (MOPS) 
for Unmanned Aircraft Systems [1].  DAIDALUS source code 
is available in both C++ and Java under NASA’s Open Source 
Agreement. DAIDALUS library consists of algorithms that 
predict well-clear violations between the ownship and traffic 
aircraft, and provide maneuver guidance in the form of range of 

maneuvers for the ownship to maintain or regain well-clear 
status with respect to traffic aircraft. These algorithms have 
been formally verified for logical correctness in the PVS 
verification system.  
 
Figure 2 illustrates DAIDALUS functionality on a notional 
encounter.  The solid area represents the well-clear volume that 
the aircraft needs to avoid. This volume is defined by time and 
distance thresholds and is generated assuming ownship 
performance limits. In this notional encounter, the current 
ownship trajectory is not predicted to be in conflict, but if the 
ownship maneuvers to the right in the range of maneuvers 
denoted by g, the aircraft will eventually lose well clear. The 
range of maneuvers denoted by g is called a conflict band. A 
typical progression of conflict bands is illustrated in Figure 3 
on a nominal encounter. At time t0, aircraft are beyond threshold 
limits and therefore no bands are computed. At time t1, the 
aircraft are within threshold limits and a peripheral conflict 
band is computed for the ownship. At time t2, the intruder 
aircraft has maneuvered in the direction of the ownship and a 
conflict band appears in the current path of the ownship. At time 
t3, the aircraft have lost well clear. In this case, DAIDALUS 
computes recovery bands, which is represented by the dashed 
green range of maneuvers. Recovery bands enable the ownship 
to regain well clear in a timely manner according to its 
performance limits.  
 
DAIDALUS is a highly configurable system, but its default 
configuration was designed for large fixed wing UAS and high 
altitude operations. For the integration proposed in this paper, 
the well clear volume is defined as a cylinder of diameter 10m 
and height 10m. The performance limits of the ownship were 
also adapted to those of a small rotorcraft.   
 
 

 
Figure 2: Maneuver guidance computation in DAIDALUS 



 
 

Figure 3: Progression of conflict bands 

C. PolyCARP 
The geofencing capability used by the proposed path planning 
algorithm is provided by PolyCARP [4]. PolyCARP is an open 
source software library developed by NASA that contains 
algorithms for detecting conflicts between a point moving at 
constant velocity and a, possibly moving, polygon. A core 
component of PolyCARP is a formally verified containment 
algorithm that determines if a point is definitively inside or 
definitively outside a polygon. This containment algorithm is 
based on a ray casting technique. Given a polygon region and 
an input position in a 2D plane, a ray is cast from the point 
outward to infinity. If it crosses an even number of edges of the 
polygon, it is outside; otherwise, it is inside. This is shown in 
Figure 4. In the containment algorithm, a parametric buffer 
distance is used to perturb the original polygon because ray 
casting may cause the ray to pass very close to some vertices, 
which can potentially allow floating point errors to produce an 
incorrect inside/outside result. The perturbation of the vertices 
away from the cast ray, prior to counting the number of crosses, 
mitigates this problem and the containment algorithm is correct 
assuming that the accumulated computation errors are less than 
the buffer and the point is less than the buffer distance away 
from an edge. 

 
Figure 4: Ray casting 

 

IV. PATH PLANNING 
This section describes the integration of geofencing and detect 
and avoid capabilities into a path planning algorithm that 
efficiently computes a path from a given start configuration to 
a final configuration. The computed path is free from geofence 
and traffic conflicts.  

A. Assumptions 
The following assumptions are made to facilitate the 
development of the system: 
 

● The ownship has a velocity controller. This enables the 
ownship to follow a commanded velocity. 

● Complete information about all air traffic is available 
to the ownship.  

● All intruder vehicles travel with a constant velocity.  
● Intruder vehicles do not have malicious intent. 
● All geofences are represented as polyhedra. 
● All obstacles are encoded as keep-out geofences. 

B. Problem Statement 
Let ℝ" represent the 3-dimensional Euclidean space. Let 
𝑋$%&'% ∈ 	ℝ" represent the initial position of the ownship. Let 
𝑋*+, ∈ ℝ" represent the goal position for the ownship. Let 𝑈 ∈
ℝ" represent a velocity command. Given 𝑋$%&'% and 𝑋*+,, the 
goal is to compute a sequence of velocity commands 
𝑈., . . . 𝑈+such that when applied to the ownship, yields a 
trajectory connecting 𝑋$%&'% to 𝑋*+, that (a) satisfies dynamics 
constraints of the ownship, (b) stays away from the well-clear 
violations, and (3) respects geofence constraints. The sequence 
of velocity control inputs is computed by randomly exploring 
the search space and incrementally building a tree data structure 
that spans both space and time. 
 

C. Data structure 
A tree is a collection of nodes that are connected by edges based 
on the availability of a feasible path between nodes. Each node 
contains information about the state of the ownship and intruder 
vehicles at a given time. The ownship state is represented as a 
vector of dimension 𝑛. The dimension 𝑛 of the ownship state 
depends on how the dynamics of the vehicle are modeled. For 
example, the ownship state could be represented by a 6-tuple 
representing its 3-dimensional position and velocity vectors. 
Assuming each intruder’s state is represented by a 𝑝-
dimensional vector, 𝑞 intruders can be represented by a 𝑝×𝑞 
array. In addition to the ownship and traffic states, additional 
data such as the control input applied at the node, cost, and 
shortest distance to the goal node can also be stored within a 
node. Information about the parent and children edges are also 
stored within a node.  
 



D. Tree Expansion 
Let 𝛥𝑇 represent a fixed time interval allotted for the 
computation of a path.  The root node in the tree is initialized 
with the initial position of the ownship and intruders projected 
in time by 𝛥𝑇 to account for the motion of the ownship during 
the computation process. At each iteration, a random 
configuration 𝑋' ∈ ℝ" is generated from a uniform distribution. 
Then, a node in the tree is selected whose ownship position 𝑋+ 
is closest to 𝑋' and such that there exists control inputs 𝑈 that 
can move the ownship state from 𝑋+ closer to 𝑋' within the 
interval [𝑡, 𝑡 + 𝑑𝑡]. Here 𝑡 represents the time at position 𝑋+. 
 
The above step of propagating the ownship state 𝑋+ towards 𝑋' 
involves two stages. First, the control input 𝑈 is computed. This 
computation largely depends on how one models the underlying 
dynamics of the ownship. Several approaches such as those 
described in [12] can be adopted. The control input is applied 
from 𝑡 to 𝑡 + 𝑑𝑡 to generate a new state 𝑋<. The computed 
input 𝑈 is stored in the node corresponding to 𝑋+. As the 
ownship position is propagated from 𝑡 to 𝑡 + 𝑑𝑡 according to 
the modeled dynamics, the position of all the intruders are also 
propagated from 𝑡 to 𝑡 + 𝑑𝑡.  
 

E. Constraint Satisfaction 
The segment from 𝑋+ to 𝑋< is checked for geofence violation 
pointwise in time within the interval [𝑡, 𝑡 + 𝑑𝑡]. To ensure that 
the new ownship position 𝑋< is not in conflict with any 
intruders, well-clear guidance is computed using the functions 
that are part of DAIDALUS. Using the position and velocity of 
the ownship and intruders at time 𝑡 + 𝑑𝑡, DAIDALUS guidance 
maneuvers ensures that the state of the ownship at 𝑋< is outside 
the well clear volume of any intruder. Furthermore, it is checked 
to ensure that the heading of the ownship at 𝑋< lies outside any 
conflicting track angles that lead to a well clear violation. 
Finally, the change in heading from 𝑋+ to 𝑋< is also checked 
that it does not cross any conflicting track angles. 
 
The new position 𝑋< is only reachable from 𝑋+ if the segment 
from 𝑋+ to 𝑋< satisfies the above geofence and traffic conflicts. 
If 𝑋< is reachable, then a new node with the state information 
of the ownship and intruders at 𝑡 + 𝑑𝑡 is created and added to 
the tree. If the above checks fail, 𝑋< is discarded.  
Consequently, each node added to the tree is free from conflicts. 
With the addition of each new node to the tree, the expansion 
algorithm keeps track of the node 𝑁> that is closest to the goal 
configuration. 
 
With each iteration of the expansion step, the tree grows bigger 
leading to uniform exploration of the search space. This 
exploration phase is continued until a node is found that is 
within some neighborhood of the goal position. The sequence 
of inputs that must be applied from the root node to get to the 
goal node can be obtained by backtracking to the root node from 
the closest node to the goal 𝑁>. 
 

F. Heuristic-Based Termination 
Often, depending on the geometry of the search space, it may 
not be necessary to explore the whole state space by growing 
the tree incrementally until a neighborhood of the goal position 
is reached. A simple heuristic to determine when to terminate 
tree expansion is to check if a direct path to the goal exists at a 
given node. More specifically, if one were to head directly 
towards the goal from a given node, and the path along this 
direction is free from traffic and geofence conflicts, then a 
direct path to the goal exists. This heuristic can be used on the 
nearest node used for tree expansion and/or on the closest node 
𝑁>. 
 
If it is not possible to compute a complete path to the goal 
within the time allowed for computation 𝛥𝑇, the algorithm 
returns the ownship position at the closest node 𝑁> as the 
intermediate goal. The planning process can be reinitiated on 
reaching the intermediate goal. 
 

G. Pseudo-Code 
The pseudo-code for the algorithm is presented below. For 
convenience, a node at which the ownship’s position is 𝑋 is 
referred to as node 𝑋. 
 
1 Initialize tree root with initial position and 

velocities of ownship and intruders. 
2 Initialize closest node to goal N@ as an empty 

node. 
3 For i in 1 to NumIterations 
4     Generate random sample XB 
5     Find nearest node XC	 in tree 
6     If direct path to goal node exists,  
7         Add goal node as child of XC 
8     Else 
9         Find input U that move XC closer to XB 
10         Propagate XCtowards XB with U to get XE 
11         If segment from XC to XE satisfies 

traffic and geofence constraints, then 
            Store input U in node XC    

12             Add XE as a child node of XC 
13     Update closest node to goal N@ 
14 
15 

    If goal reached, then 
           Terminate 

16 Back track from closest node to goal N@ to the 
root node, to obtain the path and control input 
sequence 

 

V. CASE STUDY 
The algorithm described above is agnostic to the vehicle type. 
However, for the purpose of illustration, a quadrotor vehicle is 
used. As mentioned earlier, it is assumed that the quadrotor has 
an onboard velocity controller and hence the quadrotor state is 
modeled as 𝑋	 = 	 [𝑥, 𝑣I, 𝑦, 𝑣K, 𝑧, 𝑣M]. Here 𝑥, 𝑦 and 𝑧 represent 
the position of the quadrotor in a local North-East-Down (NED) 
coordinate frame. 𝑣I, 𝑣K and 𝑣M represent the body velocities in 
the NED frame. The closed loop dynamics of the quadrotor is 
described by an ordinary differential equation of the form  𝑋 =



𝑓(𝑋, 𝑈) where 𝑈	 = 	 [𝑢I, 𝑢K, 𝑢M] represents the velocity control 
inputs. 
 

! 	= 	$%	
$% 	= 	−'% $%	–	)% 	
* 	= 	 $+	
$+ 	= 	−'+ $+	–	)+ 	
, 	= 	 $-	
$- 	= 	−'- $-	–	)- 	  

 
 
 
 

(1) 

Here 𝑘I, 𝑘K, 𝑘M are positive constants. For an expressive set of 
behaviors involving different modes of operation, the vehicle 
dynamics may also be represented as a hybrid system. For 
example, with a hybrid system model of a quadrotor dynamics, 
one can compute paths where the quadrotor can hover at a given 
position for a certain duration waiting for traffic related 
conflicts to be resolved. 
 
A random sample is generated in the search space as follows: 
 

!" 	= 	 !%&' 		+ ) 0,1 ×(!%/0 	−	!%&')	
3" 	= 	3%&' 	+ ) 0,1 ×(3%/0 	−	3%&')	
4" 	= 	 4%&' 	+ ) 0,1 ×(4%/0 	−	4%&')	  

 
(2) 

 
Here 𝒰(0,1) represents a uniform distribution in the interval 
[0,1]. The max, min values of 𝑥, 𝑦, 𝑧 represents the bounds 
within which a random sample is generated. 
 
The inputs that move the ownship position at the nearest node 
𝑋+ towards the random sample 𝑋' can be found using an 
optimization framework as discussed in [8]. For the simple 
quadrotor illustration, a simple feedback input of the form 𝑈	 =
	𝑘(𝑋'	–	𝑋+) is considered. Here 𝑘 is a gain chosen to ensure   
𝑈 ≤ 𝑈<&I	. 

 
The ownship state 𝑋+ is propagated from time 𝑡 to 𝑡	 + 	𝑑𝑡 using 
input 𝑈 and the closed loop dynamics represented by Eqn (1). 
For the simplified closed loop dynamics considered in this 
work, it is possible to compute the solution analytically. 
However, more generally, one could use numerical integration 
techniques such as the Euler method or the Runge-Kutta 
method. Since each node also contains the position 𝑋X and 
velocity 𝑉X of the intruder vehicles at time 𝑡, we can also project 
the position of the intruder to time 𝑡 + 𝑑𝑡 using the linear 
dynamics of the form: 
 

𝑋X(𝑡 + 𝑑𝑡) 	= 	𝑋X(𝑡) 	+ 	𝑉X𝑑𝑡 (3) 
 
This work assumes that the intruders move with a linear 
velocity. However, if the flight plans of all the intruders are 
known a priori, the above linear dynamics can be replaced with 
models representing the intruder trajectories. 
 
As the positions of the ownship and intruders are incrementally 
projected from 𝑡 to 𝑡 + 𝑑𝑡, it is ensured that each intermediate 

position between 𝑡 and 𝑡 + 𝑑𝑡 is free from geofence conflicts 
pointwise in time. With the final positions and velocities of the 
ownship and intruder at 𝑡 + 𝑑𝑡 obtained, it is verified that there 
are no well clear violations and traffic conflicts as described in 
the previous section. 
 
A simple road inspection mission where the ownship quadrotor 
(red) has to fly through a series of waypoints is shown in Figure 
4. Keep-out geofences are used to mark buildings that the 
rotorcraft has to avoid. The blue vehicles are other traffic 
operating in the same airspace. 
 

 
Figure 5: Inspection mission layout with geofences and traffic 

 
Figure 5 illustrates the first encounter of the ownship with an 
intruder. The kinematic guidance bands computed by 
DAIDALUS are indicated. Figure 6 illustrates the replanned 
trajectory taken by the ownship to avoid the first intruder. 
Figures 7 - 9 illustrate similar encounters and the respective 
replanned paths of the ownship. 
 
The computation times for the three encounters were evaluated 
on two different hardware platforms suitable for embedded 
applications. Results are summarized in Tables 1 and 2. 
 

Table 1: Computation time results on Beagle Bone Black 

 Iterations used Nodes explored Time taken (s) 
Encounter 1 5 5 1.5572 
Encounter 2 7 6 1.5802 
Encounter 3 16 13 2.6758 

 



Table 2: Computation time results on Jetson TK1 

 Iterations used Nodes explored Time taken (s) 
Encounter 1 7 5 0.1324 
Encounter 2 19 14 0.2822 
Encounter 3 10 7 0.1671 

 

VI. FORMALIZATION AND VERIFICATION 
As noted in the Introduction, the safety critical nature of UAS 
algorithms mandates a rigorous understanding of the properties 
of the integrated approach. Consequently, many of the 
algorithms in DAIDALUS, PolyCARP, and ICAROUS have 
been formally verified in the Prototype Verification System 
(PVS) [5]. PVS is an interactive theorem prover consisting of a 
specification language and a prover language. Algorithms are 
first specified in the specification language, whose semantics 
are similar to a functional programming language. However, 
unlike a programming language, this specification language 
allows correctness properties, in the form of theorems, to be 
stated about these algorithms. The prover language is then used 
to prove that the algorithms satisfy these theorems.  
 
In the PVS development, priority is given to verifying 
algorithms that have potential safety implications. The 
previously verified algorithms in DAIDALUS therefore include 
the conflict detection and bands algorithms. In PolyCARP, 
verified algorithms include sub-functions of the ray casting 
algorithm, including the function that determines whether a ray 
crosses an edge, the function that determines if the input point 
is within a buffer distance of an edge, and the function that 
determines if a trajectory will intersect a polygon.   
 
Work is currently ongoing to verify safety properties of the path 
planning algorithm presented in this paper, which is part of 
ICAROUS. The Runge-Kutta approximation of the closed loop 
dynamics of the quadrotor, presented in Section III, have been 
formalized in PVS, as well as a function that checks the 
resulting path for well-clear (using DAIDALUS) and collisions 
with obstacle polygons (using PolyCARP). The main property 
to be proved is that the final output path from the planning 
algorithm is always well-clear and never intersects an input 
obstacle. 
 

VII. DISCUSSION 
The selection of a suitable goal location for plan generation is 
mission dependent and must be done in real time. A simple 
approach would be to select the next conflict free waypoint in 
the flight plan or an intermediate point in space on the current 
flight plan’s leg as the goal node.  
 
The available time 𝛥𝑇 for computing a solution is also problem 
dependent. Based on the availability of sufficient 𝛥𝑇, one can 
ignore the early termination strategy discussed in this paper and 
focus on the tree expansion as desired. A graph based search 
algorithm may also be used on the tree to determine an optimal 
path. Certain scenarios may require using the early termination 

heuristic to trade off optimality for a cheap conflict free 
solution. Determining this tradeoff in real-time is a topic of 
interest for future work. Future research directions will also 
look into construing efficient exploration heuristics to select 
new samples.    
 

VIII. CONCLUSIONS 
This paper presents a local path planning algorithm that 
integrates a rapidly exploring random tree based search 
algorithm with formally verified traffic resolution and geofence 
conflict detection algorithms. Termination of the tree expansion 
based on the availability of a direct path to the goal position 
from a node on the tree leads to quicker computation times. 
Initial software and hardware in the loop tests show that the 
resulting algorithm is suitable for UAS with low computation 
power given its capability to compute in real-time path plans 
that satisfy traffic and geofence constraints. 
 
 

 
Figure 6: Encounter with first intruder 

 

 
Figure 7: New trajectory to resolve conflict with intruder 1 

 



 
Figure 8: Encounter with second intruder 

 

 
Figure 9: Resolving conflict with second intruder 

 

 
Figure 10: Resolving conflict with third intruder 
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