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Abstract—In the last few years, the Federal Aviation 

Administration (FAA) has been investigating the use of automatic 

speech recognition in safety monitoring capabilities, with an 

initial focus on the tower domain. One application of speech 

recognition technology is the automatic detection of pilot read 

back errors that are not corrected by the controller. Uncorrected 

read back errors are one cause of runway incursions, one of the 

FAA’s primary surface safety concerns. To inform the FAA’s 

investigation into future speech recognition applications and 

mitigate the risk associated with future capability development, 

the MITRE Corporation (MITRE) is conducting research into 

the feasibility of a read back error detection capability that uses 

speech recognition to compare controller and pilot intent spoken 

in radio transmissions from the tower domain. Through this 

research, MITRE has developed a concept of use for the 

capability that includes a high level system design and a 

graphical user interface design. Additionally, MITRE conducted 

an evaluation of speech recognition performance on controller 

and pilot radio transmissions to assess the accuracy achievable 

with established speech recognition technology and tuning 

methods. Preliminary results from the research indicate that 

speech recognition performance on controller and pilot speech is 

promising, but more research is needed to refine the capability 

logic, improve speech recognition accuracy, and assess 

operational acceptability of its performance.   

Keywords: read back error detection, automatic speech 

recognition, safety 

I.  INTRODUCTION 

Radio transmissions remain the primary means of 
communication between controllers and pilots in the Air 
Traffic Control (ATC) domain. While a Data Communication, 
or text-based transmission of data, between controllers and 
pilots is envisioned to supplement radio communications in 
future operating environments, this capability is unlikely to 
completely replace radio communications in the near term. 
Controllers ensure the safety of flights operating within their 
jurisdiction by issuing clearance commands and advisories to 
pilots, verifying the pilots’ immediate read back of the 
commands for correctness and understanding, and then 
continually monitoring aircraft movement to ensure 
compliance to issued commands.  

In the airport surface environment, local and ground 
controllers are responsible for ensuring the safe maneuvering 
of arriving, departing, and taxiing aircraft in and around a 
towered airport. During busy periods, controllers may be 
responsible for many aircraft simultaneously, with a significant 
amount of their time and workload devoted to voice 
communications and read back monitoring. 

In the last few years, the Federal Aviation Administration 
(FAA) has been investigating the use of automatic speech 
recognition to provide or support automated monitoring 
capabilities that can improve surface safety. The research has 
focused on demonstrating feasibility with a simple use case 
that recognizes a constrained set of phrases in only controller-
side transmissions because the regulated phraseology, limited 
speaker set, and cleaner acoustic quality make controller 
transmissions more conducive to speech recognition than their 
complement—pilot transmissions. However, in parallel with a 
demonstration of this initial controller speech-based surface 
monitoring prototype at John F. Kennedy International Airport 
(JFK), the FAA is researching more complex speech-based 
applications that offer more potential benefit by detecting a 
larger number of safety situations [1][2].  

With an eye toward future capabilities for the use of speech 
recognition in real-time air traffic operations The MITRE 
Corporation’s Center for Advanced Aviation System 
Development (MITRE CAASD) is investigating the feasibility 
of a read back error detection capability that uses speech 
recognition to compare the content of controller and pilot 
transmissions. To assess the feasibility of speech recognition 
technology for a given application, the application logic must 
be defined and the speech recognition performance must be 
measured against the application’s needs. For read back error 
detection, the application’s needs are defined by the logic 
(rules) for what warrants an alert. The speech recognition 
performance must then be measured in the context of this 
logic—in other words, how well the speech recognition system 
correctly recognizes the speech information needed to apply 
the logic to generate the desired alerts. 

Section II provides background information on read back 
errors in the ATC domain and on automatic speech recognition 
technology, including its application to ATC speech. Section 
III describes the concept, an initial user interface design, and 



the first steps toward deriving alert logic. Section IV describes 
the speech recognition performance analysis, including 
performance results on both controller and pilot speech. 
Section V presents the next steps toward developing a proof-
of-concept demonstration system.  

II. BACKGROUND 

A. Read back Errors in ATC Communications 

A substantial portion of a controller’s job is issuing 
commands to aircraft. After each clearance or instruction, the 
controller is to “ensure that items read back are correct, ensure 
the read back of hold short instructions…, and ensure pilots use 
call signs and/or registration numbers in any read back 
acknowledging an air traffic clearance or ATC instruction” [3]. 
At times, pilots may make a read back error. The 
misunderstanding may then be compounded if the controller 
does not correct the error in the pilot read back—a so called 
hear back error. The resulting uncorrected read back error can 
put the operation in an unsafe state since it is unknown if the 
pilot will comply with the clearance or instruction (in which 
case, the pilot simply misspoke during the read back) or, if the 
pilot misheard the clearance or instruction and their read back 
indicates the action they will actually perform. While a read 
back error and subsequent hear back error concerning an 
instruction to taxi in to the ramp may not have serious 
consequences, a read back and subsequent hear back error 
concerning runway use could have significant safety 
implications. 

The research team reviewed the literature on controller-
pilot communication errors to better understand the prevalence 
of the problem of read back and hear back errors. In a series of 
papers reporting on controller-pilot voice communications data 
from the tower domain (both local and ground positions), in 
1993 and 1996, Cardosi found pilot read back error rates of ≤ 
1% and that 40% of read back errors were uncorrected, i.e., 
hear back errors [4][5]. Cardosi reported similar results for the 
En Route and Terminal Radar Approach Control (TRACON) 
domains [6][7]. Cardosi et al. reported that in these earlier 
studies, the number of read back errors was about one per hour 
per frequency across all domains [8].  A more recent study 
which examined only the TRACON reported read back error 
rates of 6% with a hear back error rate of 92% [9]. The authors 
note that differences in analysis methodology relative to 
previous studies may explain the significant difference in read 
back and hear back error rates. Eurocontrol conducted similar 
research, studying incidents in Europe and adopting Cardosi’s 
taxonomy, and found that read back/hear back errors were the 
most common controller-pilot communication problem [10].   

None of these studies provided an estimate of the 
probability of an incident due to a read back/hear back error. 
As the focus of this research is on the tower domain, runway 
incursions, situations in which an unauthorized aircraft is on a 
runway, are a key potential consequence of communication 
errors. Kopald and Goring analyzed runway incursions 
attributed to controller error (i.e., operational incidents) and 
identified runway incursions where a hear back error was likely 
a contributing factor [11]. The analysis found that read back 
errors accounted for 10.7% of the runway incursions in a 

subset of a 6-year runway incursion dataset. The analysis 
extrapolated that percentage to 129 runway incursions in the 
full dataset due to read back errors.  

Using the aforementioned estimate of one read back error 
per hour per frequency, along with other factors—40% of 
which are hear back errors, assuming an average of two 
frequencies per tower, for ~500 towers in the National 
Airspace System (NAS), and 129 runway incursions attributed 
to hear back errors over the 6-year period—it is clear that the 
absolute risk of a runway incursion due to a hear back error is 
vanishingly small. Specifically, there is a risk of 1 runway 
incursion for every 163,000 hear back errors, 1 runway 
incursion for every 407,000 read back errors, or 1 runway 
incursion for every 40,700,000 commands. Although this 
probability of an incursion is very small, the potential 
consequence of even a single runway incursion might 
necessitate capabilities to mitigate that risk. 

Despite the rare occurrence of read back/hear back errors, 
current and retired air traffic controllers and managers 
frequently suggest that a read back error detection capability 
would be a useful application of automatic speech recognition 
technology. Given that evaluating pilot read back is a 
significant portion of a controller’s responsibilities and given 
the potential negative consequences of a hear back error, it is 
understandable that controllers and managers would be 
enthusiastic about the potential benefit of a capability that 
could (1) detect and alert for pilot read back error and (2) 
detect and alert when the controller has not provided a timely 
corrective command in response to a pilot read back error, 
thereby preventing hear back errors. The key challenge to 
ensuring such a capability is useful is to define logic that alerts 
only for the appropriate situations.  

B. Automatic Speech Recognition Technology 

 Automatic speech recognition (ASR) translates digitized 
audio to a text transcription of the speech content. Speech 
recognition systems typically employ both an acoustic model 
(AM) and a language model (LM) in tandem to produce one or 
more transcription hypotheses with an associated likelihood of 
the transcription’s accuracy [12]. The AM breaks down a 
digitized audio sample into a sequence of likely phonemes, 
which are basic units of speech sounds [13].  The LM accepts 
the sequence of phonemes and combines them to form a 
probable sequence of words.   

Statistical methods are used to create LMs and AMs, prior 
to recognition, from labeled speech data [13][14]. Both types of 
models rely on large quantities of training data to create and 
tune [15]. The accuracy and robustness of these statistical 
models are dependent on the amount of training data available 
and on how well the training data matches the data that will be 
recognized in the operational environment. Thus the collation 
of appropriate training data is important to the performance of 
a speech recognition system for a specific application. 

Speech in the ATC domain varies from typical 
conversational English in several important ways.  Speech in 
the ATC domain is highly specialized, with many domain-
specific terms, and is typically faster than conversational 
speech. ATC phraseology for controllers is designed to be 



concise with little repetition or redundancy. Phraseology for 
pilots is less regulated but tends to be even more terse than 
controller speech, making it difficult to understand without 
situational or dialogue context. The voice switches used to 
transmit and receive radio transmissions between controllers 
and pilots introduce acoustic characteristics that are unique to 
the domain.  

Previous work involving speech recognition in the ATC 
domain has focused primarily on training the LM, by adjusting 
or constraining it, to improve ASR performance, with less 
focus on tuning the AM [16][17][18][19]. However, the limited 
vocabulary of ATC speech, the variation in speakers and 
speech environments, and the physical channel characteristics 
all suggest that greater changes in the AM can improve 
recognition accuracy.  

AMs can be tuned for the unique conditions of a particular 
application either through training of a task-specific acoustic 
model or adaptation of a pre-existing generic acoustic model 
[13]. Training data is needed for both training an acoustic 
model and adapting an acoustic model. Training an acoustic 
model requires a large amount of training data to ensure good 
accuracy and model stability. Adaptation, on the other hand, 
uses a smaller amount of task-specific data to adapt (i.e., 
modify) a pre-existing, larger, and more general acoustic model 
to the new environment. Even with limited training data, 
adaptation can still account for variations in the recording 
equipment, for new speakers, and for other features that vary 
from the acoustic model training data to the operational 
environment [20]. While there exist different approaches to 
adaptation, each approach adjusts the statistical probabilities 
within the models without changing the fundamental structure 
of the model itself [21][22][23][24].  

Although automatic speech recognition has become 
increasingly prevalent in the ATC domain, most of the work 
has focused on recognizing controller-side communications for 
the purposes of improving safety during live operations, 
facilitating flight data entry, standardizing controller training, 
providing automated simulation pilot capabilities in lab 
environments, and augmenting post-event analysis. A read 
back error detection capability differs from these previous 
applications in that it requires correct recognition of both 
controller and pilot transmissions to function properly. The 
concept of an automatic read back error detection capability is 
not new to the domain—Ragnirsdottir et al. proposed a 
language technology system that could support read back error 
detection in the oceanic environment as early as 2003 [25]. 
However, research into the feasibility of a real-time, read back 
error detection capability has been limited, partly because of 
the difficulty associated with recognizing pilot speech. This 
research aims to assess the feasibility of recognizing both 
controller and pilot speech for an automated read back error 
detection capability, with a focus on quantifying the benefits of 
AM tuning through adaptation and training.  

III. READ BACK ERROR DETECTION CONCEPT AND DESIGN 

A. Capability Concept and Design 

The read back error detection capability envisioned is 
simple and intuitive. A speech recognition system passively 
monitors controller and pilot radio transmissions. Aircraft 
identifiers are identified within transmissions and used to 
match controller and pilot transmissions as command-read 
back pairs. Clearance commands and read backs are parsed to 
extract their meaning for comparison.  When a mismatch 
between a command and a read back transmission pair is 
detected or when a read back is altogether absent, the system 
generates an alert for the controller. The system can be 
extended by expanding the transmission pairing beyond two 
transmissions to allow for corrective transmissions that the 
controller issues without any prompting because the read back 
mismatch was already detected by the controller. Furthermore, 
the context and content of the transmissions can be used as 
supporting or alternative criteria for matching transmissions, in 
case an aircraft identifier is not spoken as part of a transmission 
or was not recognized by the speech recognition component. 
Figure 1 depicts the high level components of the capability. 

 

Figure 1. High level components of the read back error detection capability. 

B. Graphical User Interface 

A graphical user interface (GUI) for the read back error 
detection system—an interface where alerts would be 
displayed and managed—was designed with input from subject 
matter experts (SMEs). The information elements that could be 
included in the GUI are described below and then the layout of 
the GUI itself is presented. 

A number of basic information elements could be presented 
through a GUI, including: 

• Raw ASR result of controller and/or pilot utterance: 
The raw text output of the speech recognition engine 

• Concise speech recognition result of controller and/or 
pilot utterance: The processed output of the ASR 
engine that provides the aircraft identifier, semantic 
and informational elements of the utterance 

• Speech recognition confidence per utterance: A 
dimensionless scalar number indicating the speech 
recognition engine’s confidence in its transcription. 

• Dialogue timeline/history: a chronological history of 
all pilot and controller transmissions 



• Speech recognition system status/activity: indicators 
that show that the system is operating, recognizing 
who was just speaking, and is processing the 
utterances. 

• Cause of the alert: an indicator that shows an 
explanation of why the alert occurs; e.g., a missing 
read back, a broken transmission, or errors in the read 
back. 

• An advisory command that could be issued by the 
controller to respond to the alert 

• Playback of the recorded controller and pilot audio 
triggering an alert 

• An audible alert embodied as a brief, non-repeating 
tone or a spoken alert 

Additionally, with respect to user interaction, alerts could 
be actively acknowledged by a controller or passively cleared 
by the system when certain conditions are met, such as: 

• The controller issues the same command to the aircraft 

• The controller issues a different command to the 
aircraft in response to or in spite of a read back error 

• Occurrence of a new read back error detection alert for 
any aircraft; in order to prevent simultaneous alerts 

• A pre-configured amount of time has transpired since 
the alert; useful for a slow environment 

• A pre-configured number of controller utterances have 
occurred since the alert; useful for a busy environment 

These preliminary lists of information elements and 
interaction criteria were presented to ten SMEs, MITRE staff 
who are retired controllers, as a starting point in GUI design 
discussions. The goal of the discussions was to deduce a list of 
essential information elements and interactions that the GUI 
should support. Some elements, such as the advisory 
command, were quickly dismissed during the discussion 
because the SMEs felt that this advisory removed too much of 
the decision making discretion from the controller. Other 
elements, such as having the system wait to issue an alert in 
case the controller takes corrective action, were well received. 
In the end, the general consensus was that read back error 
detection GUI should provide the following basic information 
elements: 

• Aircraft identifier 

• An indication that a read back is missing, where 
appropriate: A few SMEs believed this visual element 
was not necessary 

• An indication that a read back error occurred, where 
appropriate: A few SMEs believed this visual element 
was not necessary 

• Indication/s of the difference/s between the command 
and read back: displaying both the command and the 
read back, in the concise form, with an indication of 
the differences.  

• Audible alert: The SMEs agreed that an audible alert 
indicator would be needed but disagreed whether the 
alert should be only in the ear of the affected controller 
or a public alert in the tower. 

Figure 2 depicts a notional design for the read back error 
detection GUI that contains the information elements identified 
by SMEs as necessary and sufficient. It illustrates the visual 
depiction of a read back error. The difference between the 
command and the read back in this example is shown by a 
color difference. If the controller does not correct the command 
within a certain time delay, then a brief, non-repeating auditory 
alert would be presented to draw the controller’s attention to 
the display. The read back error detection logic would then 
automatically reset to the non-alert condition according to reset 
criteria described earlier.  

 

Figure 2. Notional design of the read back error detection GUI. 

C. Monitoring and Alert Design 

Read back errors may initially be thought of as the presence 
of a difference in semantics and information content between 
the controller’s command and the pilot’s read back. Certainly, 
if a read back perfectly echoes the command, it is easy to know 
that no read back error has occurred. Inversely, if a read back is 
not provided, it is easy to know that a read back error has 
occurred. However, the vast majority of read backs fall 
between these two extremes: differences (along various 
dimensions) exist, but the controller need not issue a corrective 
command to confirm pilot understanding. So a challenge of this 
research is to determine, from the controller’s perspective, a) 
which differences are alert worthy and which differences are 
not, and b) does this characterization change as a function of 
the operational context (e.g., current workload, which runways 
are open, position/s being worked). 

As 99% of controller commands do not result in read back 
errors, pilot-controller dialogues can be analyzed to identify 
what differences exist that controllers do and do not consider 
read back errors. Using this approach, it may be possible to 
empirically derive an effective and feasible alerting principle 
that can distinguish which pilot read back differences should 
and should not be ignored. 

An analysis of 150 dialogues (drawn from a much larger 
dataset) between ground control and pilots at John F. Kennedy 
International Airport (JFK) in New York, USA was conducted. 
Here’s an example of a pilot-controller exchange that did not 



prompt corrective command from the controller (aircraft call 
signs have been anonymized): 

Controller: [CALLSIGN], Kennedy ground, three one left 
kilo echo, taxi right alfa, hold short of juliet. 

Pilot: And alfa short of juliett, for three one left kilo echo, 
[CALLSIGN]. 

A difference commonly seen between commands and read 
backs, particularly when commands are lengthy, is the ordering 
of the elements, as seen here. The controller specified a right 
turn at alfa, but the pilot read back did not include the turn or 
direction and this difference was uncorrected. A possible 
reason may be that the controller is aware that the airport 
diagram is present on the flight deck and that the crew know 
their destination (it was correctly acknowledged in the read 
back) and it is clear that the only/fastest way to reach the 
destination was to make a right at alfa. 

Here is another example where the controller did not 
correct the differences in the read back: 

Controller: [CALLSIGN-0] at kilo, follow [CALLSIGN-1] 
off the right, cross runway three one left, and monitor tower 
one niner point one. 

Pilot: Okay, behind the [CALLSIGN-1] five seven from the 
right, follow her down kilo for zero four left, and nineteen one 
to monitor, [CALLSIGN-0] 

The semantics of the cross and follow are present in the 
read back but require some interpretation; i.e., the pilot did not 
repeat the controller’s crossing instruction (which mentioned 
runway 31L) but did repeat the controller’s instruction to 
follow another aircraft to a runway (mentioning 4L). The 
transfer of control to the tower and on a particular frequency is 
also present in the read back but in a very abbreviated and 
implied form. The command included an explicit runway 
crossing instruction but there was only an implicit 
acknowledgement through the phrase “follow her down kilo for 
zero four left”. None of these differences elicited a correction 
from the controller. This example illustrates that one of the 
technical challenges of a read back/hear back error detection 
capability is both extracting explicit and deducing/inferring 
implicit semantic information from read backs and combining 
it with other data sources (e.g. runway and taxiway layout in 
this case). 

Here’s a final example of a dialogue that does include 
corrective commands: 

Controller: [CALLSIGN], cross runway three one left at 
kilo, and monitor tower one niner point one. 

Pilot: Roger, cleared to cross runway one three left at kilo, 
and then monitor tower one one nine decimal one, 
[CALLSIGN]. 

Controller: [CALLSIGN], cross runway three one left at 
kilo, and monitor tower one niner point one. 

Pilot: [Uh] Roger, cross runway one three left at kilo, and 
then monitor tower one one nine one, [CALLSIGN]. 

Controller: [CALLSIGN], its runway three one left at kilo, 
cross runway three one left at kilo. 

Pilot: Sorry, runway three one left at kilo then, my 
apologies, [CALLSIGN], thank you. 

In the set of 150 dialogues, two additional dialogues 
contained read back differences that prompted the controller to 
require a correct read back. In one case, the taxiway name was 
incorrect; “kilo golf” vs “kilo”. In the other, the handoff 
frequency was incorrect; 123.9 instead of 119.1.  

The analysis identified potentially useful patterns 
concerning a) read back differences that controllers tolerate, b) 
behavior that is customary for controllers, and c) behavior that 
is customary for pilots. These behavioral patterns are: 

• Order of elements: Controllers do not require the order 
of elements in read backs to match the command. 

• Transfer of control/frequency change: Controllers do 
not require the read back to contain the facility name 
and/or frequency. (Simply saying “See ya” would 
suffice as acknowledgement of the transfer of control.) 
If an incorrect facility name and/or an incorrect full or 
abbreviated frequency is present in the read back, then 
the controller will correct the error. 

• Callsigns: Pilots almost always used their full callsign 
(e.g., “American one two three”). For the few 
examples where pilots used only the carrier (e.g., 
“American”) or the flight number (“one two three”), or 
provided no ID at all, controllers did not require a full 
or partial callsign. 

• Taxi commands: Controllers consistently provided 
left/right turn specification in taxi instructions. Pilots 
regularly dropped the left/right turn specification in 
taxi commands. Controllers did not require a correct 
read back in these cases. 

• Follow: Pilots almost always acknowledged the 
“follow” instruction with something semantically 
equivalent (e.g., “after”, “behind”). 

• Crossing instructions: Controllers almost always used 
the form “cross <runway> at <intersection>” in their 
commands. Pilots always provided some form of read 
back acknowledging the crossing instruction. 
Controller do not require a complete read back of the 
crossing instruction; e.g., “cross, tower on the other 
side” would suffice. 

• Hold Short: Pilots almost always correctly read back 
both the hold short instruction and position. Controllers 
may always require a correct and complete read back 
to this command given the potential safety risk an 
aircraft’s untimely entry to an active runway and the 
fact that ensuring hold short instructions are read back 
is called out specifically in JO7110.65 [3]. 

The research team can start to develop an alerting principle 
that states: alert for differences that are a) beyond what 
controllers will tolerate, b) beyond what pilots customarily 
produce, and c) objectively unsafe. This alerting principle will 
be amended as more ground dialogues and, later, local 
(runway) controller dialogues are analyzed. 



IV. SPEECH RECOGNITION EVALUATION AND RESULTS 

The MITRE team created and compared several different 
automatic speech recognition configurations on the open-
source engine, PocketSphinx, to evaluate the feasibility of 
using speech recognition in a read back error detection 
capability. Although newer and more advanced, open-source 
speech recognition engines that support cutting-edge 
techniques such as Deep Neural Network (DNN) based speech 
recognition exist, the research team elected to use 
PocketSphinx for this preliminary performance evaluation 
because of its ready-to-use, simple yet flexible application 
interface, processing speed, and compatibility with custom 
acoustic and language models [26].  

The different types of models created for the comparisons 
are described below, along with the evaluation data and 
methodology. The section closes with a representative subset 
of the performance comparison results and findings. 

A. Acoustic Models 

Three types of acoustic models were evaluated: 

1) A base acoustic model released by CMUSphinx for US 
English. The CMUSphinx base US English acoustic model is 
created using high quality microphone, broadcast, and 
telephone speech recordings and optimized for general large 
vocabulary applications [27]. It was deliberately left un-tuned 
for ATC speech to serve as a baseline of comparison to our 
adapted and trained models.  

2) Adapted acoustic models based on CMUSphinx’s base 
US English acoustic model and adapted using transcribed audio 
data from ATC operational recordings that contained both 
controller and pilot radio transmissions. Acoustic model 
adaptation, which may consist of maximum a posteriori (MAP) 
adaptation, maximum likelihood linear regression (MLLR), or 
some combination of both, is known to effectively adjust 
generic acoustic models for specific recording environments, 
audio channels, and slight accent differences. When used on an 
existing stable acoustic model and with limited training data, 
adaptation is more robust than training an acoustic model from 
scratch [27]. Both MAP and MLLR adaptation were used for 
this evaluation. 

3) Trained acoustic model created using only silence-
reduced, transcribed audio data from ATC operational 
recordings that contained both controller and pilot 
transmissions. Acoustic model training requires more time and 
data to perform, but stable, trained acoustic models can 
perform better than adapted acoustic models when the training 
data are sufficient in quantity and closely match the audio that 
will be recognized [28]. Additionally, acoustic models trained 
using only ATC data are better optimized in terms of both 
accuracy and speed for the constrained vocabulary in the ATC 
domain than the base CMUSphinx acoustic model, which was 
designed for large vocabulary applications.  

Recordings from a variety of US tower and TRACON 
facilities, including Boston Logan International Airport 
(KBOS), John F. Kennedy International Airport (KJFK), 
Washington Dulles International Airport (KIAD), Reagan 
National Airport (KDCA), Dallas/Fort Worth International 

Airport (KDFW), Hartsfield-Jackson Atlanta International 
Airport (KATL), and Atlanta Terminal Radar Approach 
Control (A80), were used in the training data set. Furthermore, 
both pilot and controller radio transmissions were included to 
provide a sufficient quantity of data for model training 
stability. 

B.  Language Models 

PocketSphinx is compatible with different types of 
language models, including keyword lists, grammars, and 
statistical language models (SLM). However, for this use case, 
the MITRE team favored SLMs over the other types of models 
because of the variability in the target speech, particularly on 
the pilot side. Two SLMs were created for the evaluation: 

1) An SLM created using transcriptions of local and 
ground controller radio transmissions from KJFK for 
recognition on controller radio transmissions. 

2) An SLM created using transcriptions of pilot radio 
transmissions heard at the local and ground controller positions 
at KJFK for recognition on pilot radio transmissions. 

The research team decided that separating the pilot and 
controller transmissions was logical for training the language 
model during this initial performance evaluation because the 
differences in phraseology based on role (i.e., controller or 
pilot) are more significant than other criteria such as control 
position (i.e., ground or local), time of day, or phase of flight of 
the aircraft.  

C. Semantic Meaning Extraction Algorithm 

Because pilot read backs do not always exactly echo the 
controller command, a read back error detection capability 
must compare the semantic intent in the controller’s commands 
with the semantic intent the pilot’s read backs, rather than the 
exact words spoken by each party. The research team 
employed a semantic meaning extraction algorithm to parse 
this semantic intent, in the form of meaningful command and 
read back concepts, from the transcription hypotheses returned 
by the recognition engine. The algorithm identified command 
concepts in terms of a command phrase followed by one or 
more parameters phrases. For example, for the spoken 
command, “cleared to land runway two three”, the algorithm 
would identify “cleared to land” as the command phrase and 
“runway two three” as the single parameter associated with that 
phrase. In the case of a compound taxi command such as, 
“continue on foxtrot alfa, turn right at bravo, taxi bravo to the 
ramp”, the algorithm would parse “continue”, “turn right”, and 
“taxi” as the command phrases of three distinct command 
concepts and “foxtrot alpha”, “alfa”, and “bravo, ramp” as the 
parameters associated with each concept, respectively. In the 
case of the final “taxi” command concept, the algorithm would 
treat “bravo” and “ramp” as two separate, sequential 
parameters, both associated with the “taxi” command phrase. 

For this evaluation, the semantic meaning extraction 
algorithm was configured to identify the limited set of 
command concepts listed in Table I. The algorithm 
accommodates small, logical variations in the command and 
parameter phrases such as tense differences (“clear” instead of 



“cleared”), omissions (“line up wait” instead of “line up and 
wait”), and literal alternatives (“one niner left” instead of “one 
nine left”).  

TABLE I.  COMMAND CONCEPTS 

Command 

Concept 

Nominal Command 

Phrase 

List of Parameter 

Alternatives 

CTL “cleared to land” Runway 

LUAW “line up and wait” Runway 

CFT “cleared for takeoff” Runway 

Hold Short “hold short” Runway or Taxiway 

Cross “cross” Runway or Taxiway 

Turn “turn left” or “turn right” Runway or Taxiway 

Taxi “taxi” Runway(s) or Taxiway(s),  

Continue “continue” Runway(s) or Taxiway(s) 

 

Aircraft identifiers (ACID) are another semantic component 
that must be identified in order to determine the target of a 
controller command and the identity of the speaker in a pilot 
read back. This semantic information enables the read back 
error detection capability to correctly associate a controller 
command with a subsequent pilot read back. To identify ACID 
concepts, the research team employed a separate pattern 
matching algorithm that extracted ACID phrases in the 
recognized text, such as “southwest twenty-three seventy-
four”, and mapped them to their symbolic form, such as 
“SWA2374”. The different spoken formulations associated 
with aircraft in the test data were automatically generated and 
input into the pattern matching algorithm as a reference list. 
The algorithm was then applied to the text returned by the 
recognition engine to extract any aircraft identifier phrases.  

D. Test Data 

The test data used for benchmarking and comparing speech 
recognition performance comprised of 6,659 radio transmission 
recordings from the KJFK local and ground controller 
positions. Within this set, 3,689 were pilot radio transmissions 
and 2,970 were local or ground controller radio transmissions.  

The test data was recorded from the frequency record 
channels of the KJFK voice switch and was collected at the 
same time that the KJFK training data used during acoustic and 
language model training was collected. The recording 
circumstances ensure that the training data is a good 
representation of expected test data. All transmissions in the 
test data were set aside before training to eliminate model bias. 

E. Experiment Methodology 

Multiple experiment runs were performed on different 
combinations of acoustic and language models to identify 
superior speech recognition configurations. For each 
experiment run, the same acoustic model was used on all the 
test data, but the controller language model was used 
exclusively for the controller radio transmissions in the data, 
while the pilot language model was used exclusively for the 
pilot radio transmissions.  

Word Error Rate (WER), which measures word-for-word 
omissions, additions, and substitutions in the recognized text, 
was used as a preliminary experimental measure to quickly 
pinpoint performance improvements across experiment 

configurations. WER is a reasonable measure of the general 
performance of a given speech recognition 
system/configuration, but it should not be used to infer 
application-specific performance. For this application, correct 
recognition of the ACID and command concepts is critical, but 
recognition of other words or phrases (such as wind 
information, traffic advisories, or courtesies) is not. Therefore, 
for low (i.e., better) WER benchmarks, the ACID pattern 
matching algorithm and the semantic meaning extraction 
algorithm were applied to the text hypotheses from the 
recognition engine to derive concept-level accuracy that was 
more relevant to the high-level application.  

F. Recognition Performance Results and Findings 

Initial WER benchmarks rapidly identified the adapted 
acoustic models and trained acoustic models as superior to the 
base acoustic model. Furthermore, as the quantity of training 
data used for training and adaptation expanded, the 
performance of the trained acoustic models began to surpass 
the performance of the adapted acoustic models, particularly on 
pilot speech. Table II summarizes a comparison of WER across 
the three different acoustic model types with a training data set 
of 127 hours of transcribed, silence-reduced audio.  

TABLE II.  COMPARISON OF WER ACROSS ACOUSTIC MODEL TYPES 

 Generic AM Adapted AM Trained AM 

Controller 29% 16% 15% 

Pilot 61% 37% 32% 

 

An additional observation the research team noted was the 
difference in rate of performance improvement as the quantity 
of training data expanded. In the case of acoustic model 
training, performance continually improved incrementally, 
suggesting the model could possibly improve further with more 
training data. In the case of acoustic model adaptation, 
performance improvement increased steadily at the beginning 
but also tapered, suggesting a diminishing rate of return.  

Figure 3 illustrates the differences in rate of performance 
improvement between acoustic model types. 

 

Figure 3. Comparison of performance improvement across acoustic model 
types. 

Results from the custom acoustic model trained on 127 
hours of silence-reduced audio were superior for both pilot and 
controller transmissions when compared to other 



configurations and were subsequently selected for further 
aircraft identifier and command concept analysis. Tables III 
and IV summarize the accuracy of aircraft identifier 
recognition and command concept recognition at the per-
command level, where correct recognition of a command 
concept was defined as complete recognition of the command 
phrase and all associated parameter phrases and partial 
recognition was defined as recognition of the command phrase, 
recognition of one or more associated parameter phrases, or 
some combination thereof. Pilot results for the “Continue” 
command concept are not presented, as these command 
concepts did not appear in the pilot test set with sufficient 
frequency to generate representative metrics. In general, for 
both controller and pilot transmissions, the command concept 
recognition performance measures are much better than the 
preliminary WER measures. This is a promising finding 
because concept-level accuracy, which focuses on the 
recognition of intent-relevant words and phrases, is a better 
indication of future application-level alert performance. 

Recognition accuracy on controller transmissions was 
notably higher than on pilot transmissions. In the case of 
controller transmissions, there were more instances of partial 
recognition than complete non-recognition of a command 
concept. Some of these cases could be addressed with the 
addition of context information, such as aircraft location and 
airport layout, in post-processing to correct errors in 
recognition. ACID recognition accuracy was notably lower 
than the accuracy observed on the command concepts. 
Analysis of the error cases indicated that in most instances the 

recognition engine recognized part of the ACID phrase 
correctly but final translation to the ACID symbol was thrown 
off by the erroneous recognition of one or two numeric words 
in the ACID. This error results because of the search space 
freedom enabled by the SLM and the wide variety of ACID 
phrases in the SLM training data. It can be mitigated by 
combining the ACID results of the SLM with results from a 
more restrictive language model such as a context-informed 
grammar, which has been shown to achieve correct ACID 
identification above 90%, or applying a more discriminant 
ACID extraction algorithm that identifies the closest, realistic 
ACID phrase, given the callsign and numerical words 
recognized [16].  

Recognition accuracy on pilot transmissions was much 
lower than the accuracy observed on controller transmissions. 
It has significant room for further improvement. Analysis 
indicates that the system had greater difficulty here partly 
because pilot read backs often did not contain a command 
phrase and only contained the parameter(s) of the original 
controller command. As a result, the speech recognition system 
had fewer opportunities to find word patterns that were 
indicative of key content. Pilot responses also tended to be 
abrupt, choppy, and unpredictable, throwing off the system’s 
pattern matching attempts. Possible options for improvement 
could be stronger keyword biasing based on preceding 
controller commands and additional acoustic model training to 
strengthen word identification despite background noise and 
speech disruptions. 

TABLE III.  ACID AND COMMAND CONCEPTS RECOGNITION ACCURACY ON CONTROLLER TRANSMISSIONS 

 
ACID LUAW CFT CTL 

Hold 

Short 
Cross 

Turn 

Right 

Turn 

Left 
Taxi Continue 

% Recognized Correctly 79% 94% 98% 91% 96% 96% 98% 97% 93% 97% 

% Partially Recognized NA 5% 1% 1% 3% 3% 2% 1% 2% 3% 

% Not Recognized 21% 1% 2% 7% 1% 1% 0% 2% 5% 0% 

TABLE IV.  ACID AND COMMAND CONCEPTS RECOGNITION ACCURACY ON PILOT TRANSMISSIONS 

 
ACID LUAW CFT CTL 

Hold 

Short 
Cross 

Turn 

Right 

Turn 

Left 
Taxi 

% Recognized Correctly 63% 86% 80% 84% 88% 92% 87% 84% 80% 

% Partially Recognized NA 7% 8% 3% 8% 4% 4% 5% 12% 

% Not Recognized 37% 8% 12% 13% 4% 5% 9% 11% 7% 

ACID recognition accuracy was also significantly lower 
than the accuracy observed on the command concepts, for 
similar reasons to those noted previously on the controller 
transmission ACIDs. However, in the case of pilot read back 
transmissions, dialogue context may help match pilot read back 
transmissions to controller command transmissions, despite 
low ACID recognition accuracy. A brief analysis of the 
dialogue structure between controller and pilot transmissions 
showed that in cases where a pilot transmission immediately 
followed a controller instruction or clearance, the pilot 
transmission was a response by the correct pilot over 99% of 
the time. Thus, it may be possible to use the timing of the 
transmissions to match pilot transmissions to controller 
transmissions, although this method is susceptible to stolen 
clearance errors.  

G. Case Study Example: Hold Short Instructions 

A read back error detection application must ultimately 
combine the results from both controller and pilot transmission 
recognition with alert generation logic (rules) to derive its final 
alert behavior. As noted Section III, defining appropriate alert 
generation rules can be nuanced and rules may vary across 
command types. Command-specific alert generation rules must 
still be developed and vetted with domain experts for a 
complete read back error detection application, but the rules 
must be defined with consideration of the entire application.  

To illustrate the effects of alert generation rules on overall 
performance, and to get an early sense of application 
performance given the current preliminary speech recognition 
performance results, the research team simulated alert 



performance metrics for a single instruction—hold short of a 
runway—with a straightforward alert generation rule. This 
instruction was selected for the case study example because it 
is called out specifically in JO7110.65. The hold short 
instruction and read back recognition accuracy was assessed 
with the simple rule that an alert should be generated if any 
part of the instruction—the “hold short” phrase, the runway, or 
both—is omitted from the read back. The test does not include 
logic that compares ACIDs in the instruction and read back or 
logic that waits to determine if the controller will correct the 
read back error; the test only covers the speech recognition 
system’s performance in determining if a read back of the 
instruction was complete and correct.  

In the test set, there were a total of 220 runway hold short 
instructions issued by the local controller. Analysis of the 
manual ground truth transcriptions indicates that 199 of the 220 
hold short instructions were read back completely in the 
corresponding pilot transmission. Of the remaining 21 hold 
short instructions, 12 were read back partially (either the hold 
short instruction or the runway was missing) and 9 elicited read 
backs that did not contain any mention of the hold short 
instruction or the runway. Many of these partial or missing 
read backs were immediately caught by the controller and 
corrected through a retransmission of the hold short clearance, 
but for the purposes of this simple test, these instances are 
counted as cases where an alert should be issued. In other 
words, for this preliminary evaluation of alert generation 
performance, the simple alert generation rule ignored multi-
turn dialogue structure (i.e., dialogues that contained more than 
two transmissions), which contained subsequent corrective 
action and read backs.  

According to the simple alert generation rule described 
earlier, the ground truth comparisons indicate 199 non-alerts 
cases and 21 alert cases. Analysis of the speech recognition 
results indicates that, on the 199 non-alert cases, 181 cases 
would have correctly not triggered an alert but 18 cases would 
have generated false alerts because of failure to correctly 
recognize part or all of the pilot read back. This result indicates 
room for improvement in recognition of pilot read backs of 
hold short instructions, which is expected given the 86% 
accuracy reported in Table III above.  

In terms of expected alerts, analysis of the speech 
recognition results on the 21 alert cases indicates that 19 cases 
would have correctly triggered an alert—according to the 
simple alert logic rules defined—and 2 alert cases would have 
been missed because of incorrect recognition of the runway in 
the pilot’s read back. This missed alert rate would improve 
with improved recognition performance on pilot speech, but 
this result also illustrates one way in which alert generation 
rules affect system alert performance: alert generation rules 
determine the number of expected alerts. The simple rule 
defined in this case study yielded approximately 10% of read 
backs for a particular instruction warranting an alert. Even with 
perfect speech recognition performance, this number seems too 
high to be operationally acceptable.  

Alert rules that take into account multi-turn dialogues could 
further reduce the number of expected alerts, for example, by 
recognizing that the controller has corrected a missing read 

back, which was the case for 5 of the 9 expected alert cases 
where the read back did not mention the hold short instruction 
or the runway. However, more sophisticated alert generation 
rules may require better speech recognition performance. 
Another important consideration for alert generation rules is 
the ATC operation. Changing the alert generation rules to 
require only the instruction or the runway to be read back 
would reduce the number of expected alerts from this test by 
over half (12 of 21), but might not be an operationally 
acceptable rule; SME input and policy decisions must be 
considered. 

The alert behavior simulated above demonstrates how 
speech recognition performance and alert generation logic 
combine to determine application performance. The results 
indicate that better recognition—particularly on pilot speech—
is needed, but they also indicate that alert generation rules are 
critical to judging the speech recognition performance. In other 
words, although speech recognition performance can be 
measured in a vacuum, its suitability for a particular 
application cannot be fairly judged without the logic of the 
application also being in place. For application system 
performance to be fairly assessed, alert generation rules must 
be defined precisely, with consideration of speech recognition 
performance.   

V. NEXT STEPS 

Based on the findings of this feasibility study, MITRE is 
continuing to develop the read back error detection capability 
described in this paper. In the next year, the research team is 
planning to build out the application infrastructure that 
complements the speech recognition component, adding real-
time context information that could better filter and parse 
meaning from the recognized text. The context ingestion and 
processing component will be part of a larger development 
effort to create and test an end-to-end prototype that accepts in 
real time both speech and context information and provides 
alerts to a graphical user interface. As a part of this effort, 
MITRE will continue to investigate the types of read backs that 
are acceptable to controllers, which may differ by command 
type, and will leverage subject matter expertise from ATC 
operational staff to create the command-specific alert 
generation logic of the application.  

On the speech recognition side, the team expects to see 
performance improvements in recognition accuracy through the 
incorporation of additional training data from new airports and 
the use of advanced tuning techniques such as Deep Neural 
Network (DNN) training. The team will incorporate DNN 
training into the acoustic model training process, building on 
the models created during the feasibility study. The shift to 
DNN acoustic models is expected to yield a significant 
improvement in recognition accuracy [29]. Preliminary results 
from DNN training using the same training data yielded 20% 
improvement in controller WER and 10% improvement in pilot 
WER. Additionally, within an application framework, the 
added dialogue context of interleaved controller and pilot 
transmissions will enable dynamic language model adjustments 
that could yield further recognition improvements.  



The findings of this research support the continued 
development of speech-based applications in the ATC domain. 
The rapid advancement of speech recognition technology and 
computer processing power in recent years has brought a 
number of envisioned future ideas within near-term reach. In 
our opinion, this transformative technology should be 
leveraged in the ATC domain, where voice communications 
are a pivotal presence in the day-to-day execution of safe and 
efficient operations.  
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