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Abstract—Initiatives to integrate Automatic Speech Recognition 
into Air Traffic Management (ATM) exists at least since the late 
90s. Some success to replace pseudo pilots have been reported, 
but its integration into controller assistant tools is missing. Ger-
man Aerospace Center (DLR) and Saarland University devel-
oped Assistant Based Speech Recognition (ABSR) enabling com-
mand recognition rates better than 95%. However, good recogni-
tion rates are no convincing argument for decision makers. 
Therefore, we conducted an ABSR validation study with eight air 
traffic controllers to quantify the benefits with respect to work-
load and efficiency. The study validates that ABSR does not just 
reduce controllers’ workload, which would already be a lot, but 
this paper presents that ABSR significantly increases ATM effi-
ciency. Fuel reductions of 60 liters (16 gallons) per flight and a 
throughput increase by two arrivals per hour are possible. 

Keywords—AcListant®, Automatic Speech Recognition (ASR), 
Assistant Based Speech Recognition (ABSR), ATM Efficiency, 
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I.  INTRODUCTION 

The most important task of an air traffic controller (ATCo) 
is ensuring safety for all involved parties in air traffic. ATCos 
follow the simple rule “safe, orderly, and expeditious”. Hence, 
efficiency is the next important aspect mainly having economic 
thoughts of air navigation service providers (ANSP) in mind. 

A. Problem 

Controllers’ tasks and their time distribution are one essen-
tial factor. ATCo’s core tasks consist of communication and 
coordination with pilots and other controllers. This can be 
hampered, however, if ATCos need to spend additional time on 
subordinate tasks such as documentation. One of those subor-
dinate tasks is maintaining flight information in flight strips 
and on-screen labels. Strips in electronic or paper form contain 
static and dynamic flight data. Static data comprises e.g., call 
sign, weight category, destination, or route information. Dy-
namic data includes e.g., clearances regarding altitude, speed, 
direction, rates of climb/descent or procedures, as well as spe-
cial flight situations like emergencies. 

Paper flight strips are still often used, for example, in high 
density terminal maneuvering areas (TMA). They have the dis-
advantage of information not being available or transferable in 
digital form. Modern controller working positions (CWP), 
therefore, offer digital flight strips. However, they normally 
have to be managed head down averting one’s eyes away from 

the traffic situation display. For both forms of flight strips, 
manual documentation of flight data is redundant to what the 
controller already told or will tell to the respective aircraft pi-
lot. 

B. Solution 

The AcListant® project has shown that Assistant Based 
Speech Recognition (ABSR) support for ATCos is a solu-
tion [1]. ABSR helps the controller with partially automated 
aircraft radar label maintenance. An automatic speech recog-
nizer (ASR) uses context knowledge about the current situation 
from a controller assistant system. This enables prediction of 
the next most probable commands and reduces the search space 
for the speech recognizer. With this technique, the AcListant® 
project achieved command error rates below 1.7% [1]. An ASR 
system with this level of accuracy is feasible for operational 
use even in the safety-critical air traffic control (ATC) domain. 
ATCos need to correct the automation only in very few cases. 
Hence, ATCo’s concentration can remain on his/her main 
tasks. Furthermore, less time, spent for subordinate tasks, pro-
duces free cognitive resources for increasing air traffic demand. 

C. Derived Problem 

The AcListant® trials of DLR, Saarland University, DFS, 
Austro Control, and ANS CR (Air Navigation Service of Czech 
Republic) have shown that Assistant Based Speech Recogni-
tion achieves acceptable recognition rates [1] with very posi-
tive feedback from involved controllers [2]. However, positive 
feedback of controllers is a pre-condition, but does not justify a 
business case. The benefits of speech recognition to the air traf-
fic system also need to be quantified. 

D. Solution of Derived Problem 

The AcListant®-Strips project [3], the successor of 
AcListant®, quantifies the benefits of ABSR [4]. Two possible 
methods to insert given controller commands into the radar la-
bels were compared. The first input method was the baseline. 
Controllers used the computer mouse for manual input. The 
second input method automatically worked with ABSR, ana-
lyzing the radio communication channel between controller and 
pilot. The controller may confirm, correct, or reject the output 
of the speech recognizer. In November and December 2015 the 
validation trials for benefit quantification were performed in 
DLR’s labs in Braunschweig. The challenge was that the re-
sults should not only show a trend, but should be (statistically) 
significant and of course the project was not unlimited. 



 

 

E. Paper Structure 

After presenting related work and the concept of ABSR in 
section II, we explain the performed validation exercise in sec-
tion III and then briefly summarize the workload improvements 
in section IV, which were already presented in detail at the 
2016 DASC [4]. Section V shows our measurements regarding 
efficiency and points out results. Section VI investigates the 
status of speech recognition in ATM applications. We draw 
conclusions and outline planned future work in the last section. 

II. BACKGROUND 

ASR applications can be divided into three different catego-
ries: First, dictation software, which is used in the professional 
market [5]. In consumer products, they are not widely accepted 
due to their lack of adaptivity. Second, hands-free command 
and control, which is characterized by short utterances to con-
trol technical devices [6], and third, spoken dialog systems, 
which include Apple’s Siri® [7], Google’s search by voice [8], 
and train table dialog systems [9]. 

A. Speech Recognition Applications in Air Traffic Control 

The integrations of ASR in ATC training started in the late 
80s [10]. Nowadays enhanced ASR systems are used in ATC 
training simulators to replace expensive pseudo pilots (e.g., 
FAA [11], DLR [12], MITRE [13], DFS [14]). ASR applica-
tions also go beyond simulation and training. ATC events can 
automatically be detected in order to assess controller work-
load. ASR is used to get more objective feedback concerning 
controllers’ workload [15], [16]. Chen and Kopald used speech 
recognition to build a safety net for airport surface traffic to 
avoid aircraft using a closed runway [17], [18]. 

Although ASR systems are widely used in normal life (e.g., 
Siri®, telephone dialog systems, and interface for car naviga-
tion systems) and ATC phraseology is standardized, recogniz-
ing and understanding controller-pilot communication is still a 
big challenge and not solved satisfactory. Just using common 
and widely extended ASR tools has not provided acceptable 
results in terms of word and command detection rates. Reasons 
for poor performance include the unique ATC vocabulary and 
syntax, as well as the variety of accents, speakers, and commu-
nication channels with different characteristics, and especially 
controllers’ needs to deviate from standard phraseology [19]. 
Cordero et al. (2012) reported word detection rates not above 
20% with different Commercial-off-the-shelf (COTS) recog-
nizers [15]. 

B. Assistant Based Speech Recognition 

One promising approach to improve ASR performance is 
using context knowledge regarding expected utterances. These 
attempts go back to the 80s [20], [21]. This information may 
heavily reduce the search space and lead to fewer missed 
recognitions [12]. 

Our ABSR approach uses the output of an Assistant Sys-
tem, i.e., DLR’s Arrival Manager (AMAN) 4D-CARMA [22], 
as context information. Figure 1 describes the concept of assis-
tant based speech recognition. An “Assistant System” analyzes 
the current situation of the airspace and predicts possible future 
states used by the “Hypotheses Generator” to predict the set of 
possible commands. This dramatically reduces the search of the 
“Lattice Generator” [23], [24]. The search lattice (tree) is dy-
namically regenerated every 30 seconds and contains a search 
tree for all possible phoneme sequence determined by the “Hy-

potheses Generator”. The “Speech Recognizer” finds the most 
probable path in the search tree. We use the public domain 
speech recognition engine KALDI [25], [26]. The output of the 
“Command Extractor” is checked again by the “Plausibility 
Checker”, determining whether the recognized commands are 
reasonable in the current situation, e.g., do not produce con-
flicts. The “Command Monitor” analyzes the future behavior of 
the aircraft (via radar data), whether they are in line with the 
“Command Extractor’s” output. 

 

Figure 1. Components of Assistant Based Speech Recognition [1]; in green 
components of 4D-CARMA; in yellow components of core speech recognizer. 

 

This paper completes our work with respect to ABSR, 
which started with the study of Shore et al. in 2011 [27]. In a 
pilot study with a limited set of call signs and commands, 
Shore [28] reported command (recognition) error rates below 
5%. He used an acoustic model derived from the Wall Street 
Journal recognition corpus. Our ATM Seminar 2013 paper al-
ready presented a possible ATC application of ABSR [29]: 
faster adaptation of an Arrival Manager, if the controller inten-
tionally deviates from the proposal of the assistant system. In 
2015 we demonstrated that (1) ABSR is able to generate ac-
ceptable speech recognition (>90%) and error rates (<3%), (2) 
ABSR significantly reduces deviations between the controllers’ 
plan and the plan of the Arrival Manager, and (3) ABSR signif-
icantly reduces controllers’ workload quantified in [4]. 

C. Workload Measurement 

The often-used ISA score (Instantaneous Self-Assessment) 
[30] and NASA-TLX score (National Aeronautics and Space 
Administration Task Load Index [31]) only provide subjective 
feedback from the controllers themselves. Getting an objective 
workload measure, we used the secondary task performance 
measures method. This method identifies the amount of addi-
tional work the controller (or operator more generally) can per-
form in addition to the primary work of air traffic control [32]. 
Thereby, the secondary task performance serves as an index for 
the workload of the controller [33]. The advantages of the sec-
ondary task method are that it is easy to use and that it is sensi-
tive to variations in workload [34]. The high-end version of 
workload measurement is physiological measures such as func-
tional near-infrared or electroencephalography which uses spe-
cial hardware to record different brain activities [35], [36]. 

D. From Paper Flight Strips to Paperless Systems 

Speech recognition in its role as ATCo assistance is in line 
with the SESAR Concept of Operation (ConOps), sect. “Strat-



 

 

egy to reduce Controller task load” [37]. According to the Co-
nOps, automation for routine controller task load will comprise 
better methods of data input and improved data management. 
Although manual data input is currently a routine task, the Eu-
ropean ATM R&D (research and development) standpoint is 
that it is undesirable to have ATCo send radio transmissions to 
cockpit crews and additionally write essential content of these 
messages on paper or enter it manually into systems, generat-
ing extra workload without extra operational benefits. 

No plans exist to fully replace radio communication during 
the course of the next 20 years by CPDLC (Controller-pilot da-
ta link communications). And even if ATCos are supported by 
CPDLC the amount of required system inputs does not de-
crease. Therefore, speech related assistance would provide sub-
stantial operational support. This view is in line with the ATM 
part of the technology roadmap [38] issued by the German 
Aerospace Industries Association (BDLI), which derives R&D-
needs out of the aerospace strategy issued by the German gov-
ernment [39]. 

During the first stage of SESAR, a taxonomy for automa-
tion levels of ATCo’s tasks and ATM system functionalities 
was developed [37], to allow for proper judgement about cur-
rent automation levels and possible further advances. Accord-
ing to this taxonomy, ABSR will increase the degree of auto-
mation in the “Information Acquisition” task domain due to the 
automated data entry and the arising additional benefits of in-
stantly putting this data in relation to other available relevant 
operational information (e.g. conflict detection systems): “The 
system supports the human in acquiring info on the process 
she/he is following. The system integrates data coming from 
different sources and filters and/or highlights the information 
items considered relevant for the user.” [37] Due to this and 
due to its proven relevance, speech recognition will play a de-
cisive role in SESAR 2020 (HMI development, PJ16 [40]). 
Furthermore, positive results of R&D-projects like AcListant® 
lead to integration of speech-based assistant systems as a rele-
vant goal of ATM development in the BDLI Technology 
Roadmap [38]. 

One example of an ANSP making this transition is Austro 
Control. Austro Control had been using VAS, the Vienna ATM 
System, but in 2007 it was decided to replace VAS by a com-
pletely new ATM system. The decision was based on financial- 
and organizational factors. Therefore, Austro Control joined 
the Cooperation of Air Navigation Service Providers 
(COOPANS), which is an initiative of the five ANSPs from 
Ireland, Sweden, Denmark, Croatia, and Austria [41]. These 
countries mutually agreed on a common Thales Eurocat ATM 
system called “TopSky”. While VAS used paper strips to pro-
vide the air traffic controllers with all required flight data, 
TopSky totally operates paperless. The low failure rates of to-
day’s ATM systems allow ANSPs to totally rely on electronic 
devices and to get rid of paper strips. 

In Austria, the area control center made its transition to the 
paper-less system by end of February 2013, all terminal units 
followed by end of November 2015. Today only flight infor-
mation service still uses paper-strips. However, these will also 
be substituted by electronic subsystems soon. Then all air traf-
fic control units from tower to area control in Austria will op-
erate fully paperless. All important information is now present-
ed on the radar screen. Currently the update process, however, 
requires manual controller interactions by mouse and keyboard. 

This is mostly challenging for the approach control units, 
which need to issue the highest number of instructions in nar-
row timeframes. 

During the first months of operation controllers were occa-
sionally challenged coping with all the required inputs into the 
system at least in high density traffic situations. This risk, 
which became an issue, had been identified at a very initial 
stage before TopSky was operationally used. Each instruction 
to aircraft (e.g., altitudes, headings …) forces the controller to 
do one or more mouse clicks and move the cursor precisely to 
the appropriate locations on the screen. This significantly in-
creases the workload. Previous available workload buffers are 
reduced resulting in additional sectors in bad weather condi-
tions. Voice recognition was soon identified as a potential solu-
tion to this problem. Therefore, Austro Control joined the 
AcListant® project end of 2014. The very encouraging results 
with respect to workload reduction are reported at the 2016 
DASC [4] and in [42] as well as with respect to efficiency im-
provements in the following sections. 

A challenge for controllers of all units was getting used to a 
new system that differed significantly from the previous one. 
Therefore, intensive training was required. Each controller 
completed a program of 10 different modules lasting for 22 
days in total during the year before transition. Early integration 
of speech recognition into the TopSky system could even re-
duce this huge effort, because workload requirements are more 
comparable to the VAS system with paper flight strips. 

III. VALIDATION 

The main purpose of the AcListant®-Strips project was to 
quantify the benefits of ABSR (developed by Saarland Univer-
sity (UdS) and DLR) in ATC with respect to efficiency and 
controllers’ workload. The benefit should arise from supporting 
(approach) controllers with aircraft radar label maintenance. 
Therefore, we compared the modalities of a “classical manual” 
Mouse only input for controller commands into the human ma-
chine interface (HMI) with an ABSR + Mouse input. 

First, we detail the flow of controller commands into the 
HMI. Second and third, we explain the experiment setup as 
well as the scenarios and configurations for our experiments. 
Fourth, we describe the study participants. 

A. Controller Command HMI Input 

If the controller clicks on one of the five grey aircraft label 
cells in the HMI, a drop-down menu to enter given clearances 
opens (see Figure 2).  

 
Figure 2. Drop-down menu for heading input in aircraft radar label. 

 



 

 

Each new but unconfirmed value (altitude / speed / direc-
tion / rate of altitude change / miscellaneous) will appear yel-
low after choosing. These values will turn white as soon as the 
controller accepts them with a click on the green check mark in 
the first label line. 

When using ABSR with Mouse, the controller command 
values are extracted from the radio telephony utterance and au-
tomatically appear in the five label cells in yellow. Thus, the 
controller only needs to check and confirm with a mouse click 
or correct values in seldom cases of misrecognition. 

B. Setup of Experiments 

The whole AcListant®-Strips project validation cycle in-
cluded iterative validation trials in accordance with the Euro-
pean Operational Concept Validation Methodology (E-OCVM) 
[43]. Two pre-validation rounds took place in July and Sep-
tember prior to the final validation in November/December 
2015. 

Figure 3 shows the basic validation setup for the controller 
working position in DLR’s simulation facility, ATMOS (Air 
Traffic Management and Operations Simulator). The controller 
communicated with two or three pseudo pilots in another room 
via voice-over-IP (VoIP). The headset microphone signal of the 
controller served as the input signal for the speech recognition 
engine. 

 
Figure 3. Basic validation setup during final trials. 

 
The main radar screen (right square monitor in Figure 3) 

displayed the simulated Düsseldorf (EDDL) airspace via the 
DLR human machine interface RadarVision [44]. The display 
consisted of TMA structure, routes, GPS waypoints, and radar 
data of inbound aircraft on runway 23R. The left monitor 
shows a broader radar overview, automatic speech recognition 
(ASR) log, and a weather display. The radar overview can be 
used to estimate the arrival traffic in the next quarter of an 
hour. The ASR log shows recognized controller utterances with 
their three elements: call sign, command type, and value. The 
weather display indicates air pressure (QNH) and wind infor-
mation. 

The ISA (Instantaneous self-assessment) interface (right 
small monitor in Figure 3) asked for regular study participant 
feedback regarding individual self-assessed workload [30]. 
NASA-TLX score [31] was used as a second subjective work-
load rating measure after each simulation run. A secondary task 
was evaluated to gather an objective measure for controller 
workload during the trials. Study participants had to sort a deck 

of 48 cards into six decks for each playing card type (9-10-
Jack-Queen-King-Ace) and name one to four randomly miss-
ing cards. Participants were instructed to not let ATC task per-
formance suffer from the secondary task. The time needed to 
sort the cards as well as the number of repetitions then served 
as an objective value for user workload. 

C. Scenarios and Configurations of Experiments 

There are two different types of approach controller respon-
sibility areas: initial approach and final approach. “Final ap-
proach” means responsibility area of a final approach control-
ler in the US, but feeder controller in Europe. “Initial ap-
proach” means feeder controller in the US, but pickup control-
ler in Europe. “Complete approach” is comparable to a com-
bined pickup/feeder controller in Europe as well as a combined 
feeder/final controller in the US. For generalization we use the 
terms Final Ap, Initial Ap, and Complete Ap. Study participants 
had to work as Final or Complete Ap controller only. 

The 60-minute Complete Ap (C) scenario (see Figure 4) 
comprised medium traffic conditions (roughly 35 inbounds per 
hour). It included a five minute runway closure phase in the 
first half and an emergency flight in the beginning of the sec-
ond half of the scenario. 

 

Figure 4. Area of responsibility during Complete Ap scenario. 

 
In the 45-minute Final Ap (F) scenario (see Figure 5) traffic 

density was very high with 60 inbounds per hour. However, 
sixty arrivals on one runway are not legal due to ICAO mini-
mum separation requirements. Therefore, controllers had to 
implement holdings or long path stretching legs to ensure safe 
traffic operations. 

During pre-trials we tried another method to handle exces-
sive traffic flow: Controllers should tell us when there were too 
many aircraft under their responsibility. We would then delete 
two further arrival aircraft as if a virtual Initial Ap controller 
would have diverted them. Controllers, however, did not ask 
for intervention at the time it would have been helpful. The ex-
tended runway center line often contained large numbers of 
aircraft up to 40 NM distance to threshold. Virtual Initial Ap 



 

 

coordination of an excessive arrival stream was not initiated 
until then. Hence, we did not use this “manual” method during 
the main trials. The deletion of two approaching aircraft was 
automatically done by a simulated Initial Ap controller if the 
final got longer than 22 NM. 

A second lesson learned from the July and September trials 
concerned the acknowledgement of recognized uttered control-
ler commands. During these pre-trials, controllers had a reac-
tion time of 20 seconds to confirm (ACCEPT) or negate 
(REJECT) a displayed recognized command via mouse click 
on a green arrow or yellow cross respectively. Commands were 
automatically rejected without any manual response within 
these 20 seconds. However, due to very low ABSR error rates, 
the majority of controllers told us to change the default behav-
ior. So, we automatically accepted recognized controller com-
mands in the main trials if no controller action was taken with-
in 20 seconds. 

 

Figure 5. Responsibility area in the Final Ap scenario. 

 
During the main trials we analyzed three different control-

ler input modalities. Those modes were: (1) Mouse only, (2) 
speech recognition plus mouse correction (ABSR + Mouse), 
and (3) speech recognition plus correction via multi-touch dis-
play (ABSR + MT).  

All scenarios and input modalities were trained in addition-
al training runs (T) in advance. We reduced the number of 
combinations from 9 (3 scenarios C, F, T times 3 input modali-
ties Mouse only, ABSR + Mouse, ABSR + MT) to 7 (we call 
them T-1/2, T-3, F-1, F-2, F-3, C-1, C-2). This enabled us to 
handle one study participant within two half day sessions. The 
initial training runs (T-1/2, T-3) and the ABSR + MT run F-3 
were conducted in the first sessions and are not discussed fur-
ther in this paper, because input modality 3 (ABSR + MT) was 
used as an additional training. The study participants did not 
know the training character of the multi-touch input modality 
runs in advance. This paper presents results from the following 
four simulations runs: 

 Final Ap with Mouse only (F-1) 

 Final Ap with ABSR + Mouse (F-2) 

 Complete Ap with Mouse only (C-1) 

 Complete Ap with ABSR + Mouse (C-2) 

The sequence of those four evaluated runs was randomized 
for each participant to avoid biased results resulting from train-
ing effects. 

D. Study Participants 

The German and Austrian ANSPs DFS Deutsche 
Flugsicherung GmbH and Austro Control took part at our main 
trials. Each ANSP sent four air traffic controllers whereof two 
in total were female. The average age was 36 (Standard Devia-
tion SD=Sigma = 11; age interval between 22 and 53 years). 
Their professional work experience was 14 years on average 
(SD = 11; experience interval between 1 and 32 years). 

IV. RESULTS WITH RESPECT TO WORKLOAD REDUCTION 

As the focus of this paper is on validation results with re-
spect to efficiency, we will only briefly summarize the work-
load reduction results and point to [4] and [42] for more details. 
Nevertheless, it should be considered that a reduction of work-
load with the resulting use of free cognitive resources may in-
crease efficiency again. 

The subjective workload measure of ISA score showed sig-
nificance for the C and F scenario as well as combined due to 
the performed statistical paired t-test (p-values between 10-5 
and 0.048). Hence, the self-assessed workload of controllers 
was lower in the ABSR + Mouse condition than in the Mouse 
only condition. The same is true for the NASA-TLX index. It 
improved by 20% being supported by ABSR.  

Analyzing the secondary task of sorting cards and naming 
missing ones reveals much and significantly better performance 
(p-value 0,3%) if controllers were in the ABSR + Mouse condi-
tion. They were roughly by a factor of two faster in their sec-
ondary task compared to the Mouse only run. This results in an 
increase of free cognitive resources when ABSR support for 
radar label maintenance is available. A similar conclusion can 
be drawn from the time needed to enter controller commands 
by clicking into radar aircraft labels. In the Mouse only condi-
tion controllers needed 30% of their total time (20 of 60 
minutes) just to enter and confirm values of their given clear-
ances (more details in [42]). With ABSR support this percent-
age drastically diminishes to only 10%. The portion was even 
higher during the Final Ap scenarios due to the greater number 
of approaching aircraft per hour. The results did not show an 
influence on the number of given controller clearances or the 
time gap between consecutive controller clearances. 

To put it all in a nutshell, we showed that ABSR support 
for the radar label maintenance task of air traffic controllers 
significantly reduces their workload by a factor of three and 
even improves ATC system data quality. Resulting free cogni-
tive resources may be used to perform additional (safety in-
creasing) controller tasks or to handle a potential higher num-
ber of aircraft at a time. Thus, the proven workload reduction 
could lead to more safety and efficiency. The latter is consid-
ered in the following section. 

 

V. RESULTS WITH RESPECT TO EFFICIENCY 

According to the E-OCVM methodology [43] we first de-
rive the validation hypotheses (subsect V.A), then define, take, 
and calculate the measurements (subsect V.B). Then we test 
the hypotheses (subsect. V.C) and interpret the results (sub-
sect. V.D). 



 

 

A. Hypotheses 

In the AcListant®-Strips validation plan [45], the basis of 
our validation trials, the following efficiency related hypothe-
ses were formulated: 

ABSR support for radar label maintenance (in contrast to 
Mouse only input) …  

1. … increases aircraft throughput (flow), 

2. … decreases aircraft flown distance, 

3. … decreases aircraft flight time, and 

4. … reduces the number of missing inputs in radar label. 

B. Measurements 

From the hypotheses we derived the following measure-
ments. More details to the measurement values presented in 
this paper can be found in the final AcListant®-Strips valida-
tion report [42]. 

1) Aircraft Throughput / Flow 
Each run starts with lower traffic. Our measurement time 

starts when the third aircraft has landed and ends with the 
touchdown time of the last aircraft in the simulation time 
frame. The scenarios contain heavy and medium aircraft. A 
separation of 3 NM (medium-medium, medium-heavy), 4 NM 
(heavy-heavy) and 5 NM (heavy-medium) was required. 
Therefore, we multiplied the number of landing heavies by a 
factor of 1.6. Mediums count only 1. Table 1 shows the result-
ing throughput of both scenarios. Table 2 summarizes the 
throughput values with respect to mean, standard deviation, 
and median. 

TABLE 1: INBOUND THOUGHPUT IN AIRCRAFT PER HOUR 
 Complete Ap Final Ap 

Controller ABSR+Mouse  Mouse ABSR+Mouse  Mouse 
A 35.4    (1) 35.3   (4) 46.8   (5) 46.2   (3) 
B 34.5    (2) 36.2   (5) 43.7   (3) 42.9   (4) 
C 35.7    (4) 34.7   (1) 45.2   (3) 44.3   (5) 
D 37.7    (5) 36.2   (2) 44.5   (4) 42.9   (3) 
E 31.5    (1) 35.7   (4) 42.4   (3) 45.3   (5) 
F 35.2    (5) 31.4   (2) 44.9   (3) 38.4   (4) 
G 36.2    (4) 30.0   (1) 46.0   (5) 40.6   (3) 
H 35.2    (2) 35.6   (5) 45.4   (4) 41.8   (3) 

In brackets we add, when each controller performed the experiment. Controller F e.g., performed the 
Final Ap scenario with ABSR plus mouse support as his third run, whereas for G it was his last one. 

Used shading is explained later. 
 

TABLE 2: AVERAGE, MEAN, SIGMA OF RESULTS FOR AIRCRAFT THROUGHPUT 
Scenario Input modality Mean Sigma = SD Median 

Complete Ap Mouse only 34.4 2.2 35.4 
Complete Ap ABSR+Mouse 35.2 1.6 35.3 
Final Ap Mouse only 42.8 2.4 42.9 
Final Ap ABSR+Mouse 44.9 1.3 45.1 

 
2) Flown Distance 

 
TABLE 3: FLOWN DISTANCE IN NM 

 Complete Ap Final Ap 
Controller ABSR+Mouse  Mouse ABSR+Mouse  Mouse 

A 69.1 (1) 72.5  (4) 58.3   (5) 55.9  (3) 
B 67.9 (2) 72.1  (5) 63.9   (3) 65.3  (4) 
C 71.3 (4) 73.4  (1) 58.2   (3) 56.9   (5) 
D 71.6 (5) 71.7  (2) 62.2   (4) 62.9   (3) 
E 81.7 (1) 78.4  (4) 64.3   (3) 60.2   (5) 
F 75.4 (5) 97.0  (2) 62.9   (3) 60.4   (4) 
G 69.2 (4) 81.7  (1) 53.1   (5) 60.6   (3) 
H 72.0 (2) 71.8  (5) 54.9   (4) 63.1   (3) 

In Table 3 we show the measured flown distance of each 
aircraft (again except the first three) from entering into the sce-
nario until touch down and consider only aircraft which landed 
within the scenario time. Table 4 summarizes mean value, sig-
ma, and median for each scenario and input modality. 

TABLE 4: RESULTS FOR FLOWN DISTANCE IN NM 
Scenario Input modality Mean Sigma = SD Median 

Complete Ap Mouse only 77.3 8.2 72.9 
Complete Ap ABSR+Mouse 72.3 4.2 71.4 
Final Ap Mouse only 60.7 2.9 60.5 
Final Ap ABSR+Mouse 59.7 4.0 60.2 

 
3) Flight Time 

In the same way, we compare the flight times. We calculate 
for each aircraft (except the first three landings) the difference 
between its flight time (from entering into scenario until touch 
down) and its earliest possible time predicted by AMAN 4D-
CARMA (see Table 5 and Table 6). 

TABLE 5: ADDITIONAL FLIGHT TIME IN SECONDS 
 Complete Ap Final Ap 

Controller ABSR+Mouse  Mouse ABSR+Mouse  Mouse 
A 121.6    (1) 190.1   (4) 285.1  (5) 266.6   (3) 
B 111.1    (2) 163.6   (5) 375.0  (3) 401.6   (4) 
C 187.8    (4) 215.4   (1) 286.6  (3) 291.3   (5) 
D 147.9    (5) 150.7   (2) 316.8  (4) 344.8   (3) 
E 305.3    (1) 271.9   (4) 437.6  (3) 347.4   (5) 
F 208.6    (5) 529.1   (2) 376.2  (3) 340.3   (4) 
G 141.8    (4) 345.3   (1) 250.7  (5) 360.2   (3) 
H 178.0    (2) 156.4   (5) 250.4  (4) 364.7   (3) 
 

TABLE 6: AVERAGE, MEAN AND SIGMA OFADDITIONAL FLIGHT TIME [S] 
Scenario Input modality Mean Sigma = SD Median 

Complete Ap Mouse only 253 122 203 
Complete Ap ABSR+Mouse 175 58 163 
Final Ap Mouse only 340 40 346 
Final Ap ABSR+Mouse 322 63 302 

 
In the Final Ap scenario the controller only influences a 

small part of the flight (see Figure 5). In the Complete Ap sce-
nario (Figure 4) we save, however, 77 seconds per flight. These 
unplanned flight time extensions take place in level flight. An 
A320 needs 2,700 liters of kerosene per hour in a level flight in 
FL70 with CAS (calibrated airspeed) of 250 knots, i.e., we save 
57 liters per flight. DLR’s test aircraft (A320-232) needs 3,100 
liters per hour. We can expect fuel savings of 10.5 million liters 
per year for a medium airport with 500 arrivals per day!  

4) Missing Radar Label Inputs 
Paper flight strips only provide limited access to clearance 

information. Electronic flight strips promise that more stake-
holders can benefit from clearances available in digital form. 
This, however, requires that the controller inputs all given 
clearances. 

 
TABLE 7:MISSING RADAR LABEL INPUTS  

 Complete Ap Final Ap 
Controller ABSR+Mouse  Mouse ABSR+Mouse  Mouse 

A 6.1%    (1) 7.2%   (4) 7.9%  3.2%  (3) 
B 3.4%    (2) 8.4%   (5) 1.5%  1.0%  (4) 
C 4.2%    (4) 6.3%   (1) 1.3%  3.0%  (5) 
D 1.4%    (5) 10.4%  (2) 1.2%  2.9%  (3) 
E 10.0%   (1) 9.0%   (4) 6.9%  5.9%  (5) 
F 5.6%    (5) 25.9%   (2) 8.1%  14.1%  (4) 
G 3.3%    (4) 23.4%  (1) 4.4%  14.9%  (3) 
H 5.2%    (2) 6.6%    (5) 3.5%  8.3%  (3) 



 

 

The number of given clearances that are not inserted into 
the radar label (either by mouse or by ABSR), is, therefore, al-
so an efficiency measure. We manually transcribed all given 
clearances. Table 7 shows the percentage of commands which 
were neither manually by mouse nor automatically by ABSR 
entered into the radar labels. Table 8 summarizes the average, 
mean and standard deviation. 

TABLE 8: AVERAGE, MEAN, SIGMA OF MISSING RADAR LABEL INPUTS 
Scenario Input modality Mean Sigma = SD Median 

Complete Ap Mouse only 12.1% 7.4% 8.7% 
Complete Ap ABSR+Mouse 4.9% 2.4% 4.7% 
Final Ap Mouse only 6.7% 5.0% 4.5% 
Final Ap ABSR+Mouse 4.4% 2.8% 4.0% 

 

5) Overall Efficiency 
Throughput, flown distance, flight time, and missing radar 

label information are competing efficiency parameters. Reduc-
ing flight distances by diverting aircraft to other airports (in 
our case deleting them from scenario) normally decreases 
runway throughput and vice versa. Therefore, we define an 
overall efficiency measurement OE combining the four meas-
urements. For each of the four measurements we calculate the 
best bj and the worst value wj across all trials of a particular 
scenario. From Table 1, for the Final Ap scenario we get bFlow 
= 46.8 and wFlow=38.4. For each of the four measurements 
(flow, distance, time, label info) we have for the Final Ap sce-
nario 16 values mjk with j=1...4 and k=1...16. For each meas-
ure the best value is set to 100%, the worst value is 0% and the 
values in between are linearly transformed to OEjk. The over-
all efficiency OEk for the 16 Final Ap experiments is the 
weighted average of all four values OEjk (The sum of all cj co-
efficients is 1.0): 
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For controller E with the mouse input modality in Table 1 
we calculate ((45.3-38.4)/(46.8-38.4)=) 81.5%. In the same 
way we also transform the values for the Complete Ap scenar-
io, see Table 9.  

TABLE 9: OVERALL EFFICIENCY VALUES  
 Complete Ap Final Ap 

Controller ABSR+Mouse  Mouse ABSR+Mouse  Mouse 
A 82.9%    (1) 75.8%   (4) 73.2%   (5) 87.0%  (3) 
B 83.5%    (2) 79.6%   (5) 60.4%   (3) 54.3%  (4) 
C 82.7%    (4) 73.2%   (1) 82.8%   (3) 76.5%  (5) 
D 96.4%    (5) 77.6%   (2) 72.0%   (4) 58.0%  (3) 
E 46.0%   (1) 68.9%   (4) 36.2%   (3) 63.9%  (5) 
F 75.3%    (5) 6.1%     (2) 50.6%   (3) 17.1%  (4) 
G 88.9%    (4) 19.5%   (1) 88.7%   (5) 21.7%  (3) 
H 79.1%    (2) 80.0%   (5) 85.9%   (4) 38.8%  (3) 
 

Table 10 shows the median, mean, and sigma overall effi-
ciency values, grouped by scenario type and input modality. As 
flown distance and flight time highly depend on each other, we 
choose cFlow=clabelInfo = 0.33 and cDist=cTime=0.67. 

 

TABLE 10: AVERAGE, MEAN, SIGMA OF OVERALL EFFICIENCY VALUES 
Scenario Input modality Mean Sigma = SD Median 

Complete Ap Mouse only 60.1% 27.7% 74.5% 
Complete Ap ABSR+Mouse 79.4% 13.9% 82.8% 
Final Ap Mouse only 52.2% 23.2% 56.2% 
Final Ap ABSR+Mouse 68.7% 17.2% 72.6% 

 

C. Results 

We perform paired t-tests. Each hypothesis was tested three 
times: (1) for the Complete Ap scenario, (2) for the Final Ap 
scenario, and (3) for both scenarios together. As an example we 
take the hypothesis that ABSR support increases throughput. 
Our null hypothesis is “ABSR support does not increase air-
craft throughput in the Final Ap scenario compared to the 
mouse input modality”. Our test value is defined by 
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We calculate the differences of the flows (ABSR-supported 
minus mouse-only run) of Table 1 for the Final Ap scenario, 
e.g., 44.9 minus 38.4 for controller F. The number of differ-
ences is n (8 in our case). D is the mean value of the flow dif-
ferences (45.1 minus 42.9 = 2.2). SD is the standard deviation 
of the difference (2.8 is calculated in [42]). We are just inter-
ested in checking whether ABSR input enables a higher flow 
than mouse input. Therefore, we set µ0 as 0 arrivals per hour. 
We calculate a value T of 2.1.  

As T obeys a t-distribution with n-1 degrees of freedom we 
can reject our null hypothesis H0 with probability of α (p-
value), if the calculated value for T is bigger than the value of 
the inverse t-distribution with n-1 degrees of freedom at posi-
tion tn-1, 1-α (in our case 1.9 for α=0.05). Therefore, the counter 
hypothesis H0 is rejected, because T=2.1 > 1.9 holds. We could 
even calculate the minimal α so that T > tn-1, 1-α is still valid. 
This is in our case α=0.038. Our results support the hypothesis.  

We also calculated the probability to reject the null hypoth-
eses for the Complete Ap scenario and for both scenarios to-
gether (row “Increased flow” in Table 11). In the same way we 
calculated α for reduced flight distance, reduced flight time, 
and less missing inputs in the radar label. Table 11 shows the 
minimal α values, which we marked in green if α is less than 
5%, in light green for α < 10% and in yellow otherwise. 

TABLE 11: MIN α FOR THE DIFFERENT HYPOTHESES 
Hypotheses Complete Ap Final Ap Both 
Increased flow 23.8% 3.8% 3.7% 
Flight distance 5.1% 27.7% 4.3% 
Flight time 4.9% 23.8% 3.6% 
Label information 1.9% 9.3% 0.7% 
Overall efficiency 6.1% 7.7% 1.6% 

 

D. Interpretation 

The results presented in Table 11 are statistically signifi-
cant. Nevertheless, we observe that in some cases the perfor-
mance with only mouse support seems to be better than with 
ABSR support. In Table 1 we shaded these experiment pairs 
darker. An explanation might be the order of experimental 
conditions. In those cases the controllers started with speech 
recognition support and the mouse-only supported scenarios 
followed later. We, therefore, calculated the mean throughput 
of all experiments which were performed as the first trial, as 
the second trial and so on (row “Observed Averages” in Table 
12). 

TABLE 12: CORRECTION VALUE TO COMPENSATE ORDER EFFECTS 
Experiment Number 1 2 3 4 5 

Observed Averages 32.9 34.3 43.5 39.3 40.9 
Expected Averages 34.8 34.8 43.8 39.3 39.3 
Correction Values 1.9 0.5 0.4 0.0 -1.6 

 



 

 

As we only performed Complete Ap scenarios as trial num-
ber 1 and 2, we had to subtract the mean of all Complete Ap 
experiments. All trials with number 3 were with Final Ap, so 
we had to subtract the mean of all Final Ap experiments. Trials 
number 4 and 5 were equally mixed between Complete Ap and 
Final Ap. Thus, we subtracted the mean of all number 4 and 5 
experiments (row “Expected Averages” in Table 12). The re-
sulting “Correction Values” are added to each throughput value 
in Table 1. Table 13 summarizes all corrected weighted flow 
values. 

TABLE 13: CORRECTED FLOW VALUES IN AIRCRAFT PER HOUR 
 Complete Ap Final Ap 

Controller ABSR+Mouse  Mouse ABSR+Mouse  Mouse 
A 37.3 (1) 35.3 (4) 45.2 (5) 46.6 (3) 
B 35.0 (2) 34.6 (5) 44.0 (3) 43.0 (4) 
C 35.8 (4) 36.6 (1) 45.6 (3) 42.8 (5) 
D 36.1 (5) 36.7 (2) 44.5 (4) 43.3 (3) 
E 33.4 (1) 35.8 (4) 42.8 (3) 43.7 (5) 
F 33.6 (5) 31.9 (2) 45.3 (3) 38.5 (4) 
G 36.2 (4) 31.8 (1) 44.4 (5) 40.9 (3) 
H 35.7 (2) 34.0 (5) 45.4 (4) 42.2 (3) 
 

In the same way we correct flown distance, flight time and 
missing radar label information. The corrected overall efficien-
cy is presented in Table 14. 

TABLE 14: CORRECTED OVERALL EFFICIENCY VALUES  
 Complete Ap Final Ap 

Controller ABSR+Mouse  Mouse ABSR+Mouse  Mouse 
A 97.2% (1) 72.7% (4) 59.1% (5) 93.0% (3) 
B 91.6% (2) 65.4% (5) 66.4% (3) 51.2% (4) 
C 79.6% (4) 87.5% (1) 88.8% (3) 62.4% (5) 
D 82.3% (5) 85.7% (2) 68.9% (4) 64.1% (3) 
E 60.4% (1) 65.7% (4) 42.2% (3) 49.8% (5) 
F 61.2% (5) 14.3% (2) 56.6% (3) 14.0% (4) 
G 85.8% (4) 33.8% (1) 74.5% (5) 27.7% (3) 
H 87.2% (2) 65.9% (5) 82.8% (4) 44.8% (3) 
 

By considering order effects we change the individual val-
ues of each experiment, but not the average values. Therefore, 
the time saving in the Complete Ap scenario is still 77 seconds 
per flight. Finally Table 15 shows the resulting α values, when 
the measurements are corrected due to order effects. 

TABLE 15: MIN α FOR THE DIFFERENT HYPOTHESES AFTER ORDER EFFECT 

COMPENSATION 
Hypotheses Complete Ap Final Ap Both Old Both 
Increased flow 14.3% 2.5% 1.3% 3.7% 
Flight distance 3.2% 24.1% 2.6% 4.3% 
Flight time 2.9% 19.0% 1.9% 3.6% 
Label info 0.5% 9.7% 0.2% 0.7% 
Overall effic. 2.0% 5.7% 0.5% 1.6% 

 

Adjusting for the order effect in this way shows an even 
stronger effect of ABSR over mouse-only (comparison with 
Table 11 (or the last two columns of Table 15)). We should 
emphasize that order effects are a reasonable explanation for 
the variation between different controllers. We checked the hy-
potheses, whether order effects exists for throughput, flight dis-
tance, addition flight time, radar label deviation and overall ef-
ficiency by an analysis of variances (ANOVA-test, i.e., F-Test) 
and could not falsify the null hypotheses. Only for the overall 
efficiency we got a tendency that the measurement depend on 
the sequence number (α=17%). We have two overlapping ef-
fects: The measurements depend both (slightly) on the se-
quence number and (significantly) on the input modality. The 

α-values should be expected between the values in Table 11 
and Table 15. 

The principle benefit of ABSR lies in the reduction of man-
ual data input by ATCo, resulting in further availability of cog-
nitive resources and reduction of head-down times. Benefits are 
concentrated on situations with high workload, high share of 
radio transmissions and a high rate of short term decisions con-
cerning the control of air traffic. Therefore, speech recognition 
will – at first hand - mainly be of substantial use in approach 
units, serving high traffic airports. Benefits are also expected 
for controllers in ATC towers that pose high-workload condi-
tions. 

Furthermore, ABSR bears the potential to enhance HMI 
processes in ATM systems, which integrate the air situation 
display together with relevant flight information on a single 
main window. ABSR in this context could also be used to form 
a migration path between radio transmission-based control and 
datalink-based control, enabling the system to send radio 
transmissions additionally as a datalink message to the ad-
dressed aircraft. 

VI. AUTOMATIC SPEECH RECOGNITION: WHAT IS ACHIEVED 

AND WHERE RESEARCH STILL IS NEEDED? 

While speech recognition in its ATM-tailored functionality 
itself shows a high degree of maturity and vicinity to first im-
plementation steps, further applications of ABSR can be identi-
fied that need further R&D effort or prerequisite technological 
changes in the basic ATM system and the way communication 
between cockpit and ground is organized. Table 16 shows basic 
ideas of application of ASR at the controller working position 
in either upper or lower airspace control centers and explains 
the variety of maturity levels among different possible applica-
tions of ABSR. 

The degree of maturity of the functionality is very different 
in relation to various possible applications. “ASR for pilots” in 
Table 16 includes detection of cockpit crew transmissions, 
adaption to different pilots and English skills. For automatic 
voice recognition of controllers AcListant®-Strips has shown 
that sufficient recognition rates are possible. Recognition of 
pilot utterances, however, will require addition research effort 
to allow for sufficient recognition rates. 

It is noteworthy that some of the applications that are ex-
pected to be most useful to support operations (e.g., automated 
input of releases to the ATM system) have a very high degree 
of maturity. Here, further efforts will focus on ensuring the co-
herence of the automated support with the working processes 
of the controllers and describing a migration path into the oper-
ational environment. 

TABLE 16: POTENTIAL APPLICATION OF ABSR IN ATM IN RELATION TO 

REMAINING R&D EFFORTS AND TECHNOLOGICAL PREREQUISITES 
Automatic Speech 
Recognition based 

functionality 

Maturity concerning 
operational usability 

Remaining R&D 
needs / Further tech-
nological prerequi-

sites 
Transfer of clearances to 

ATM System 
Proven by project 

AcListant® 
none 

Warning, if voice 
clearances differ from 

system inputs 

Basically proven by 
project AcListant 

none 

Marking of R/T 
addressed flights in the 

air situation window 

Proven by project 
AcListant® 

Usability aspects 



 

 

Warning, if clearances 
will cause possible 

conflicts 

Low level concerning 
alarm mechanisms and 

dialogue between 
different systems, 

ABSR-functionality 
proven by AcListant® 

Interaction with 
conflict detection tools 

not yet described 

ABSR controlled dis-
play functions (Weather, 

Sectors) 

Low level + 
operational benefits 
not yet determined 

Usability aspects 

Bridge technology 
between radio 

transmissions and 
datalink (CPDLC) 

Low level, status: idea Relevant effort for 
concept, roadmap, 
system design, and 

interaction, etc. needed 
Matching of clearances 

and read back 
Low level 

 
Comparison of clear-
ances & read backs,  

ASR for pilots 
Keyword by pilots 
triggers attention 

guidance (“Wake”, 
“Wind shear”, “Go 
Around”, “TCAS”)  

Low level Relevant R&D and 
development effort 

needed, 
ASR for pilots 

Matching of weight 
category at initial call  

Low level None, 
ASR for pilots 

TCAS = Traffic Collision Avoidance System; R/T = Radio Telephony 

 

VII. CONCLUSIONS AND OUTLOOK 

This paper concludes our work in the context of Assistant 
Based Speech Recognition (ABSR). In 2015, we demonstrated 
that command recognition rates better than 95% are possible 
with command error rates below 1.7% [1]. In the same paper 
we showed that speech recognition improves the adaptation 
speed of an Arrival Manager. In 2016, we published that ABSR 
significantly reduces controller workload [4]. Finally, this work 
shows that the workload reduction directly results in an in-
crease of ATM efficiency with respect to number of move-
ments per hour and aircraft flight time. For the Düsseldorf ap-
proach area (after Frankfurt and Munich the biggest airport in 
Germany) we quantified the benefits to 77 seconds reduced 
flight time and a throughput increase of one to two inbounds 
per hour. 77 seconds less flight time directly results in a fuel 
reduction of 50 to 65 liters per aircraft. This paper impressively 
demonstrates how a technology from research delivers benefits 
– measurable benefits – in air traffic control. 

We present the maintenance of radar labels as the show 
case to quantify benefits of ABSR and examine the status of 
further applications of speech recognition to support ATM. In 
these areas further research is needed, but industry and ANSPs 
can already benefit now, given that ABSR could be integrated 
into the ops rooms. An interface between the TopSky ATM 
system and ABSR is still missing. ABSR implemented as re-
search prototype also needs to meet prescribed levels related to 
software quality as it is a standard for all operational systems in 
aviation industry [46].  

 In order to reduce adaptation costs to approach area, differ-
ent from Düsseldorf, DLR, Saarland University, Idiap Research 
Institute together with the air navigation service providers from 
Austria and Czech Republic have started the SESAR funded 
project MALORCA (Machine Learning of Recognition Models 
for Controller Assistance) in April 2016. This project aims at 
automatically learning models for recognition and for the Arri-
val Manager from recorded radar data and untranscribed con-
troller pilot voice communication [47]. Prague and Vienna ap-
proach area are selected as demonstration airports to show that 

automatic learning from recorded radar and speech data reduc-
es start-up costs. 
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