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Abstract—Aircraft mass is a crucial piece of information for
studies on aircraft performance, trajectory prediction, and many
other ATM topics. However, it is a common challenge for
researchers who have no access to this proprietary information.
Previously, several studies have proposed methods to estimates
aircraft weight, most of which are focused on specific parts of the
flight. Often due to inaccurate input data or biased assumptions,
a significant number of estimates can result outside of the weight
limitation boundaries. This paper proposes an approach that
makes use of multiple observations to get a better estimate for
a complete flight. By looking at flight data from a complete
trajectory and calculating aircraft mass at different flight phases
based on different methods, together with fuel flow models,
multiple observations of aircraft initial mass can then be derived.
Using the Bayesian inference method, final estimates can be made
with a higher level of confidence.
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I. INTRODUCTION

Aircraft mass is one of the most important parameters when
studying aircraft performance. However, data concerning the
mass of almost all modern commercial flights are treated
as confidential information by airliners. Within the research
community, a few methods have been developed in order to
estimate such parameters based on flight data, either from radar
data or more recently from ADS-B data.

Sun et al., for instance, use ADS-B data from takeoff to
estimate the initial mass of an aircraft with two different
analytical methods [1]. Two other studies by Alligier et al.
developed least square and machine learning methods, with
a focus on the climbing phase of aircraft [2], [3]. In a
similar approach considering climbing aircraft, Schultz et al.
implemented an adaptive estimation method for mass and
thrust approximation [4]. On the operational side, a different
approach tried to calculate weight of an aircraft based on
approximation of each weight component, i.e. aircraft empty
weight, fuel weight, and payload weight [5]. However, despite
the limitation on using data from only certain parts of the
trajectory, it is not possible to be certain of any individual
estimates. One can only conclude the possible distribution of
aircraft mass based on a great number of flights.

In flight, aircraft mass varies as a function of fuel flow.
Several studies have been conducted to estimate fuel burn.
Methods have been proposed that are based on radar track
data [6], as well as a classification model from the Flight Data
Recorder [7]. Other fuel flow calculation models obtained from
empirical data can be found in BADA [8] and the ICAO engine
emission databank [9], which are used for this paper due their
simplicity and accessibility.

In this paper, several of the above approaches are combined
with new mass estimation methods at different phases of
flight. Independently, different mass estimates will first be
calculated with appropriate methods for each flight phase.
Then, a Bayesian inference approach is established to use these
calculations as independent measurements, combining a priori
knowledge of initial aircraft mass probability distribution to
produce the maximum a posteriori estimations. The advantage
of the Bayesian approach is that it takes into account prior
probability distribution and physical limitations of possible
aircraft mass, and it is able to produce an estimate for any
given flight based on flight data with the knowledge of aircraft
type.

The remainder of the paper is structured as follows. Section
two describes all six different mass computation methods based
on data from different flight phases. Section three presents the
Bayesian inference method process and a close-form solution
for normally distributed priors. Section four discusses the
results for several aircraft types and parameter sensitivities.
Finally, discussion and conclusions are presented in sections
five and six.

II. INITIAL MASS COMPUTATIONS

This section describes several methods that can be used
independently to compute aircraft mass at different flight
phases. The total energy model (TEM), shown in Equation 1, is
used in most of the methods. In addition, BADA3 aerodynamic
coefficients are used to calculate the thrust and drag in some
of the phases when applicable [8].

(T −D) · V = m · a · V +m · g · Vh (1)
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2
ρiV
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CD = CD0 +KC2
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Here, T and D are the thrust and drag of the aircraft, V , a,
and Vh are the horizontal airspeed, acceleration, and vertical
speed respectively. CD, CL, CD0, and K are coefficients for
drag, lift, zero drag, and induced drag. ρ and S are the air
density and the aircraft wing surface.

With the complete flight trajectory based on the total energy
model, mass can be computed at several phases (ie.: takeoff,
climb, descent, approach, and landing), as illustrated in Figure
1. These values will be used as independent measurements for



further Bayesian inference. A fuel flow model also needs to
be considered to derive the initial mass at takeoff.
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Fig. 1. Bayesian inference diagram

A. Taking off

While an aircraft is on the runway before liftoff, there
is only horizontal acceleration. However, in addition to the
aerodynamic drag, ground friction also needs to be considered,
which is proportional to the normal force on the ground. The
friction coefficient is denoted by µ1. A common value is
around 0.02 for concrete runways [10]. Equation 1 then can
be re-written as follows:

T −D −Dg = ma (2)
Dg = µ1(W − L) (3)

Due to the fact that BADA (version 3) does not have an
accurate thrust model for the ground phase at takeoff, thrust
needs to be computed with other models. Alternatively, the
maximum takeoff thrust can be calculated from empirical data
using a second-degree polynomial model [11]. This approach
provides a fairly good approximation of thrust for two-shaft
turbofan engines. This simplified model can also later be used
during other phases of flight. The maximum takeoff thrust can
be expressed as a function of velocity:

Tmax = f(V ) = T∞(1 + c1V + c2V
2) (4)

where T∞ is the maximum static thrust at zero speed. c1 and
c2 are coefficients obtained from empirical data fitting. When
the requirement of minimum excess thrust is satisfied, aircraft
can take off with reduced thrust. This has become common
practice for airliners to extend engine life and reduce costs. To
accommodate this possibility in the model, a thrust coefficient
η is introduced that satisfies η ≤ 1. Equation 2 can be rewritten
as:

ηTmax − (µ1g + a)m− 1
2ρV

2S(CD − µ1CL) = 0 (5)

It is also common practice that under the available thrust,
takeoffs aim to minimize the takeoff length, where the total
drags are at minimal. Hence the optimized lift coefficient can
be calculated as follows:

CL =
µ1

2Kto
(6)

The mass of an aircraft is then calculated discretely at each
sample point:

ηTmax − (µ1g + a)m− 1
2ρV

2S(CD0,to −
µ2
1

4Kto
) = 0 (7)

Let the left part of the equation be f1(m, η). The task is to
find the optimal m̂ and η̂ that minimize the squared sum of
f1 of all takeoff data samples. The solution can be found as
follows, with constraints on m and η.

m̂, η̂ = arg min
m,η

N∑
i=1

f2
1 (m, η) (8)

m ∈ [moew,mmtw]

η ∈ [0.8, 1]

B. Liftoff and approach speed

At each takeoff and approach, optimal speeds are usually
selected, which are correlated to the stall speed. Even though
it is a relatively weaker correlation at takeoff, both speeds can
be used as indicators to infer aircraft mass.

This method first observes the aircraft speed at the moment
of liftoff and approach. Then it infers the mass taking into
account the relationship with stall speed at maximum takeoff
or landing weight when it is available from the aircraft
manufacturer. When these parameters are not available, BADA
reference data are used.

According to FAA Federal Aviation Regulations, at takeoff,
the speed of an aircraft is at least 20% over the stall speed.
Assuming lift and weight are the same at liftoff, the following
relation can be derived under certain assumptions:

Wto = Lto ⇒ mtog =
1

2
ρSCLV

2
lof

⇒ mto ∝ V 2
lof

(9)

where the takeoff mass is proportional to the liftoff speed
squared, under the assumptions of the same aircraft model
and lift configurations. Knowing reference weight and its
stall speed (VS), it is possible to calculate such a constant
coefficient:

C =
mto

V 2
lof

(10)

=
mref,lof

V 2
ref,lof

≤ mref,lof

1.22 · V 2
S,ref,lof

(11)

Then at any given observed takeoff, the initial mass can be
approximated using the following equation:

mto ≈
(

mref,lof

1.22 · V 2
S,ref,lof

)
V 2
lof (12)

A similar relationship can also be obtained at landing. The
approach speed empirically is around 30% over the stall speed.
The landing mass then can be approximated as follows:
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V 2
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C. Climb and descent phase

During the climb and descent phases, data (horizontal speed
and climb/descent rate) can be observed. Assuming standard
atmospheric conditions, the total energy model in Equation 1
can be expanded at each time step as follows:

(Ti −Dt) Vi = miaiVi +migVhi (14)
mi = m0 +mi,fuel (15)
Ti = ηTmax,i = ηf(hi, Vi) (16)

Di =
1

2
CDρiV

2
i S (17)

Li = mig cos(γi) =
1

2
CL,iρiV

2
i S (18)

CD = CD0 +KC2
L,i (19)

where γ represents the path angle. Maximum thrust profile
Tmax is a function of pressure altitude and airspeed and η is
an assumed thrust coefficient for the entire climb or descent,
describing the actual thrust setting as a percentage of maximum
thrust.

Given all observed and known variables, the above equations
can be rewritten into the follow equation:

2Kg2 cos2(γi)

ρiV 2
i S

·m2
i +

(
ai + g

Vhi
Vi

)
·mi

+
1

2
CD0ρiV

2
i S − η · Tmax,i = 0 (20)

Fuel consumption can be estimated according to Section II-E
where the last remaining two unknown variables m0 and η are
to be found.

This process is similar to the takeoff method but includes
more parameters in the equation. Let the left side of Equation
20 be f2(m, η). The task is to find the optimal m̂ and η̂ that
minimize the squared sum of f2 of all N data samples. The
mass is constrained by the aircraft Operational Empty Weight
and the Maximum Takeoff Weight, and thrust reduction is no
larger than 20% of the maximum thrust profile. The solution
can be found as follows for climbing flights:

m̂0, η̂ = arg min
m0,η

N∑
i=1

f2
2 (m0, η) (21)

m ∈ [moew,mmtw]

η ∈ [0.8, 1]

Although the total energy equation is the same for de-
scent flights, their thrust profiles are different. In the above
equations, η · Tmax,i needs to be replaced with idle thrust or
appropriated descent thrust profile.

D. Inferring mass from breaking

Compared to takeoff, landing dynamics are more compli-
cated. Spoilers are deployed to reduce lift, and breaks are
applied at the same time, resulting in a higher friction coeffi-
cient µ2. Both actions increase the ground drag. Sometimes,
when a thrust reverser is available, reversed thrust (denoted by
coefficient ηrev) is also deployed upon touch-down [12, P511].
Taking these aspects into consideration, aircraft mass can be
approximated as follows:

mi ≈
−ηrevTidl − 0.5ρV 2

i S(CD0,ld − µ2
2/(4Kld))

µ2g + ai
(22)

m̂ =
1

N

∑
mi (23)

It is worth noting that these equations are very simplified
estimations due to the large number of unknowns present
during landing.

E. Fuel flow model

Mass estimations at any phase other than takeoff need to
take into account the fuel flow in order to derive the aircraft
initial mass. Two fuel flow models are available: the ICAO
databank and the BADA3 fuel flow model.

1) ICAO fuel flow model: The ICAO engine emission
databank defines fuel flow under four different modes: takeoff,
climb-out, approach, and idle, with power settings at 100%,
85%, 30%, and 7% of engine maximum power respectively. It
is important to note that data are all gathered from a static
engine test. Hence, the fuel flow measurements are biased
compared to dynamic flight data. Operational flight data and
tests conducted by Zurich Airport [13] have shown that there
is a difference between ICAO fuel flow model and operational
fuel consumption.

In order to get the model closer to actual fuel consumption,
based on the four points from the ICAO data bank, a quadratic
fuel flow profile is constructed describing the fuel flow as a
function of the fraction between actual thrust T and maximum
static thrust T∞, denoted as ε:

ṁfuel = K1ε
2 +K2ε+K3 (24)

From the ICAO data bank, fuel flow data are fitted with
a polynomial model for several engines. Figure 2 shows the
results of the fitted model obtained from data from several
engines and their corresponding aircraft types.

For a common two-shaft turbofan engine it is possible to
simplify the thrust model using an empirical relation between
aircraft Mach number and pressure altitude [11]:

ε =
T

T∞
= f1(M,H) (25)

Thus the actual fuel flow can also be calculated as a function
f2 of Mach number, altitude, and time obtained from the
flight data. Finally, the consumed fuel mass can be integrated
throughout the flight at any given time τ :
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Fig. 2. ICAO Fuel Flow Interpolation

mfuel =

∫ τ

0

f2(M,H, t)dt (26)

2) BADA3 fuel flow model: The BADA3 calculation con-
sists of three fuel flow modes, minimal (idle thrust at descent),
cruise (cruise thrust), and nominal (other flight phases). With
the BADA model, fuel flow can be calculated similarly to the
previous method. It produces a relatively higher-accuracy result
with more sophisticated models. Details of BADA fuel flow
calculations can be found in the BADA user manual [8].

III. BAYESIAN INFERENCE METHOD

The Bayesian inference method is based on the conditional
probability theorem and is used to formulate a posterior
probability model for certain parameters from observed data
based on a prior probability distribution.

A. Prior probability

The prior probability distribution (or simply prior) of a
certain parameter expresses the belief of such parameter before
any evidence (observations) is considered. It is usually based
on empirical knowledge or values obtained from previous
observations. For this paper, the prior represents the belief of
the initial mass of aircraft m, which is bounded by its physical
constraints (operational empty weight moew and maximum
takeoff weight mmtw) and likely close to a certain value (for
instance, 80% of the maximum weight). It is represented by a
normal distribution:

m ∼ N (µ, σ2) (27)

B. Observations

The observations of initial mass are based on independent
deterministic computations of aircraft weight at different flight
phases using different methods. Assuming n possible values
for the mass are obtained from those flight phases:

m = m1,m2, · · · ,mn (28)

Those observations are possible values of initial aircraft
mass. However, due to errors in aircraft flight data and
estimations, those values can be very different from reality
or even out of the physical boundaries. Bayesian inference
combines these observations with the prior to produce the
posterior probability of the parameter µ based on m, denoted
as p(µ|m).

C. Posterior probability

The posterior probability of an uncertain parameter is the
conditional probability obtained after certain evidence (obser-
vations) are considered. It is calculated as follows:

p(µ|m) =

Prior︷︸︸︷
p(µ) ·

Likelihood︷ ︸︸ ︷
p(m|µ)

p(m)︸ ︷︷ ︸
Scaling factor

(29)

The estimate produced by Bayesian inference is known
as the Maximum A Posteriori (MAP) estimate. Assuming a
random mean (µ0) and fixed variance (σ0) for the µ itself ,
the MAP estimation of µ based on m can be derived in a
simple closed-form.

First of all, the scaling factor p(m) is the integration over all
possible values of µ, which equals to

∫
p(µ)p(m|µ)dµ. Since

the term p(m) does not depend on the parameter µ with fixed
m, the posterior probability density p(µ|m) can be expressed
as proportional to the multiplication of prior and likelihood,
also called unnormalized posterior density, which is the right
hand side of following equation:

p(µ|m) ∝ p(µ)p(m|µ) (30)

The likelihood function p(m|µ) is represented as the joint
probability function of data. It is viewed as a function of the
parameters and can be calculated as follows:

p(m|µ) = p(m1,m2, . . . ,mn|µ) =

n∏
i=1

p(mi|µ) (31)

The remaining task is to calculate the posterior probability
p(µ|m) based on the product of the prior probability and the
likelihood.

1) Single observation case: Starting from a simple case,
considering a single observation, its likelihood from the sam-
pling distribution is:

p(m|µ) =
1√
2πσ

exp

(
− (m− µ)2

2σ2

)
∝ exp

(
− (m− µ)2

2σ2

) (32)

and the distribution of the prior parameter µ is:



p(µ) =
1√

2πσ0
exp

(
− (µ− µ0)2

2σ2
0

)
∝ exp

(
− (µ− µ0)2

2σ2
0

) (33)

Then, the posterior distribution function for the single ob-
servation calculates as follows:

p(µ|m) ∝ p(µ) p(m|µ)

∝ exp
(
− (µ− µ0)2

2σ2
0

− (m− µ)2

2σ2

)
∝ exp

(
− (µ− µ1)2

2σ2
1

) (34)

where:

µ1 =
σ2µ0 + σ2

0m

σ2 + σ2
0

and σ2
1 =

(
1

σ2
0

+
1

σ2

)−1
(35)

2) Multiple observation case: For multiple observations,
the likelihood can be calculated similarly as follows:

p(m|µ) =

n∏
i=1

p(mi|µ)

∝
n∏
i=1

exp

(
− (mi − µ)2

2σ2

)

∝ exp
(
− 1

2σ2

n∑
i=1

(mi − µ)2

)

∝ exp
(
− 1

2σ2

n∑
i=1

(m2
i − 2miµ+ µ2)

)
∝ exp

(
− n

2σ2
(−2m̄µ+ µ2)

)
∝ exp

(
− n

2σ2
(m̄− µ)2

)
∝ p(m̄|µ)

(36)

where m̄ = (
∑
mi)/n represents the mean of all observations

m. The posterior probability then becomes:

p(µ|m) ∝ p(µ)p(m|µ)

∝ p(µ)p(m̄|µ)

∝ p(µ|m̄)

(37)

Because mi is considered of being drawn from a normal
probability distributed function, the probability of m̄ is also
normally distributed, which satisfies the following relationship:

mi|µ ∼ N (µ, σ2) ⇒ m̄|µ ∼ N (µ, σ2/n) (38)

The relationship p(µ|m) ∝ p(µ|m̄) in Equation 37 suggests
the posterior probability of µ from multiple observations
can be treated as a single observation, where the multiple

observations m are substituted by the mean m̄ (a sufficient
statistic).

Combining the Equations 35 and 38, the posterior probabil-
ity distribution of parameter µ based on multiple observations
m can then be obtained in close form and described as follows.

Lemma 1: Assume independent and identically distributed
random variables mi ∼ N (µ, σ2) given unknown µ, known
σ, and µ ∼ N (µ0, σ

2
0). Then, from n number of observations

m = [m1,m2, · · · ,mn], the posterior probability distribution
of µ satisfies the following normal distribution:

µ|m ∼ N
(
nσ2

0m̄+ σ2µ0

σ2 + nσ2
0

,

(
1

σ2
0

+
n

σ2

)−1)
(39)

Figure 3 illustrates an example of a MAP estimate of aircraft
initial mass based on the prior distribution and five independent
initial mass measurements from different flight phases.
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Fig. 3. Example of Bayesian inference

It is possible to see that the maximum a posteriori estimate
is slightly biased towards the prior in comparison to the mean
of measurements. This aspect will be addressed in the later
discussion section.

IV. EXPERIMENTS AND RESULTS

To examine and validate the Bayesian estimation approach,
data of thousands of flights from four different aircraft types
are gathered. The dataset consists of around 1500 flights for
each aircraft type. For each flight, five initial mass mea-
surements are computed at different flight phases using the
respective methods. After that, the Bayesian mass inference is
applied. Three sets of results are presented. The first focuses
on one particular aircraft type, the Airbus A320. The second
includes the inference statistics of all four aircraft types.
Finally, the parameter sensitivities are shown.

A. Results of a single aircraft type

The results for the Airbus A320 are shown in Figure 4.
The first five sub-plots illustrate the distribution of individual
measurement results from methods that are applied at different
flight phases, which are takeoff, liftoff, climb, descent, and
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final approach. The last plot shows the final estimated initial
masses using Bayesian inference.

For the distributions of the measurements and final infer-
ences, it is evident that the MAP estimates have a smaller
variance than the individual estimates, and most of the initial
estimates are within the boundaries of moew and mmtw. It is
also worth noting that the prior chosen for this experiment is
a relatively weak prior, so the result are less biased.

For each flight, based on all individual observations, the
means and standard deviations are also computed and com-
pared against the MAP estimation, shown in Figure 5. In the
first plot, the statistical difference in estimated µ is not very
large. This is due to the weak prior used in the Bayesian
estimation. Regardless, under the Bayesian inference, both
the minimum and maximum of all estimations fall in the
boundary of possible Initial mass, and there are significantly
fewer outliers in the outcome. The uncertainty of the estimation
can also be obtained, as shown in the the second plot, where
the Bayesian inference provides a lower uncertainty in general.

B. Multiple aircraft types

The same inference methods are applied to different aircraft
types. The results of these estimations are shown in Figure
6. For each aircraft type, around 1500 complete flights are
analyzed. Within each plot, two green dash lines mark the
possible initial mass boundary that is constrained by moew

and mmtw, where the unit of mass is metric ton (t).
Comparing these four different aircraft types, it is possible

to conclude that at different flight phases the calculated initial
mass tends to be biased towards the same end, some of which
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Fig. 5. Performance of Bayesian inference (A320, 1500 flights)
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Fig. 6. Initial mass estimation of four aircraft types

contain very inaccurate estimates. However, the Bayesian infer-
ence is able to produce an estimation that is able to overcome
these extremes and produce reasonable estimates. The cause
for these biases are addressed in the discussion section.

C. Parameter sensitivities

1) Thrust settings: The level of correctness of aircraft
mass estimations based on observed performance parameters
is essentially dependent on knowledge of thrust settings. As
shown in Section II, most of the mass computation methods
along the flight path need to take into account the thrust
profile while estimating aircraft mass. In these methods, an
optimization using the least squares method is implemented to
find the best thrust setting and aircraft mass, which provides a
minimal squared error. This approach has also been proposed



previously by Alligier et al. [2] This approach makes sense
mathematically. However, without validation using measured
thrust data, it is not possible to conclude whether the thrust
configuration obtained for the optimization is indeed the cor-
rect setting.

Other sources of errors in the observed performance param-
eters are the observations of positions, altitudes, velocities, and
climb/descent rates, which are obtained from ground stations,
either in the format of ADS-B (this paper) or from surveillance
radar data.

In order to study the influence of different thrust settings,
based on the same dataset, two fixed minimum and maximum
thrust profiles are used to produce two different sets of mass
estimates. For takeoff and climb, maximum thrust and a 30%
reduced thrust profile are used. While for descent, two thrust
settings at 8% and 20% of maximum climbing thrust setting
are used. In Figure 7, results from such different settings are
computed and compared.
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Fig. 7. Sensitivity on thrust settings

During the takeoff and climb, higher thrust settings lead
to higher estimations of initial masses, and this difference
is statistically significant. During the descent phase, such a
tendency is not visible. However, the uncertainty of mass
is much larger compared to other two flight phases. The
final initial mass estimate produced by Bayesian inference
is still within the possible boundaries, but with considerable
differences. From these results, it is obvious that thrust setting
is a significant factor that affects the mass estimation in
general.

2) Airspeed vs ground speed: All estimation methods in-
troduced in Section II require correct measurements of aircraft
true speed. However, data collected from ground measurements
(ADS-B or radar) only reveal the ground speed. Estimations
can either assume the ground speed as airspeed or integrate
wind data to approximate the airspeed. Intuitively, this uncer-
tainty in wind can affect the estimation results.

In the experiment dataset, meteorological data are integrated
with ADS-B ground speed to approximate the true airspeed of
aircraft [14]. Climb with maximum thrust profile and an idle

thrust descent profile are considered. For each flight, initial
mass is computed with both ground speed and approximated
airspeed. In Figure 8, the distributions of these differences
in climb, descent, and final estimation are shown. From the
third plot, it can be seen that depending on the level of the
wind speed, the estimation can vary up to five metric tons of
difference for the Airbus A320. This can be up to 8% of the
nominal weight according to previous results shown in Figure
4.
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Fig. 8. Difference in estimation caused by wind

However, this difference can not be shown statistically by
observing all flights in the dataset as shown in Figure 9. This
is because for a large number of flights, the effect of wind
averages out.
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Fig. 9. Estimation sensitivity on wind

3) Prior distribution: When applying Bayesian inference,
one of the important factors is the prior. Stronger belief in
the prior knowledge will increase the confidence of the final
estimation. However, these estimates can be biased toward



prior belief. To study this influence, the same dataset is
used with a set of different priors to produce estimates from
Bayesian inference. In Figure 10, six combinations of (µ0, σ0)
are chosen to study this effect. The probability distribution
functions that are biased towards low, medium, and high mass
are shown in red, black, and blue, respectively. Priors with
high and low confidence are shown in solid and dashed lines,
respectively.
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Fig. 10. Different initial mass prior distribution (A320)

In Figure 11, six different results from the same estimation
configuration are displayed. On the left side are plots where
low confident priors (large σ0) with different µ0 are applied,
while on the right side are results form high confident priors
(low σ0).
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Fig. 11. Estimation sensitivity on prior distribution (A320)

From those plots, it is possible to understand that with a
weak prior, the estimates are less biased. They depend more
on the observations (i.e.: different initial mass calculated at
different flight phases). This will also produce less confident
results, i.e., all three experiments end up with estimates with
larger variance.

When the level of belief is increased, the estimations start to
follow this prior distribution. This produces more confidence
but also biases estimates as shown on the right-hand side of
the plots.

Hence, in addition to acquiring more accurate data to
improve the accuracy of the observation, it is important to
select a proper prior in this Bayesian inference process in order
to produce realistic estimation.

V. DISCUSSION

A. MAP vs MLE estimations

Fig. 5 shows how the maximum a posteriori estimation
(MAP) approach compares to the maximum likelihood esti-
mation (MLE) approach. For a normally distributed PDF, the
MLE returns the estimate as the mean of the observations.
MAP is the Bayesian approach that is based on the conditional
probability theory where a certain prior (or ”belief”) of the
parameter is known. This tends to lead the estimate bias to
what the ”belief” is. If the belief is strong and correct, the MAP
tends to yield a better estimate. However, if the belief is strong
but incorrect, the MAP estimates will be worse than MLE
estimates. In practice, other than the minimum and maximum
allowed weight, one can construct the prior based on direct or
indirect indicators such as historical data, occupancy rate, and
fuel reserves.

A normally distributed prior on initial mass is assumed in
this paper. This assumption is based on results of previous
studies [2] [15]. Furthermore, it also serves the purpose of
simplifying the computation. Nonetheless, different types of
parameter distributions can also be used.

B. Incomplete data and partial trajectory

In this paper, each flight in the dataset contains the complete
flight trajectory data that starts before takeoff and lasts until
landing is completed. It may include some missed segments
during cross-ocean cruise where no data is available. The
completeness of trajectory data is required to demonstrate
all different mass calculation methods at each flight phase.
However, such a condition is not required in order to arrive at
a set of estimates. A partial trajectory can be used in the same
way, where the number of measurements is simply reduced.

When dealing with partial trajectories or making real-time
inference, the climb and descent phases can be segmented
further to create multiple measurements at different flight
levels. The same method in Equation 21 can be applied to
obtain more observations for applying the Bayesian inference
process.

C. Individual methods bias

From Fig. 6, it is apparent that certain measurements tend
to be biased and/or have large variances, especially the mea-
surements at the liftoff moment and during descent phase.

For the liftoff moment, referring to Equation 12, the mass is
calculated under the assumption of a 20% speed margin. It is
possible that in reality for certain aircraft this margin is higher.

During the descent, the situation is more complicated than
during the climb. Aircraft trajectories are more subjected to
procedures from air traffic controllers. Additionally, different
types of continuous descent approaches maybe used. Thus,
the thrust settings can substantially differ among flights. Op-
timization according to Equation 21 may not yield the best
thrust-mass setting to resemble reality. This effect can be seen
in Figure 7 in the descent phase. One possible solution is to
reduce the thrust setting range towards idle thrust, but doing



so may cause those higher powered descents to suffer a biased
result. A better way to approach this is to identify the type
of descent approach (traditional profile or CDA profile), then
assign different thrust setting boundaries accordingly. This can
be implemented in future studies.

D. Reduced thrust takeoff and climb

Using the total energy model in Equation 1, with observed
aircraft kinematic states and calculated drag, there are multiple
possible thrust and mass combinations. That is, both higher and
lower thrust-mass combinations may satisfy the equation at the
same time.

It is fairly common for aircraft to perform reduced thrust
takeoff and climb. Several estimation methods used in this
paper require knowledge of the ratio of reduced thrust. That is
also the reason for using the least squares optimization method
in Equation 21. It tries to find the best combination of thrust
setting and mass. This approach is similar to previous research
[2]. However, without aircraft on-board data as validation, this
remains to be a large source of uncertainties in the domain of
aircraft mass estimations.

VI. CONCLUSIONS

A Bayesian inference method to estimate aircraft initial mass
has been proposed in this paper. As input for the Bayesian
inference, different ways for computing aircraft mass based
on trajectory data are summarized. In combination with a
simplified fuel flow model from the ICAO data bank, different
measurements of aircraft initial mass at takeoff are generated.
The Bayesian inference process can obtain improved estimates
based on certain prior knowledge of the probability distribution
of the aircraft mass. Parameter sensitivity studies are also
carried out to test the robustness of the method. Compared to
previous studies, this method is able to provide a reasonable
estimate and a level of confidence on any given trajectory, as
long as the aircraft type is known.
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