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Abstract—We propose that the Rubin potential outcomes
framework of causal inference can be used to statistically estimate
counterfactuals, by definition never observable, of Traffic Flow
Management Initiatives (TFMI), as a novel means of quantifying
performance Air Traffic Management (ATM) actions, despite
confounding factors. Specifically, we apply the method of Propen-
sity Scores to estimate counterfactuals and compute the increase
in hourly average airborne delay which would have resulted
without a Ground Delay Program, using an eleven month span of
hourly weather, traffic, and delay data at JFK. Our introduction
also summarizes the concepts of causal inference required for
our analysis. We also offer suggestions to improve and extend
our initial application of casual inference. Technical details of
propensity score modeling are further covered in an appendix.

Keywords—ATM Performance Measurement, Empirical Anal-
ysis, Statistical Methodology

I. INTRODUCTION

Traffic managers at the Air Traffic Control System Com-
mand Center (ATCSCC) and other stakeholders, such the
Airlines Operations Centers (AOC), should be able to estimate
performance metrics, such as ground and airborne delays,
due to various courses of actions. Moreover, improvements
in Air Traffic Management (ATM) require accurate estimates
of actual and potential outcomes of specific Traffic Flow
Management Initiatives (TFMI), interventions which ensure
and enhance performance of the National Air Space, in order
to enable comparison of alternative courses of actions. These
performance estimates of alternative courses of action can
result from simulation or statistical inference. Thus motivated,
we present a novel application of a well developed statistical
methodology, causal inference, which enables estimating the
effectiveness of interventions, such as TFMI, through con-
structing counterfactual outcomes, by definition never observ-
able, and has been useful in various other domains where ran-
dom trials are impractical, including health [1], [2], economics
[3], [4] and ecological contexts1. However, to the best of
our knowledge, casual inference has not yet been explored in
the ATM research community. We argue that causal inference
may provide a statistically rigorous framework to estimate the
effectiveness of TFMI, despite the presence of confounding in
ATM datasets.

In addition to summarizing the conceptual aspects of causal
inference, we will illustrate a specific ATM use case: estimat-
ing the potential outcome of not implementing a particular

1For example: https://www3.epa.gov/caddis/da advanced 5.html

TFMI, namely the potential airborne delay which if a Ground
Delay Programs (GDP) had not been implemented during
hours when it was in fact implemented at JFK.

A. Confounding in ATM Data

Consider the case of evaluating the efficacy of a medical
treatment. One option is to implement randomized control
trials, where units are randomly assigned to treatment and
control groups, and is sometimes feasible. However random-
ized control trials, considered the gold-standard to statistically
evaluate the effectiveness of a treatment [5], are not always
possible to implement. For example, lets consider the efficacy
of smoking cessation counseling for smokers admitted to a
hospital for a heart attack [1]. In particular, we are interested
in the following question: does smoking cessation counseling,
prior to discharge from the hospital, increase the lifespan of
smokers who have suffered a heart attack? If a randomized
control trial were possible in this situation, then the usual
methods of regression would suffice to answer this question
statistically. However there are various barriers to voluntary
participation and completion of treatment [1], and thus a
random controlled experiment is not possible in this example.
Statisticians call such a situation an “observational study,” and
commonly, there are systematic differences between patients
who receive treatment and those who do not, which must
be accounted for in a sound methodological manner when
assessing the effect of a treatment on the outcome of interest
(e.g. mortality).

Similarly, in the ATM context, it is infeasible to conduct
randomized control trials. For a particular TFMI, such as a
Ground Delay Program (GDP), blocks of time or individual
flights are clearly not assigned randomly to the initiative,
but are the consequence of a collaborative decision making
process based on various factors such as weather, traffic, and
capacity. Furthermore, outcomes, such as airborne delay are
also influenced by these same covariates; hours of inclement
weather are more likely to be assigned GDP and they are
also likely to experience higher average airborne delay than
hours with clear weather. Thus to empirically estimate the
effectiveness of a TFMI like GDP requires accounting for
these confounding factors.

Estimates of performance metrics can enable tradeoffs be-
tween different courses of action. More specifically, counter-
factual estimates of performance due to a given TFMI, can



provide decision makers an estimate of the potential cost of
inaction, for example average airborne delays if a GDP had not
been imposed at a given arrival airport. These counterfactual
estimates may be useful both at operational and strategic
levels when evaluating the cost and benefits of various TFMI
at various spatial and temporal scales. However estimating
counterfactual outcomes is methodologically challenging in
the ATM context where the notion of random trials or random
assignment of flights to is impractical. We propose to employ
the statistical methodology of causal inference to derive these
counterfactual estimates, which have the advantage of being
derived from a statistically rigorous framework that has been
applied in various other domains, such as health, education,
and economics. To our knowledge, this is the first application
of causal inference to ATM.

As explained in [5], the fundamental difficulty of observa-
tional studies versus random controlled trials, is the presence
of confounding: the outcome of interest (e.g. mortality) is
influenced by both the treatment status (i.e. whether the patient
received or did not receive treatment) and the baseline charac-
teristics, which are often systematically different between the
treatment and control groups. Although there exist regression
adjustment techniques that attempt to account for confounding,
there are many reasons for which they are not robust [5], [1],
[6]. An alternative method to eliminate or reduce confounding
uses the idea of propensity scores and the potential outcomes
framework on which they are based.

B. Related research

Various approaches can be used to analyze alternative
courses of actions for ATM. One possibility is to use a
dynamic systems modeling approach, employing a combina-
tion of analytic models and discrete-event simulations. Tools
such as ACES and FACET [7] can be used to simulate
airborne delay statistics from various TFMI implementation
strategies with realistic traffic flows. Queuing theoretic models,
with varying degrees of simplifications, can also be used to
to analyze delay statistics resulting from a range of GDP
implementation parameters [8], [9], [10], [11], [12].

Alternatively one can use techniques that don’t directly
model the dynamics of weather and traffic in the NAS through
analytic or discrete-event approaches, but rather through sta-
tistical techniques for producing counterfactual scenarios un-
observed in the historical data. These counterfactual scenarios
can then be used to estimate the impact of potential TFMI
given weather and traffic forecasts and thus aid ’what-if’
analysis required of decision makers. For example [13] uses
a statistical simulation technique (“quantile equivalence”) to
generate counterfactual scenarios of demand and throughput at
LGA, EWR, and JFK, and consequently predicts delay at these
airports. This method does account for a single, but relevant,
weather feature using an empirical non-parametric procedure
to statistically simulate counterfactual scenarios by mixing
observed throughput and demand in various time periods for
a given weather condition (either VMC or IMC).

C. Outline

In this report we will examine another approach, Causal
Inference, to generate counterfactual estimates, which can
additionally quantify and reduce confounding, in order to
attribute effectiveness of interventions (like TFMI) in terms of
relevant outcomes. ausal Inference actually comprises several
statistical methods, including propensity scores [1], which
we will specifically employ for counterfactual estimation to
evaluate TFMI impact on system outcomes in the presence of
confounding factors such as weather and demand.

Our initial examination of airborne delay under a GDP
is the simplest application of Causal Inference, using hourly
data as the unit of analysis, with binary treatment assignment
(GDP or no GDP). In our conclusions, we offer the ATM
research community various possible extensions of our initial
application of Causal Inference. We will briefly discuss more
sophsiticated possibilities employing other units of analysis,
such as individual flights, multiple discrete treatments for GDP
across multiple airports, and continuous treatment variables
such as the amount of ground delay. We will also articulate
the various challenges which accompany such an undertaking
in our conclusion.

II. ESSENTIAL CONCEPTS OF CAUSAL INFERENCE

A. Potential Outcomes

The Rubin potential outcomes framework [14] imagines two
possible treatment assignments for each unit of analysis (e.g.
a patient, a flight, or a block of time), i.e. a treatment and
control, and denotes the treatment status for each unit with
the indicator variable Z (Z = 0 for control and Z = 1
for treatment). For each unit, the effect of the treatment on
the outcome (e.g. mortality, delay, etc.) Y is defined to be
Yi(Z = 1) − Yi(Z = 0). Notice however that for each unit,
only one reality is observed, and thus to compute effect, we
must be able to statistically estimate the counterfactual or
potential outcome. For example, for a subject who ultimately
receives treatment, we can only observe Yi(Z = 1), but
not the counterfactual Yi(Z = 0). The potential outcomes
framework attempts to estimate counterfactuals so that the
average effect of the treatment can be computed either for
all subjects, called the average treatment effect (ATE), or for
only the subject that received treatment, called the average
treatment effect on the treated (ATT). Note that the analyst
must decide which quantity is more appropriate to estimate; for
example in the smoking cessation counseling example, ATT
is the appropriate quantity to estimate as it is not realistic that
all patients would likely elect treatment [1]. However if the
treatment were instead a brochure on smoking, the barrier to
treatment entry is low, and thus ATE would be appropriate
to estimate as it is realistic to assume that all subjects could
potentially be part of either treatment or control group. We
argue that in our context of TFMI “treatments” (e.g. GDP),
ATT is the more appropriate quantity to estimate, because it is
unrealistic to assume that all time-periods (e.g. even those with
“good” weather and normal traffic and capacity characteristics)



would potentially be subject to TFMI action. Also note that
to calculate ATT, E[Y (Z = 1)− Y (Z = 0)|Z = 1], we only
need to estimate the counterfactual for units in the treatment
group (i.e. estimate the counterfactual Y(Z=0) for the treated
subjects), whereas for ATE, the counterfactual for the control
group must also be estimated.

In the next section we explain how confounding can be
reduced by balancing the baseline characteristics using the
propensity score. The aim of balancing pretreatment covariates
can also be viewed as transforming data from an observational
study so it resembles the gold standard of a randomized control
trial [5].

B. Propensity Score

The propensity score is defined as ei = Pr(Zi = 1|Xi),
namely the probability that subject i with baseline character-
istics described by the covariate vector Xi is assigned to the
treatment group. Note that all subjects have a propensity score
in the potential outcomes framework, regardless of whether
they were actually in the treatment or control group. The
important statistical property of the propensity score is that
it is a balancing score [5]: conditional on the propensity
score, the distribution of baseline covariates is similar between
treated and control subjects. Thus for a set of subjects with
the same propensity score (value of ei), there should be no
statistically significant difference in baseline covariates, and
thus a counterfactual outcome can be estimated, allowing the
eventual estimate of ATT or ATE.

Thus far we have summarized the fundamental obstruction
to causal analysis in observational studies, namely confound-
ing, and have also reviewed how the potential outcomes
framework and counterfactual estimation can be used in
principal to overcome confounding, and how the propensity
score’s balancing property can provide such counterfactual
estimation2. In the appendix, we clarify the mechanics of how
propensity scores are estimated, namely the various model and
the model fitting procedures, and how the scores are then used
to balance covariates and estimate ATE or ATT using various
methods.

Our application of the potential outcomes framework using
propensity scores to estimate the impact of potential TFMI
uses the following analogy: each record is an hour time
period at a given airport; measured baseline characteristics
are historical forecasts of weather (relevant features from
TAF) and traffic (hourly arrival data from ASPM); treatment
assignment is the occurrence of a TFMI in the time period
(such as GDP); and measured outcome is the hourly averaged
airborne delay, also recorded in ASPM.

III. APPLICATION TO GDP

TFMI are designed to increase the safety and efficiency
of the nation’s air transportation system, and are necessary

2See [5] for the further discussion on statistical assumptions that underly
the balancing property of propensity scores and which allow confounding to
be reduced or eliminated

during inclement weather and in other situations where de-
mand exceeds capacity. When the arrival capacity of airport
cannot accommodate demand, either due to weather induced
diminished capacity or volume induced enhanced demand, a
GDP is often implemented. A GDP will purposefully delay
flights on the ground at the various origin airports to avoid
more costly airborne delays that would be incurred at the
arrival airport3. Designing a GDP involves setting a planned
airport acceptance rate (PAAR), commensurate with the fore-
casted arrival capacity, and then sequencing affected flights
with controlled departure times, ideally with an equitable
distribution of delays [8]. Increasing or decreasing this PAAR,
or inversely the inter-arrival time between flights, transfers the
overall delay of all flights subject to the GDP between airborne
or ground portions (higher PAAR means more of the overall
delay is absorbed in the air).

Our causal analysis will specifically focus on estimating the
counterfactual outcomes of a GDP at JFK, using a variety of
data sources, to be detailed shortly, that span eleven months
between October 2013 and September 2014. As noticed in
[16], the average airborne delay for flights with GDP ground-
delays is roughly four minutes larger than the average airborne
delays for flights that did not receive an EDCT under a GDP.
However it is commonly understood that in absence of a GDP,
namely the counterfactual of not applying ground-delay to
the affected flights, the arrival airport would experience even
larger airborne delays than actually observed in reality. In
terms of a queuing model [8], not instituting a GDP during
diminished arrival capacity or enhanced traffic volume, would
correspond to an aggressive policy with a PAAR exceeding the
actual arrival capacity. Although such a policy may increase
airport utilization it would incur the cost of larger airborne
delays.

In one sense, our present analysis attempts to quantify
this potential, yet unobserved, savings in airborne delay from
implementing a GDP. As the counterfactual is not actually ob-
served for the ground-delayed flights, we require a statistically
sound methodology to estimate it from the historical recorded
data, which takes into account the systematically different
weather and traffic conditions faced by flights during the
presence and absence of a GDP. Although analysis of historical
records of TFMI can in principal demonstrate the relative
merits of courses of action and their affect on the observed
outcomes, there is a fundamental challenge of accurately
accounting for the distinct conditions, such as weather and
demand, experienced during previous time periods, and the
degree to which differences in outcomes such as delays, are
also attributable to these confounding conditions.

IV. DATA ANALYSIS

Consider estimating the effectiveness of GDP applied at JFK
in terms of one of its intended outcomes, reduction in airborne
delay. We choose the unit of analysis to be an hour block of
time at the arrival airport and examine 11 months of hourly

3Further examples of TFMI and detailed descriptions can be found in [15].



data between October 2013 and December 2014. Recall our
argument that

To determine the exact hours when the treatment was
applied, or equivalently, which hours GDP were in effect at
JFK, we used the National Traffic Management Log (NTML),
which records when GDP are announced, started, revised, and
finally cancelled. To discern which hours within the analysis
period contained a GDP, we parsed the NTML data by arrival
airport and tracked the start and stop times of GDP that were
initiated. Furthermore, as is common, some of these initiated
GDP were modified, and thus required that we track each
“root advisory” (initial GDP) through its event history and
note actual start and stop times rather than those announced
initially. We note that of the 117 GDP root advisories in our
data, 18 of those were implemented with a start time that
preceded the send time (time that the advisory was transmitted
as recorded in the NTML dataset); namely these GDP were
‘backdated’, and represent a reactive decision with a lag of
20 minutes or less. In order to separate the effects of weather
forecast uncertainty from our causal analysis, we will focus
on these reactive decisions where weather is more likely
certain, and thus only use the hours which had backdated GDP
(treatment group) or no GDP (control group) in our causal
analysis. Our total sample size for the chosen unit of analysis
of hour blocks in the eleven month period are thus: NT = 84,
and the number of hours in the control group NC = 6519.

The propensity to apply the treatment to the unit, or
equivalently, the likelihood of implementing a GDP at a given
hour for arrivals at JFK, will depend on various covariates
such as weather and traffic volume at the arrival airport. Both
forecasted and observed weather variables will determine such
a propensity to implement a GDP. In addition the scheduled
number of arrivals, the presently observed arrival queue will be
relevant to model the propensity score for GDP in a given hour.
We use Terminal Aerodrome Forecasts (TAF) for forecasts of
weather at the arrival airport, and also use the FAA’s Aviation
Systems Performance Metrics (ASPM) database for observed
hourly weather. In addition we use ASPM for scheduled
arrivals, quarter-hour arrival demand and actual landings.

Finally, for the outcome of interest, namely airborne delay,
we again used ASPM data which records hourly averaged
airborne delay. If instead of GDP, we were analyzing other
TFMI with causal inference, other covariate (e.g. weather),
treatment (when and how TFMI are implemented) and out-
come (intended impacts) datasets may be required. For exam-
ple, in the case of Reroutes, weather features derived from
measurements of convective cloud top altitude were found
to be relevant covariates [17]. A fuller discussion of causal
inference applied to other TFMI is left for future research.

A. Covariates for GDP Treatment Propensity

Previous research has highlighted meteorological conditions
such as visibility, windspeed, crosswind, and cloud ceiling
as relevant predictors of GDP [18], especially for the New
York metro region and including JFK. ASPM data provides
hourly observed values for each of these weather covariates at

the arrival airport, whereas we use the most current (shortest
horizon) TAF for forecasted values of these variables (except
for cloud ceiling). Table I shows the mean values for these
forecasted and observed (denoted with “ ASPM”) meteoro-
logical covariates averaged overall all hours for which a GDP
was present, denoted as E(Y1|t=1), and for all hours in which
a GDP was absent, denoted E(Y0|t=0). Recall this notation
arises from the Rubin potential outcome framework explained
earlier. Also note, that for each covariate, the difference
between the GDP and non-GDP hour, or equivalently the
treatment and control groups, are statistically significant as
determined by the low p-values4. This is evidence of covariate
imbalance, which must first be adjusted prior to estimating the
counterfactual airborne delay and ATT.

Also shown in Table I are the scheduled number of hourly
arrivals at JFK (“A JFK”) and approximate length of arrival
queue (“qlength”): the difference between number of flights
demanding arrival (ARRDEMAND in ASPM) and number
of flights which actually arrived or landed (EFFARR). AR-
RDEMAND5 and EFFARR are calculated on a quarter hour
basis and we have aggregated them to the hour for our unit of
analysis.

E(Y1|t=1) E(Y0|t=0) p-value
qlength 53.6 2.3 0.00
A JFK 34.8 21.9 0.00
windspeed 12.3 10.9 0.08
visibility 7.2 9.3 0.00
crosswinds 9.7 7.5 0.00
vis ASPM 7.7 9.3 0.00
windspeed ASPM 15.2 11.4 0.00
ceil ASPM 228.0 481.7 0.00
crosswind ASPM 8.6 7.0 0.00

TABLE I
IMBALANCE IN THE TAF AND ASPM DATA BETWEEN AVERAGES OF
TREATMENT (GDP HOURS, E(Y 1|t = 1)) AND CONTROL (NON-GDP
HOURS, E(Y 0|t = 0)) GROUPS FOR VARIOUS WEATHER AND TRAFFIC

COVARIATES (PREDICTORS) RELEVANT FOR GDP DECISIONS. ALMOST
ALL COVARIATE DIFFERENCES ARE STATISTICALLY SIGNIFICANT AS

DETERMINED BY THE P-VALUE.

B. Propensity Score Estimation

We then estimated the propensity scores ei ≡ Pr(Zi =
1|Xi) for each time period i, using a Generalized Boosted
Model (GBM) [19] based on the weather and traffic covariates
for each time period Xi described above. Note that the process
of generating a propensity score is very similar to supervised
learning6 As in any model fitting procedure, one requires a
criterion to pick the best model. In casual inference, the best
propensity score model is one that achieves the best balance

4Usually, p-values of less than 0.01 are considered evidence to reject the
null-hypothesis, namely reject the hypothesis that the samples were drawn
from the same population.

5See ASPM for further details on how demand units are computed http:
//aspmhelp.faa.gov/index.php/SAER

6More precisely, if the supervised learning method employed a soft-decision
threshold, then the propensity score would be produced as an intermediate step
by the classifier when estimating whether a given record should be assigned
a label of GDP or “no-GDP” based on its weather and traffic feature vector
Xi.



between covariates and not necessarily the model which most
accurately predicts treatment. The propensity scores from
the optimal covariate balance model can then be used to
generate weights wi ≡ 1/ei to estimate the counterfactual
airborne delay for a given forecast of weather and traffic, a
procedure generally called Inverse Probability of Treatment
Weighting (IPTW) [5]. See the appendix for further details
about propensity score modeling and the IPTW methodology.

Using open source software [19], we estimated the best
propensity score model and after applying the IPTW weights
to the covariates, we notice an improvement in covariate
balance as shown in table II. Notice there are no longer
any statistically significant difference between the treatment
E(Y1|t=1) and weighted control group E(Y0|t=1), again using
the notation of the potential outcomes framework. As an
additional check on the propensity score model, we graphically
assess the overlap of estimated propensity scores between
the treatment and control groups from the resulting model.
Note that zero overlap of propensity scores would mean
that one cannot use the control groups outcomes to generate
counterfactual outcomes for the treatment group (see appendix
for further discussion) [1].

E(Y1|t=1) E(Y0|t=1) p-value
qlength 53.6 44.5 0.09
A JFK 34.8 33.2 0.61
windspeed 12.3 12.5 0.76
visibility 7.2 7.9 0.11
crosswinds 9.7 9.3 0.73
vis ASPM 7.7 7.7 0.87
windspeed ASPM 15.2 14.3 0.72
ceil ASPM 228.0 265.8 0.16
crosswind ASPM 8.6 8.6 0.73

TABLE II
IMPROVED COVARIATE BALANCE USING IPTW TO ESTIMATE THE

COUNTERFACTUAL CONDITIONS E(Y 0|t = 1). NOTE THAT THE LARGE
P-VALUES INDICATE DIFFERENCES IN MEANS ARE NOT STATISTICALLY

SIGNIFICANT.

C. Outcome Analysis

As we have determined that our propensity score model
leads to greater covariate balance as show in table II, we can
continue onwards to analyze the effect of treatment (GDP) on
the outcome (airborne holding delay). Since the two groups
are now balanced, the situation is similar to a RCT, and
one can linearly regress the outcome simply on an indicator
variable for treatment. Note that computationally one uses
weighted linear regression with IPTW weights computed from
the previously fitted propensity score models [19]. After using
this procedure we estimate the ATT, E(Y1|t=1)-E(Y1|t=0),
to be −1.4 minutes. In other words, had a GDP not been
applied to the hours at JFK when it in fact was, the hourly
average airborne delay would increase by 1.4 minutes (with
a standard error of the same magnitude). Although consistent
with the common understanding that GDP reduces airborne
delay, our results also indicate this difference is not statistically
significant. To further analyze this results, one can enlarge the
sample size (recall we focused only on backdated GDP to
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Fig. 1. Overlap of the estimated propensity scores between the non-GDP
hours or control group (1 on y-axis) and the GDP hours treatment group
(2 on the y-axis). There is non-zero overlap as required for counterfactual
estimation, and in particular there are hours in the control group that have
propensity scores similar to the treatment group, implying similar weather
and traffic covariates, and thus will be weighted more greatly by IPTW for
estimating the counterfactual. The subplots represent two different propensity
score models fit with different criteria for optimal covariate balance (see
appendix).

avoid weather forecast uncertainty), but should also consider
the possibility that GDP affected flights may receive additional
en route airborne delay from additional TFMI [16].

V. CONCLUSION

Our simplified application of causal inference served to il-
lustrate a novel methodology to the ATM research community.
However in order to further validate results from such an
analysis, namely counterfactual estimation of airborne delays
from GDP, it would be useful to compare against simulations
or queuing models.

As demonstrated with a simplified constant capacity (service
rate) queuing model in [8], the mean Airborne delay is a
function of the ratio of PAAR and the arrival capacity, subject
to random fluctuations due to demand uncertainties, which
increases when the PAAR exceeds the actual AAR7. A direct
comparison to such a queuing model would require casual
analysis not with a binary treatment variable as we have, but
rather a continuous treatment variable using empirical data to
form the ratio of PAAR and arrival capacity (both available
in ASPM). We leave such modeling for future research,
which can leverage more advanced propensity score estimation
techniques for continuous treatment8, which are relatively new.

7More complex queueing models of airborne delay are possible, as in [11],
which account for details of the three-dimensional arrival flows using radar
data and subsequently employ non-homogenous queueing models to allow for
temporal variations in arrival and service rates. Non-Homogenous stochastic
processes have been proposed as offering a better fit to observed airborne delay
statistics [12] when compared to the simpler, but often used, assumption of a
Poissionian arrival process.

8See for example [20] and references therein.



A further anticipated complication with comparison to queuing
models is that arrival capacity is also both dynamic and
stochastic, while also influenced by departure demand [21].

Furthermore, although we have chosen our unit of analysis
to be an hour block of time, other units of analysis may also
be possible. For example, if one had access to flight level
data, in terms of both outcomes (airborne delay) and treatment
assignment (GDP induced ground delay ), it may be feasible to
consider a single flight as the unit of analysis. However again,
the challenge with individual flight data will be to account for
possibly additional TFMI that may increase the airborne delay
to flights already subject to GDP, as hypothesized in [16]. It
may be difficult to account for en-route airborne delays, some
of which may not be due TFMI at all, but rather due to Air
Traffic Control actions, and thus requiring detailed radar data
for analysis of actual flight trajectories [22]. Determining if
there is a systematic difference for GDP and non-GDP affect
flights from these sources of additional airborne delays is
a precursor to causal analysis that can account for such an
imbalance to estimate counterfactual airborne delays.

Even in our simplified setting of binary treatments, there are
considerations that deserve further analysis. Causal inference
requires certain assumption be satisfied, including that all con-
founding variables that affect treatment and assignment have
been measured [5]. Our modeling took into account certain
meteorological and traffic covariates (I), but it is well known
that GDP can be implemented for other reasons, including
maintenance events or large-scale disruptions to the NAS.
To what degree such an assumption is satisfied needs further
investigation. Another assumption of causal inference is that
the potential outcome of a unit be unaffected by the treatment
assignment of other units9. In our case such an assumption
would require that the hourly average airborne delay be in-
dependent of GDP assignment of other hour blocks. However
there can be autocorrelation of airborne delay in neighboring
hour blocks, based on whether those neighboring blocks are
GDP or non-GDP hours. Further analysis of such treatment
dependent autocorrelation is required and may necessitate
aggregation to larger blocks of hours or an entire day to satisfy
the necessary assumption. Such time-varying treatment as-
signment may also necessitate more advance Causal Inference
methodology, which have been recently developed[23].

There also several possible extensions of our initial ap-
plication of causal inference framework and methodology to
ATM. One is to simply consider how such a framework may
apply to other TFMI besides GDP, using the language of
treatment, outcomes, and propensity score analysis. Further
extensions to the GDP context could include hourly analysis
of the entire New York metro, using weather covariates from
all airports simultaneously in multi-valued (but not continuous)
treatment setting, where treatment corresponds to a categorical
variable indicating GDP absence or presence at each of the
major airports. Another extension is to consider continuous
valued treatments by explicitly considering the length of the

9This is called the stable unit treatment value assumption (SUTVA).

ground-delay as the treatment variable, and estimating what in
statistics is called the ”dose-response curve”[20], with airborne
delay playing the role of the response.

VI. BIOGRAPHY

VII. APPENDIX

A model for the propensity score is a function from the
space of covariates Xi to 0 < ei = Pr(Zi = 1|Xi) < 1, or
more traditionally to the log-odds ei, namely:

log
ei

1− ei
= F (Xi) (1)

The most basic model for F (X) is to assume linearity,
F (X) = βX , which is then fit just as linear logistic regression
models are10. However this simplest linear model has been
shown in simulation and actual studies to not achieve the best
balance between treatment and control covariates .

We note here that previous ATM research has also used
linear logistic regression to model the probability of a GDP
occurring, with a goal of fitting the most accurate GDP clas-
sifier to ultimately identify similar weather impacted airport
days [18]. However we emphasize that our goal is not to derive
the most accurate classifier but instead to use the probability
of a GDP (or other TFMI) occurring as a balancing score for
counterfactual estimation, and thus even if we employed linear
logistic regression, the optimal model coefficients obtained
using metrics for balance, would certainly be different that
those using metrics for accurate classification.

More robust alternatives to linear logistic models for
propensity score include machine learning methods [24], such
as Generalized Boosted Models (GBM), which employ com-
binations of non-parametric piecewise-linear functions that
adapt to the data and are thus more flexible than a linear
model. In addition GBM is implemented in open-source
statistical software [25] and can thus be easily replicated by
other researchers. Furthermore, when GBM is used as the
model for propensity score, fitting procedures which employ
optimization to tune these piecewise linear functions to achieve
best balance between treatment and control covariates are also
readily implemented in open-source statistical software [19].
Furthermore there are various quantitative balance metrics that
can be easily accessed to assess the quality of the resultant
propensity score model [19].

Once the propensity score model has been fit, one can use
the resulting propensity scores for each subject, ei, to balance
the covariates Xi between treatment and control groups and
thereby reduce or eliminate confounding. The four princi-
pal methods to reduce confounding using propensity scores
are: matching, stratification, inverse probability of treatment
weighting (IPTW), and covariate adjustment [5]. We will only
summarize IPTW as it has been thoroughly implemented and
tested in software [19], and has also been extended to multiple
treatments [6], which will eventually be required if we want
to consider the effect of various TFMI options beyond just

10Notice that we are regressing the covariates Xi on the log-odds of the
probability of treatment ei, not on the outcomes



“GDP or no-GDP.” Previous research on TFMI [26] has shown
there are likely many categories of TFMI that occur and which
combine the various courses of actions available to decision
makers, each with their own specific operational parameters.
Thus extensions of propensity score modeling beyond binary
treatments is a desirable property of IPTW.

Recall that Zi is an indicator variable which denotes treat-
ment status, i.e. Zi = 1 if the subject received treatment.
IPTW defines weights for each subject that capture the inverse
probability the subject received treatment as follows [5]:

wi =
Zi

ei
+

1− Zi

1− ei
. (2)

The intuition behind the weights is the following: those subject
in the control group (Zi = 0) whose propensity scores (prob-
ability of being selected for treatment) are relatively higher
(ei is larger) are “weighted up” and thus their covariates are
more greatly weighted when assessing balance after weighting.
Various balance measures after weighting with wi are possible
using significance testing for differences of means, medians,
variance, and Kolmogorov-Smirnov statistics[19].

These weights can also be used to adjust the outcome for
each subject Yi and thereby simulate counterfactuals used to
estimate ATT or ATE. For example to estimate ATT, one
weights the outcomes (e.g. mortality or airborne delay) for
the treatment group with unity and for the control group with
weights wi = ei/(1 − ei). Then the ATT treatment effect
E(Yi(Zi = 1) − Yi(Zi = 0)|Zi = 1) can be estimated by
regressing on a single variable, the treatment indicator [19],
or in the simplest model by arithmetic mean of the weighted
counterfactual outcome.

A. Advantages of propensity score over regression to reduce
confounding

As explained in [6], there are several reasons why propensity
score techniques are advantageous over such regression-based
techniques and here we simply summarize these advantages:

• dimensional reduction: propensity scores summarize all
covariates into a single score and act as an important di-
mensional reduction tool for evaluating treatment effects.
Whereas regression methods require specifying a model
that depends on all covariates (and various interactions).

• grounded in rigorous framework: propensity score meth-
ods derive from a formal statistical model for causal in-
ference, the potential outcomes framework, so that causal
questions can be well-defined and explicitly specified and
not conflated with the modeling approach as they are with
traditional regression approaches

• robust against model misspecifcation: propensity score
methods do not require modeling the mean for the out-
come, which can help avoid bias from misspecification
of that model

• avoid extrapolation: propensity score methods avoid ex-
trapolating beyond the observed data unlike paramet-
ric regression modeling for outcomes which extrapolate

whenever the treatment and control groups are disparate
on pretreatment variables

• propensity score adjustments (e.g. IPTW weights) can be
determined using only the pretreatment covariates and
treatment assignments, eliminating the influence that es-
timated treatment effect can have on model specification
of covariates.
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