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Abstract—Air traffic is widely known as a complex and 
task-critical techno-social system mainly composed of airspace, 
procedures, aircraft and air traffic managers. In order to 
develop and deploy advanced operational concept and 
automation system scientifically and effectively, it is essential to 
take an in-depth research on the intrinsic air traffic dynamics 
and characteristics which haven’t been widely discussed. A 
systematical empirical study of air traffic operation in 
Guangzhou terminal airspace is conducted by collecting 
synchronized flight and air-ground communication data. Three 
types of metrics are proposed to measure air traffic dynamics 
from “human-flow” perspective: flow-based metrics, 
controller-based metrics and chaotic metrics. Empirical results 
identify synchronized free, smooth, semi-stable and congested 
phase states from both flow and controllers performance 
evolutions. Meta-cognition is explained as one of critical 
underlying mechanisms that drive the phase transitions. Further, 
by studying data series of potential conflict in “flow system” and 
communication behaviors in “human system”, air traffic system 
is proved to be a chaotic system, which presents higher short 
term chaotic predictability, caused by internal instability of 
semi-stable and congested status. These novel findings will 
provide theoretical basis for aggregated air traffic flow modeling, 
decision support system design and tactical flow management. 

Keywords-air traffic; terminal airspace; phase transition; 
chaotic dynamics  

 

I.  INTRODUCTION 

Worldwide ATM system is currently in the process of 
transformation and upgrading to cope with increasing air 
traffic demand and resulting congestion especially in 
high-density airports and surrounding airspace. Numerous 
advanced operation concepts were proposed in world’s major 
long-term strategic planning of ATM system like SESAR 
(Single European Sky ATM Research), NEXTGEN (Next 
Generation Air Transportation System) and ASBU (Aviation 
System Block Upgrades), including “ATM Network 
Management”, “User Driven Prioritization Process”, “Flow 
Contingency Management” and “Complexity Management” 
etc., in order to enhance the system-wide performance and 
reduce the propagation of congestion in air traffic system 
during day-to-day operation[1].  

However, air traffic system is always regarded as a 
“human-in-the-loop”, dynamic and non-linear complex system 
composed of air traffic controllers (ATCOs), aircraft, pilots 
and airspace, supported by communication/navigation/ 
surveillance facilities and air traffic management system etc. 
The interactions of elements in this kind of complex 
techno-social system will result in a behavior that is often 
unpredictable [2]. From the microscopic view, air traffic 
controller, who is responsible for the safety, efficiency and 
orderliness of air traffic flow by situation perception, 
comprehension, prediction and decision-making, is the critical 
element of tactical air traffic operation currently and in future 
ATM systems [3]. In other words, the feedback interaction 
between ATCOs and air traffic flow is one of the deterministic 
factors that impact on air traffic situation evolution. Therefore, 
in order to understand system predictability, and further to 
develop and deployment advanced operation concept and 
automation system scientifically and effectively, it is essential 
to uncover the intrinsic physics of air traffic system by 
revealing representative temporal-spatial phase transition 
pattern of air traffic, explaining its internal mechanism and 
extracting high-level system emergence under “human” 
(ATCOs) and “flow” (group aircraft) interactions. 

The key to the study of system dynamics is to develop 
appropriate metrics that represent system behaviors. In air 
traffic domain, though word “traffic dynamics” are rarely 
reported, relative researches have been done for decades. Here, 
we divide current air traffic dynamics studies into three 
categories: flow dynamics, ATCOs dynamics and system 
complexity.  

Flow dynamics aims at constructing observable and 
explicit metrics to characterize flow transmission features in 
local or large-scale airspace. Flight delay is one of the key 
dynamics metrics depicting air traffic flow operations. Locally, 
delay is always studied together with throughput or capacity in 
specified airspace. The classic exponent-shape relationship 
between throughput and delay presents the basic air traffic 
flow dynamics and provides the fundamental knowledge in 
current ATM practice [4]. However, a group of empirical 
airport traffic demand-supply curves which were similar to 
Macroscopic Fundamental Diagram [5] proved that departure 
throughput drops at some critical demand as the continuous 
increase of departure traffic density on airport surface network 
[6]. In large-scale or global airport network, novel work 



emerged focused on delay propagation analysis, modeling and 
prediction using network approach [7]. Inspired by flow 
dynamics study of vehicle traffic, lots of flow models were 
studied in recent years to understand the aggregate delay 
features of air traffic flow in national airspace system and to 
support large-scale strategy flow management, mainly 
including queuing networks, Partial Differential Equation, Cell 
Transmission Model (CTM)-Large Capacity, Linear Dynamic 
Systems Model and Cellular Automata [8]. However, the aim 
of above “flow-centered” models is to establish flow control 
framework based on modern control theory but to reveal flow 
dynamics. A CTM-based flow model of terminal airspace was 
proposed to initially study the flow dynamics by illustrating 
the relations of “flux-density-velocity” [9]. Nonetheless, 
according to the principle of CTM, the proposed model is not 
appropriately applied for being lack of refined fundamental 
diagram calibration.  

Human dynamics studies try to uncover air traffic 
controllers’ general behavioral pattern and self-adaptive 
mechanism in real-time air traffic control. Reference [10] 
firstly divided ATCOs’ behavioral models into two categories: 
macroscopic and microscopic. As a macroscopic model, 
workload is most widely studied as the key metric to evaluate 
sector capacity. Microscopic modeling of air traffic controllers’ 
behaviors tries to describe the cognition process including 
attention resource assignment, memory usage, situation 
awareness, decision making and monitoring, including 
CT-ATC, MoFL, Apex, etc. [11]. Though the behavioral 
dynamics of ATCOs’ was relatively ideally and intuitively 
modelled, they provided important tools to refine traditional 
flow-based air traffic simulation. Since it would be difficult to 
model every details of ATCOs’ mental process, reference [12] 
proposed an empirical method to study ATCOs’ high-level 
dynamics by analyzing the communication intervals and 
proved that communication intervals follow Power Law 
distribution. However, the distribution patterns revealed basic 
dynamics of controllers’ communication behavior, but it would 
not be straightforward to put into ATM practice. 

Complexity methods aim at building bridges between 
traffic flow situation and ATCOs’ cognition complexity and 
interpreting “human-flow” dynamics in air traffic operation. A 
series of traffic flow complexity metrics were developed in 
recent 20 years. Classic metrics include Static Density [13], 
Dynamic Density [14], Tactical Load Smoother [15], 
Input-Output [16], Lyapunov exponent of trajectory dynamics 
[16] and Solution space-based metrics [17]. By finding the best 
matches between traffic flow complexity measurement and 
ATCOs workload, the weight of each sub-index was calibrated. 
The weight can be treated as the impact of each kind of traffic 
element on ATCOs’ cognitions. As the development of 
complex network, reference [18] modeled the air traffic system 
as a complex dynamic network of flights controlled by ATCOs 
who have to solve potentially conflicts and explored 
congestion phase transitions under various control strategies 
using real and simulated data.  

In summary, previous studies have proposed numerous 
models and metrics to characterize air traffic performance 
from different but relatively single aspects. To systematically 
uncover air traffic dynamics, a case study of Guangzhou 

terminal airspace is conducted by collecting synchronized 
operational flight and communication data of each sector, 
exploring general “human-flow” phase transitions and 
underlying mechanism, and further revealing chaotic features 
evolution both in “flow system” and “human system”. Novel 
findings in this paper will provide a brand new perspective on 
aggregated air traffic flow modeling, decision support system 
design and system prediction in future ATM upgrade. 

The rest of this paper is organized as follows. Section II 
gives a general description of collected empirical data. Section 
III uncovers synchronized phase transition patterns and 
underlying mechanism of “human-flow” at sector level. 
Section IV further identifies and proves the chaotic feature of 
“human-flow” system at terminal airspace level and sector 
level respectively, and provide the initial discussion of the 
relationship between phase status and chaos. Conclusions and 
future work are described in Section V.  
 

II. EMPIRICAL DATA 

Guangzhou terminal airspace is mainly responsible for the 
inbound and outbound traffic of Baiyun airport which is the 
third busiest airport in China. To analysis the system dynamics 
of air traffic, synchronized flight plan, trajectory data and 
air-ground communication data on three typical days 
15/05/2014, 11/09/2014 and 18/12/2014 are collected.  

Updated Flight plan. This dataset consists of critical 
attributes of each flight, including flight number, 
Estimated/Actual Time of Departure, Estimated/Actual Time 
of Arrival, standard flight routes, pass sectors, and runway in 
use. This type of data mainly provides reference for further 
flow analysis together with trajectory data. The airspace 
configuration and sample traffic flow distribution is shown in 
Figure 1-2. 
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Figure1. Configuration of Guangzhou terminal airspace 

 
Figure2. Average air traffic volume of 5 minutes interval on 11/09/2014 
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Trajectory data. A flight trajectory, denoted by ��, is a 
time-ordered sequence of 5-tuples (�, �, �, �, �) representing 
the longitude, latitude, height coordinates and speed of a flight 
at time t. Let ��� = (��

�, ��
�, … … , ��

�) denote the trajectory of 
flight � , where ��

� = (�, �, �, �, �)�
� is the mth point of the 

trajectory ���. The sample radar trajectory data are shown in 
Figure 3.  

Communication data. Data series of air-ground 
communication in sector �, denoted by��

� = (��
�, ��

�, … … , ��
�), 

records start and end time of each continuous communication, 
where  ��

� = (��, ��)�
� . It is noted that each continuous 

communication may initiated by either controller or pilot. 
Figure 4 shows the sample data of start time and duration of 
each communication. 

 
Figure3. Sample arrival and departure radar trajectory in terminal 

airspace 

 
Figure 4. Start time and duration of each air-ground communication 

III. GENERAL PHASE TRANSITIONS OF SECTOR AIR TRAFFIC 

The science of traffic physics is a new field emerging at 
the boundary of the study of agent-based modeling and 
statistical physics. The phase is a property of an entire 
physical system, rather than of any of its particular 
components [18]. Phase transition in vehicular traffic flow has 
been studied for years by analyzing the dynamic relations of 
flow-density-velocity and provided solid theoretical 
foundations for traffic operations. Since air traffic is widely 
known as a complex techno-social system mainly 
characterized by “human-flow” interactions, phase transition 
in air traffic is regarded as the co-evolution of “human-flow” 
performance in this paper. To uncover the basic phase 
transitions of sector air traffic, it is essential to model 
characteristics metrics for both air traffic flow and air traffic 
controller’s behavior. 

A. Metrics for characterization of air traffic operation 

1) Flow-based metrics 

Inspired by phase transition metrics in vehicular traffic 
flow, redefined “flow-density-velocity” of air traffic flow is 

given as follows considering the maneuvering behavior 
instructed by air traffic controllers. 

(1) Flow rate. Each sector is composed of several air 
routes and has more than one exit point. The flow rate, 
denoted by ��(�), is defined as the total aircraft flow out of the 
sector in a certain time period �. 

(2) Average density. At each radar snapshot time, the 
number of aircraft is calculated as ��

�(��), then the average 
density is defined as follows: 

��
� =

1

�
�  ��

�(��)

�

���

 (1) 

where � is the total snapshots in a time period. 

(3) Average equivalent velocity. As the increase of traffic 
density and resulting conflicts, controllers normally adopt 
speed reduction and heading change strategy to avoid conflict. 
To capture the higher degree of spatial freedom compared to 
road traffic, and to present the congestion phenomenon, an 
equivalent average speed is modeled as follows: 

��
���� =

1

�
�

1

��
�(��)

�

���

� ‖��(��)‖

��
�(��)

���

⋅ ℑ�
�   (2) 

where ‖��(��)‖  is the velocity scalar of aircraft  �  at 
snapshot time ��; ℑ�

�  is the Velocity Gain Coefficient (VGC) 
of aircraft � in sector � defined below. Behaviors like detour, 
shortcut and holding in congestion situations can be 
characterized. 

Definition 1 (Velocity Gain Coefficient: VGC): VGC is the 
ratio of standard route length �� to actual fly distance in 
sectors as formulated in (3). 

ℑ�
� = �� � ����(��

� , ��
���)

���

���

�  (3) 

where � is the total snapshots of aircraft � in sector �; 
����(��

� , ��
���)  is the 2-D Euclidean distance of adjacent 

trajectory points. 

2) Controller-based metrics 

As the core of tactical management of airspace and traffic 
flow, air traffic controllers’ responsibility is to transit aircraft 
through sectors in a safe, ordered and efficient way. Therefore, 
the control behavior which can be regarded as a close-loop  
decision making that containing process of monitoring, 
evaluation, plan formulating and command issuing via voice 
and/or data link, not only plays a vital role in determine the 
evolution of traffic flow but also shows the cognition strategy 
to cope with traffic complexity. To study the human dynamics 
in air traffic control, we divide ATCOs’ behaviors into two 
categories: internal (cognition) complexity and external 
(communication) activity. ATCOs’ cognition complexity is the 
key attribution that reflects the difficulty in comprehending 
and predicting air traffic flow situation [19]. Potential aircraft 
conflict, which is the main index that reflects the degree of 
flow disorder, is proved to be the most significant factor that 
influent ATCOs cognition complexity and resulting workload. 
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As for the external activity, air-ground communication is the 
integrated output of human internal complexity and strategies. 

(1) Solution space based cognition complexity 

Potential conflicts are temporal-spatial situations that two 
or more flights have impending collisions due to continuous 
loss of separations. It should be noted that flight conflicts in 
terminal airspace operation have their own specialties. Firstly, 
due to limitations of human brain, potential conflicts are 
sector based, i.e. only conflicts in the same sector are 
considered. The second is the extended concept of conflict. 
The separation between aircraft is not only determined by 
safety separation minimum but also by the required separation 
at fixes or sector boundaries. As a result, aircraft at different 
flight levels are often required to maintain a certain horizontal 
separation criterion in terminal airspace especially when they 
have same destination. So here we define potential conflict as 
the possible violation of expected horizontal separation. 

At any snapshot time, the vector of plane position and 
speed of aircraft �  are denoted by �� = [��, ��]  and �� 
respectively. Then the relative position and speed of aircraft � 
and � are denoted as ��� = �� − �� and ��� = �� − �� . We 
define that the two aircraft are in potential conflict if and only 
if solution of Γ�� exists in formula (4). 

 �
���� + ��� × Γ��� ≤ �

Γ�� ≤ min (��, ��)
           (4) 

where � is the expected separation, �� and �� is remaining 
flight time of aircraft � and � in sector s respectively. 

Speed and heading vectoring are the major ways to avoid 
conflict and maintain required headway distance in controlled 
flows. Solution space of potential conflict defined as the 2D 
area of continuous heading and speed combination space for 
conflict resolution is proven to be the key factor that influent 
ATCO’s cognition and air traffic flow ordering theoretically 
[17]. However, in practice, solution space changes with 
solution strategy (e.g. sequencing) and is restricted by 
airspace structure and flight procedure (e.g. heading change 
limitations). Here, we propose an integrated solution 
space-based conflict situation index to represent the urgency 
and difficulty of potential conflicts and ATCOs’ cognition 
complexity. 

Without loss of generality, let aircraft A and B be in 
potential conflict as shown in Figure5. Limited by air traffic 
control regulations and aircraft performance, available 
heading and speed solution space of A at time �� are ∆�� =
[���, ���]  and |∆��| = [min|��| , max|��|]  respectively as 
colored by gray in Figure 5. We define Available Solution 
Space Area  �_����(��) = 0.5(��� − ���)(max|��|� −
min|��|�). Then, the combined solution spaces of aircraft A 
under different sequencing strategies are colored by brown as 
shown in Figure5. 

Obviously, it is easy to prove that there is no intersection 
of solution space under these two control strategies. So, the 
total solution space of aircraft A is the sum of solution space 
in leading and following conditions, denoted as���|�(��) =

���|�
� (��) + ���|�

� (��). Likewise, the total solution space of 
aircraft B can be derived similarly. In high density air traffic 

operation, multi-aircraft conflict situation emerges commonly. 
Assuming aircraft A is in conflict with more than one aircraft, 
the urgency index is formulated as ����(��) = Λ(∩ ���|�(��)), 
where X is the aircraft that are having conflict with A at 
snapshot time  �� ; ∩ ���|�  is the intersections of solution 
space; function Λ(∙) is the area operator. 
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Figure 5. Scheme of solution space of aircraft A in potential conflict. (a) 

Solution space in the condition of aircraft A follows B; (b) Solution space in 
the condition of aircraft B follows A 

Solution space of potential conflict not only provides 
dynamic picture of microscopic structure inside air traffic 
flow, but also give a novel perspective of ATCO’s cognition 
complexity measurement. To make it more intuitionistic, 
solution space based cognition complexity ���(�)  is 
modelled a weighted sum of solution difficulty during time 
period �.  

���(�) =
1

�
� � �

�_����(��)

����(��)
− 1�

���
�(��)

���

�

���

 (5) 

where σ is a co-efficient to model the non-linear impact of 
solution space on cognition complexity and can be nicely 
calibrated by human-in-the-loop experiment. Here, we simply 
set σ = 0.5. If and only if there is no conflict during some 
time period, the value of ���(�) equals to 0.  

(2) Communication load 

Communication load is the primary composition of 
ATCOs’ workload. Study on the adjustment of communication 
behavior may reveal controllers’ internal dynamics to cope 
with complexity [3]. Communication load here is defined as 
the percentage of air-ground communication channel 
occupancy in certain time period as shown in formula (6). 

���(�) = � ℶ�
�

�

���

��  (6) 

where ℶ�
�  is the duration of the ith continuous communication 

during time period �, ℶ�
� = (�� − ��)�

� . 

B. Phase transitions of “human-flow” evolution 

In this section, metrics are deployed by loading empirical 
data. We try to explore general phase transition pattern and 
uncover its underlying mechanism of “human-flow” evolution 
implied in sector air traffic. Here, we set time period � = 5 
minutes to have a detailed and closer look into empirical data. 

1) MFD based flow dynamics  

MFDs [5] characterize the aggregate behavior of traffic 
network in term of occupancy and throughput, in a 



parsimonious way yet capable of capturing the key 
demand-supply relationship. Sector based MFDs are modeled 
as the relationship between Flow Rate and Average Density. 

Figure 6 (a) shows the average flow rate change with 
traffic density. Quadratic or cubic polynomial curves are best 
fitted to generate sector-based MFDs. The average R-square 
of fitting is 0.922 with average relative standard deviation of 
28.5%. Interestingly, a critical density is uncovered which 
contradicts with traditional assumptions that as the increase of 
demand, throughput will reaches and maintain the maximum. 
However, critical density proves that when demand climbs to 
a certain level, the flow rate (throughput) starts decreasing. 
Similar conclusion are drawn that runway departure 
throughput drops when taxi-out demand at airport surface 
over a certain point [6]. It is also noted that critical density is 
not observed in all the sectors simply due to the uneven 
temporal-spatial distribution of traffic flow. Following reasons 
can be used to interpret the novel findings.  

 Network congestion. Throughput is the integrated 
system output generated by aggregate behavior of 
aircraft in airspace network. As the increase of traffic 
density, average flow speed present continuous drop 
due to rising conflicts as shown by the blue curve in 
Figure 6 (b)-(f). Since spatial separation is adopted as 
a control reference in current air traffic operation, 
reduced speed enlarges the temporal distance and 
lead to the decline of flow rate (throughput) in 
congested situation. 

 Stress status of controllers. In high density traffic 
situation, more instructions of speed adjustments, 
heading changes, or even holding strategies are 
issued by controllers to avoid conflicts and result in 
less thinking time. However, due to the regulation of 
maneuvering (e.g. speed adjustment should be an 
integral multiple of 10nm/h) and unprecise 
calculation of human brain, the spatial distance of 
aircraft flying out of sector normally larger than the 
expected separation for higher safety vigilance in 
congested situation. 

2) Phase transitions of “human-flow” performance  

To further understand the “human-flow” interactions, we 
plot above flow-based and controller-based metrics for each 
sectors to explore the underlying mechanism of phase 
transitions as shown in Figure 6 (b)-(f). Each curve presents 
the average value changes with flow density. 

Intuitively, increased traffic leads to lower flow efficiency, 
higher workload and cognition complexity. Correlation 
analysis shows that EAS has a negative correlation with 
traffic density: average Pearson Correlation Coefficient -0.811 
and two-tailed probability 0, while communication load and 
cognition complexity index show positive correlations with 
density: average Pearson Correlation Coefficient 0.851 and 
0.798 respectively, two-tailed probability are both 0. By 
analyzing the curve configuration and replay of radar data, 
four phase states are identified empirically. 
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Figure 6. “human-flow” performance in Guangzhou terminal sectors. 

(1) Free Phase. Extremely low density results in large 
spatial headways and little conflict among aircraft. Shortcut is 
most commonly used by ATCOs during this phase as shown 
in Figure 7 (a) which is the temporal-spatial diagram of flight 
trajectory along merged routes GYA-AGVOS and 
TAN-AGVOS in sector 2. Shortcut is the presentation of 
internal meta-cognition dynamics named “pre-activation” in 
low workload and cognition complexity. It is regarded as a 
strategy of mental preparations for better adaption to sudden 
rise of traffic by speeding up the flow and increasing the 
complexity intentionally. As a result, the ATCOs’ 
communication loads climb quickly though only occasional 
even no conflict occurs. 

(2) Smooth Phase. In this status, flow efficiency is still 
well maintained though conflicts come up more frequently. 
Interestingly, cognition complexity index increases more 
sharply than communication as shown in Figure5. This is one 
of the most important strategies of ATCOs’ meta-cognition 
dynamics called “cognition complexity inhibition” which is 
similar to a proved traffic control strategy-“standard flow” 
[20]. As a result, aircraft are lined up in standard flight route 
with approximately equal flight distance observed in Figure 7 
(b) to form a stable and familiar traffic picture.  

(3) Semi-stable Phase. Most of the aircraft are still flying 
along standard routes with closer and more uniform spatial 
headways as shown in Figure7(c). Flow rate slowly 
approaches to the maximum at some critical density while a 
noticeable decline of flow velocity appears due to significant 
increase of conflict and cognition complexity. However, 
driven by metacognition dynamics, strategy of “cognition 
complexity inhibition” in smooth phase is applied by “critical 
points”, which means ATCOs use certain navigation fixes or 



intermediate points along standard routes to ease the traffic 
picture when issuing radar vectoring command [20]. The 
average growth rate of communication load is just slightly 
higher than that in smooth phase. Normally, sector capacity 
which is defined as the maximum throughput or the threshold 
of ATCO’s workload will be achieved in this phase. Since 
airspace resource is in its full usage condition, the traffic state 
is not stable and phase transition may easily occur when 
disturbance merges.  
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Figure 7. Temporal-spatial diagram of air traffic flow along merged routes 

GYA-AGVOS and TAN-AGVOS. 

(4) Congested Phase. Flow rate and velocity continuously 
drop while conflicts and cognition complexity soar. To deal 
with such complex traffic situation, driven by “stressed” 
metacognition dynamics, controllers mainly focus on the 
safety rather than efficiency by instinct reactions with less 
motivations of traffic optimization. Chaos and conditioned 
reflexes are the primary nature of mental status of controllers 
in congested phase. As a result, from microscopic view, the 
resolution of conflict turns from speed strategy to radar 
vectoring even holding as shown in Figure7(d); from 
macroscopic view, the streamlines of traffic change from 
structured linear into disseminative planar configuration. The 
air traffic picture falls into chaos and disordering. 

In all, metacognition dynamics of air traffic controllers 
can be reasonably explained as an adaptive cognition 
management strategy to cope with traffic complexity and a 
primary driving force that leads to the “human-flow” phase 
transitions together with traffic demand as shown in Figure 8. 
Observable evolution of air traffic flow and ATCOs’ 
performance are the quantified and integrated outputs of 
abstract “human-flow” interactions in air traffic operations. 
However, it is still not clear about the high-level intrinsic 
nature of air traffic system which is essential for future air 
traffic management upgrade. In next section, chaotic 
properties of “human-flow” system are initially studied. 

 
Figure 8. Brief schema of “human-flow” interactions 

IV. HIGH-LEVEL CHAOTIC DYNAMICS OF AIR TRAFFIC 

SYSTEM 

Chaotic analysis is a modern tool for identifying the 
high-level characteristics of non-linear dynamic systems. The 
dynamics of “human-flow” interacted air traffic system is 
always regarded as complex and nonlinear, and can’t be 
described using a group of functions. Reference [21] pointed 
out that the first-line task of fully achieving automated air 
traffic management is to figure out the complex chaotic 
problems fall in between randomness and certainty in air 
traffic system. However, non-chaotic feature of air traffic flow 
was proved in terminal airspace by analyzing the time series 
of traffic volume [22]. Nonetheless, intuitively, as discussed 
above, dynamic evolution of air traffic flow from free to 
congestion is the integrated output of adaptive human control 
activities dealing with increasing traffic and resulting 
potential conflicts which possess of non-linear characteristics 
like uncertainty, burstiness and diffusivity, etc. Besides, 
potential conflicts can be regarded not only as the dynamics 
of air traffic demand but also the system emergence triggered 
by “human-flow” and “human-human” interactions during 
multi-sectors operation (e.g. local conflict resolution in one 
sector or one route will lead to secondary conflict in other 
area). Considering above system features, two hypotheses are 
given as follows. 

Hypothesis 1: air traffic system is a chaos system, and the 
chaotic phenomenon can be observed in terminal level and 
sector level. 

Hypothesis 2: Chaos is highly related to the phase state of 
air traffic flow. 

A. Brief description of chaos identification method 

Given continuous data series of system variable ℋ�
� =

[ℏ�, ℏ�, … … , ℏ�], we adopt Lyapunov Exponent metric to 
capture the chaos characteristics based on reconstruction of 
system phase space. These metrics were widely used in 
identifying chaos of natural, social, and sociotechnical 
systems. Here, only brief descriptions of the process are 
provided as shown in Figure 9. Methods adopted refer to 
chaotic analysis in [22].  



ℒ > 0 

ℒ ≤ 0 

ℋ�
� = [ℏ1, ℏ2, … … , ℏ� ] 

ℷ 

ℳ 

ℒ 

 
Figure 9. Process of calculating Lyapunov Exponent 

B. Data series 

Based on the hypotheses stated above, two type of data 
series are gathered based on initial empirical data and 
potential conflict calculated in section IV. 

1) Communication interval. Previous researches proved 
that communication intervals fit power law distribution which 
was characterized as behavioral dynamics of controllers. This 
type of data is also known as the silence duration in radio 
channel denoted by Τ� = (Δ��, Δ��, … … Δ��), where Δ�� is 
the duration of the mth silence.  

2) Potential conflict. Conflict emerges in pairs. In each 
time period, the number of potential conflicts is denoted 
as   ℋ�

� = [ℏ�, ℏ�, … … , ℏ�] , where ℏ�  is the number of 
potential conflict pairs in time period ��.  

C. Conflict chaos at terminal airspace level 

To avoid lengthy descriptions, continuous time series of 
potential conflict on 11/09/2014 is taken as an example to 
show the intermediate results of chaos identification at 
terminal level. To be consistent with the temporal scale used 
in basic “human-flow” dynamics analysis in Section IV, we 
set � = 5min. 
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Figure10. Time series of potential conflict frequency on 11/09/2014 in 

terminal airspace 

Phase space which is a basic data process of complex 
system that cannot be completely modelled is reconstructed 
by calculating delay time and embedded dimension to acquire 
primary features of system. By adopting autocorrelative 
function, the delay time ℷℋ = 23 is obtained when function 
value reaches to the minimum for the first time as shown in 
Figure 11 (a). Meanwhile, false nearest neighbor algorithm is 

used to calculate the embedded dimension ℳℋ. When the 
proportion of false nearest neighbor points stops decreasing or 
decrease rate less than 0.001 with dimension, attractors are 
regarded as unfolded. Figure11 (b) shows the evolution curve 
of proportion of false nearest neighbor points, the embedded 
dimension of the time series  ℋ�

�  is ℳℋ = 7 . Then, the 
largest Lyapunov exponent which is a classic metric of 
quantificational assess the system’s sensitivity to initial 
conditions is calculated as the slope of the linear regression 
function in Figure11(c). The value of the largest Lyapunov 
exponent is λ =0.00193. It is noted that same conclusions are 
drawn by using traffic data on 15/05/2014 and 18/12/2014 
with the largest Lyapunov exponent is 0.00174 and 0.00202 
respectively. 
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 Figure 11. Result of chaotic analysis. (a) Delay time calculation. (b) 
Embedded dimension measurement.(c) The largest Lyapunov exponent. 

It is proved that chaos is the intrinsic feature of air traffic 
system emerged under autonomous interactions of 
multi-aircraft and multi-sector controllers. Potential conflict 
chaotic prediction provides vital basis for air traffic 
management modernization. To further reveal the chaotic 
evolution with traffic volume, we calculate the largest 
Lyapunov exponent each 4 hours in the three days as shown in 
Figure 12. It implies that chaos in air traffic system is induced 
by high traffic and resulting intensive potential conflicts 
which would create more random elements under multi-sector 
interactions.  

 
Figure12. Chaotic evolution with traffic volume and potential conflict 

D. Chaotic analysis of “human-flow” system at sector level 

Since air traffic system can be simply divided into “flow 
system” and “human-system”, to further understand the 
chaotic features of this artificial system under “human-flow” 
interactions, same methods are adopted to identify chaos in 
potential conflict and communication interval at sector level. 
Likewise, to avoid lengthy description, only potential conflict 
and communication interval data series of sector 2 on 
11/09/2014 are detailed in Figure13.  
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Figure 13. Selected input and output of chaotic analysis in Sector 2. (a) Data series of silence period; (b) Data series of conflict; (c) The largest 

Lyapunov exponent of silence period series; (d) The largest Lyapunov exponent of potential conflict series 

Table I shows the result of delay time, embedded 
dimension and the largest Lyapunov exponent of all 5 sectors 
on day of 11/09/2014. Interestingly, chaos in “human system” 
and “flow-system” emerges asynchronously: flow chaos 
emerges in Sector 1, 2, 3 and 5 where semi-stable or/and 
congested phases are observed, while human chaos emerges 

only in Sector 1, 2 and 5 where congested phases appear. 
According to the analysis of phase transitions in Section III, 
meta-cognitions of ATCOs are the key factors that prevent 
themselves from falling into chaos. It is noted that same 
conclusions are drawn by analyzing the data on another two 
days. 

TABLE I.  CHAOTIC RESULTS OF “HUMAN-FLOW” SYSTEM IN AIRSPACE SECTORS  

 Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 
 Flow ATCO Flow ATCO Flow ATCO Flow ATCO Flow ATCO 

Delay time 21 20 22 24 17 9 8 5 23 22 

Embedded 

dimension 
7 9 8 10 6 6 2 3 9 11 

The largest 

Lyapunov 

exponent 

0.00155 0.00129 0.00173 0.00131 0.00101 0 0 0 0.00149 0.00127 

By analyzing the chaotic dynamics at both terminal and 
sector level, we can infer that chaos is not an intrinsic nature 
of air traffic system in terminal airspace, but emerges when air 
traffic system is unstable. Chaotic dynamics provides new 
insight into air traffic prediction and control.  

E. Predictability of chaotic “human-flow” system 

Chaotic dynamics uncovers the air traffic system evolution 
patterns between certainty and randomness. Predictability 
illustrates the non-linear dynamics of chaotic system from 
another side. Currently, it’s not easy to predict chaotic system 
accurately using general method e.g. Neural Network, 
Supporting vector Machine, etc. without considering its 
chaotic dynamics. Lyapunov exponent is proved as an 
excellent predictable parameter which depicts the geometrical 
feature of phase space. The largest Lyapunov exponent based 
forecasting method proposed by Wolf et al. is to find the 
similar points in historical data series, and further to formulate 
predict models according to the evolution behaviors of the 
similar points and physical meaning of the largest Lyapunov 
exponent [23]. We take chaotic data series of potential 
conflict ℋ�

� = [ℏ�, ℏ�, … … , ℏ�]  as an example. The phase 

space is reconstructed based on delay time � and embedded 
dimension �. Each phase point is formulated as 

�� = [ℎ(��), ℎ(�� + �), … … , ℎ(�� + (� − 1)�)], � ∈ [1, �]  
i.e. 

� = �
ℎ(��) ⋯ ℎ(��)

⋮ ⋱ ⋮
ℎ(�� + (� − 1)�) ⋯ ℎ(�� + (� − 1)�)

�   (7) 

where  �  is the number of phase point in m-dimensional 
phase space, � = � − (� − 1)�. 

Brief descriptions of chaotic prediction is stated as 
follows: 

Step1: Find the nearest phase point ���  of  �� , and 
calculate the Euclidean Distance � = ‖�� − ���‖. 

Step2: Phase point ��  and ���  further evolve into 
���� and ����� respectively in next time step. Based on 
the physical meaning of the largest Lyapunov exponent, 
‖���� − �����‖=‖�� − ���‖�� =  ���. 

Step3: Potential conflict ℏ����  which is the mth 



component of ���� can be estimated by formula (8), where 
the selection of “±” depends on the intersection angle in the 
phase space and practical constraints [24]. 

ℏ���� = ����(�) = �����(�)

± � � [����(�) − �����(�)]�

���

���

− (���)� 

(8) 
Proposed chaotic forecasting method is adopted to 

illustrate the predictability of “human-flow” system in short 
term (next 15min for conflict forecast and next 10 data points 
for communication forecast). Figure 14 shows the potential 
conflict prediction in last 88 time period on 11/09/2014 in 
sector 2. The largest Lyapunov exponent calculated based on 
first 200 data point is 0.00186. The average relative error of 
prediction is 4.3%. Figure15 shows the communication 
interval forecast based on first 1000 data point on 11/09/2014 
in sector 2. The largest Lyapunov exponent is 0.00125. The 
average relative error of prediction is 6.3%. 
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Figure14. Predictability of chaotic potential conflict system based on the 

largest Lyapunov exponent 
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Figure15. Predictability of chaotic communication behavior based on the 

largest Lyapunov exponent 

SVM-based prediction [25] is used for comparison. We 
assume that forecasting value is determined by historical data, 
i.e.���� = �(��) , where�� = (������, ������, … … , ��) ∈ �� . 
Radial Basis Function (RBF) is adopted as the kernel function 
[26]. Here, same data set on 11/09/2014 in sector 2 is used. 
For potential conflict forecast, we set �� = 5, forecast period 
is 15min, size of training data is 200; and for communication 
interval forecast, we set �� = 30, forecast period is 10 data 
points, size of training data is 1000. Result shows that average 
relative error of prediction is 15.5% and 20.9% for conflict 
and communication prediction respectively as shown in 
Figure16 and 17. 
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Figure16. Predictability of chaotic potential conflict system based on SVM 
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Figure17. Predictability of chaotic communication behavior based on SVM 

It is known that the accuracy of prediction performance is 
sensitive to the size of training data and forecast period. The 
trend of average relative error is shown in Figure 18 -19. It is 
proved that, by identifying chaotic feature of system, the 
non-linear predictability performance is stably enhanced and 
is less sensitive to subjective factors. It is noted that similar 
conclusions are drawn using data sets of other sectors on other 
days. 
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Figure18. Prediction performance evolution with different size of training 

data 
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Figure18. Prediction performance evolution with different forecasting period 



V. CONCLUSIONS 

Non-linear dynamics in the “human-in-the-loop” air traffic 
system are emergent behaviors result from interactions 
between the constituent elements and the operating 
environment. For terminal airspace system, the elements are 
mainly composed of human operators, working procedures, 
airspace configurations, and even weather conditions. To 
develop and deploy advance operational concepts and systems, 
it’s vital to understand the intrinsic characteristics of air traffic 
operation at system level. 

In this paper, we studied the evolution of both ATCOs and 
traffic flow by modeling and analyzing dynamics performance 
using empirical data of Guangzhou terminal airspace in China. 
Underlying mechanism of “human-flow” phase transitions 
from free, smooth, semi-stable to congested status were 
interpreted by metacognition. Besides, since air traffic system 
can be intuitively divided into “flow system” and “human 
system”, chaotic features were identified in both systems and 
proved a strong relation with unstable phase status of system 
by adopting classic chaos analysis and prediction methods. 
This novel findings will bring new perspective to understand 
the characteristics of air traffic system and provided 
references to aggregated air traffic flow modeling and tactical 
management. To solve the difficulty of collecting 
synchronized air traffic data and controllers’ behavior data in 
further studies, real-time simulation in the “human-in-the-loop” 
environment seems to be a better and feasible solution to 
generate air traffic operational data close to reality and draw 
more generalized conclusions. Moreover, system sensitivity to 
the selection of time interval needs to be further explored to 
discuss the appropriate time horizon of tactical air traffic 
management strategy.  
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