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Abstract—Functional airspace blocks (FAB) concept is
adopted by the European airspace to allows cooperation
between airspace users to manage the air traffic flow, while
ensuring efficiency, safety, and fairness without constraints
of geographical boundaries. This integration of airspace in-
troduces more flexibility to manage aircraft trajectory and
airspace usage. In this paper, we propose a distributed air
traffic flow management model to address four-dimensional
trajectory planning over the European FAB. The goal is to
enable effective information sharing between airspace blocks
in strategic planning, and to minimize interaction between
trajectories. The proposed model and overall methodology is
implemented and tested with a full day air traffic data over
the European airspace. Interaction-free 4D trajectories are
produced within computational time acceptable for the oper-
ational context, which shows the viability of the distributed
model and interaction minimization approach for effective
FAB implementation.

I. INTRODUCTION

The main objective of an Air Traffic Flow Management
(ATFM) system is to ensure safety, reduce delays, and
balance demand and capacity among different components
of the air transportation system [10]. In European airspace,
ATFM activities are carried out by Eurocontrol’s Central
Flow Management Unit (CFMU) which acts as a coordina-
tor between air navigation service providers (ANSPs) and
key stake holders, such as airlines, airports, and military.

However, fragmentation of airspace along national
boundaries creates structural inefficiencies, sub-optimal
flight routing and makes implementation of ATFM strate-
gies quite challenging [6]. To address these challenges, a
concept of Functional Airspace Blocks (FAB) is developed
by Eurocontrol. A FAB is defined in the Single Euro-
pean Sky legislative package as “an airspace block based
on operational requirements and established regardless
of state boundaries, where the air navigation services

Fig. 1. European airspace is divided into nine Functional Airspace
Blocks: NEFAB (North European FAB), Denmark-Sweden FAB, BALTIC
FAB, FABEC (FAB Europe Central), FABCE (FAB Central Europe),
DANUBE FAB, UK-IRELAND FAB and South West FAB.

and related functions is performance-driven and optimised
through enhanced cooperation among ANSPs or an inte-
grated provider” [2]. Nine FAB initiatives have been taken
(Figure 1); two of these have already been implemented,
namely the UK-Ireland and Denmark-Sweden FABs [1].

Establishment of FABs will have consequences for
CFMU operations. One of the key challenges will be to
implement the centralized ATFM strategies in the individual
FAB and develop the basis for the cooperation among the
FABs [3]. Delegation of ATFM to individual FABs can lead
to demand-capacity imbalances as each FAB may try to
optimize traffic flow in its own airspace without considering



other FAB requirements.
In this paper, we propose a distributed ATFM model

which form the basis for interaction among FABs to im-
plement ATFM strategies. The goal of distributed ATFM
model is generate strategic 4D trajectories which minimize
flight interaction in both three-dimensional space and in
the time domain by extending a trajectory planning method
developed by co-authors in [7] and [11].

The paper is organized as follows: Section II describes
the concept of the proposed distributed ATFM model.
Section III presents the proposed model and methodology
in a mathematical framework. Then, a method to compute
interaction between trajectories is presented in Section IV.
Resolution algorithm to the problem is explained in Section
V. Finally, numerical results are presented and discussed in
Section VI.

II. CONCEPT DESCRIPTION

Centralized ATFM though offers a fair distribution and
demand-capacity balance at a global level but stake-holders
can only provide inputs and are not part of decision
making [12]. It may also lead to large number of pairwise
reversals, i.e., the resulting order of flight arrivals can be
quite different as compared to the original published flight
schedules [5]. Because of this deviation from the original
flight ordering, it may becomes difficult to implement such
a solution locally.

In a distributed ATFM the decision-making responsibili-
ties are shared between a number of airspace users (airlines,
ANSPs, Military, Airports). Some examples of distributed
ATFM are Ration by Schedule (RBS) [4] and Ground
Delay Program (GDP) [9]. However the current state-of-the
art is limited mostly to strategic planning, and the users’
participation in planning reduces as the planning interval
becomes smaller. With the gradual implementation of FAB
concept in the European airspace, any distributed ATFM
systems must also take into consideration multiple FAB
interactions.

In a FAB scenario, the traffic flow management will
be highly interdependent and will demand a significant
cooperation with other FABs. One way to achieve this is
by having distributed 4D trajectory planning amongst FABs
which can ensures conflict-free trajectory for each aircraft.
This will then translates into trajectory based operations
where aircraft are required to fly a negotiated conflict-free
trajectory through respective FABs.

A. Proposed Model

The main idea proposed in the paper is a distributed deci-
sion making model which can enable effective information
sharing among the FABs for 4D trajectory planning which
are conflict free. The goal of the proposed method is to
separate a given set of aircraft trajectories in space and

time domain by allocating an alternative fight plan (route
and departure time) to each fight in a given FAB.

Fig. 2. Proposed Concept for information sharing among the FABs for
interaction-free trajectory planning.

Instead of trying to satisfy the capacity constraint, we
focus on minimizing the interaction between trajectories.
Where an interaction between trajectories occurs when two
or more trajectories have an effect on each other; for
instance, when trajectories occupy the same space at the
same period of time. Therefore, contrary to the concept of
conflict, the measurement of interaction does not only refer
to the violation of minimum separation requirements. It also
allows us to take into account other separation criteria such
as minimum separation time between aircraft crossing at the
same point.

The proposed concept is developed as follows: as il-
lustrated in Figure 2, airspace users (airlines, airports,
ANSPs etc.) submits relevant information (flight plan, slots,
capacity) to CFMU, which then applies centralized traffic
flow management strategies to match demand with capacity
and other airspace constraints and generate revised flight
plans. These flight plans are then used as an input to a FAB-
Flight interaction Matrix. It is a 2D matrix which captures
the flight interaction information between and within FABs.
One dimension of the matrix is termed Controlling FABs
and the other dimension is termed Intermediate FABs. A



Controlling FAB is defined as a FAB where a given flight
is originated or activated (in case of an enroute flight
entering European airsapce), whereas an intermediate FAB
is defined as a FAB through which a given flight traverse
(over fly), terminates (lands) or exits the European airspace.

Fig. 3. An airspace divided into three FABs (FAB A, FAB B and FAB
C) with four flight ( A, B, C and D) scenario.

As illustrated in Figure 3, Flight A enters FAB B from
outside so it is the the Controlling FAB. Flight A traverse
through FAB A and terminates in FAB C so they are termed
as Intermediate FAB. Similarly, for Flight B originates and
terminates in FAB B, so FAB B is both Controlling and
Intermediate FAB for flight B. For Flight C the origin is
in FAB A (Controlling FAB) and it traverse through FAB
C (intermediate FAB) before exiting the airspace. Thus a
flight may have multiple intermediate FABs but will have
only one controlling FAB.

The FAB-Flight interaction Matrix captures how many
interactions are caused by flights from Controlling FAB in
the Intermediate FABs. The flight interactions can then be
resolved by implementing time-space separation in the Con-
trolling FAB (from where the flight originated/activated)
and the flight plans are updated accordingly. Once resolved,
flight interactions are recomputed (using revised flight
plans) and the FAB-Flight Interaction Matrix is updated.
This process continues until all the flight interactions are
resolved.

B. FAB-Flight Interaction Matrix

The FAB-Flight Interaction Matrix is developed as fol-
lows: as illustrated in Figure 4, for N FABs in a given
airspace A, a 2D matrix of N rows and N columns is
developed. The row vector of the matrix represents the
number of flight interaction caused by a Controlling FAB
C j in the Intermediate FABs Ii for i = 1 to N. The
column vector of the matrix represents the number of flight
interaction caused by the Controlling FABs C j for j = 1 to
N in an Intermediate FAB Ii

Fig. 4. FAB-Flight Interaction Matrix

Ii =
[

INT (C j, IA) INT (C j, IB) ... INT (C j, Ii)
]

(1)

C j =


INT (CA, Ii)
INT (CB, Ii)

....
INT (CN , Ii)

 (2)

For example, as illustrated in Figure 4, flight interactions
due to flights controlled by FAB CA in the Intermediate
FAB IA is given by row FAB CA and column FAB IA and
denoted by INT (CA, IA). Similarly, the number of flight
interactions due to flights controlled by FAB CC in the same
intermediate FAB i.e. FAB Ic is given by row FAB Cc and
column FAB Ic.

Therefore, the total number of flight interactions U , in a
given FAB i, can be given by summing the column vector:

Ui =
N

∑
j=1

INT (C j, Ii) (3)

The total flight interaction V in a given airspace A (which
comprises of N FABs) can be given by

V =
N

∑
j=1

U j (4)

This can be further normalized to find out the relative
contribution of each FAB, in overall flight interactions, for
a given airspace A.

U jrel =U j/V (5)

for j = 1 to N.

C. Traffic Flow Management Strategy

The distributed Traffic Flow Management strategy is de-
veloped as follows: first the Intermediate FAB with highest
number of flight interaction is identified as a candidate FAB
(equation 6).



FAB Ii = MAX(UA,UB...,UN) (6)

Then for the FAB Ii, the Controlling FAB C j which
generated highest number of flight interaction is identified
(equation 7).

FAB C j = MAX(INT (CA, Ii), INT (CB, Ii), ..., INT (CN , Ii))
(7)

The ATFM strategies (Space-Time separation) are then
applied on randomly selected (fitness-proportional selec-
tion) flights in Controlling FAB C j. Flight interactions
are recomputed given the revised flight plans and the
FAB-Flight Interaction Matrix is updated. This process is
repeated until the FAB-Flight Interaction Matrix is interac-
tion free. Figure 5 illustrates the updated process, where
the decision made by each FABs are evaluated by the
optimization process. Then, the information of interaction
based on FABs-flight interaction matrix is feed back to each
FABs, which then make new decision and repeat the process
until a solution that leads to minimum overall interaction
is reached.

Fig. 5. FAB-Flight Interaction Matrix update process.

III. MATHEMATICAL MODELLING

This section sets the mathematical framework of the
distributed air traffic flow management methodology we
are proposing. First, a definition of interaction between
trajectories is given. Then, the route / departure-time allo-
cation techniques adapted for the distributed ATFM model
is presented.

A. Interaction between trajectories

The concept of interaction between trajectories is intro-
duced in [7] and [11]. It is a measurement that indicates
when two or more trajectories occupy the same space at
the same period of time. It is different from the conflict
situation, which corresponds simply to a violation of the
minimum separation (i.e. 5 NM horizontally and 1,000
ft vertically). Additional separation conditions, such as

trajectory	  i	  

trajectory	  h	  

trajectory	  j	  

protec+on	  volume	  	  
in	  the	  horizontal	  plane	  

!i,k = 2

dh < Nh Nh

Pi,kdh < Nh

Fig. 6. Interactions, Φi,k , at sampling point Pi,k of trajectory i.

time separation, topology of trajectory intersection, distance
between trajectories, etc. can also be taken into account in
the concept of interaction.

Consider a given set of N discretized 4D trajecto-
ries, where each trajectory i is a time sequence of 4D
coordinates, Pi,k(xi,k,yi,k,zi,k, ti,k), specifying that aircraft
must arrive at a given point (xi,k,yi,k,zi,k) at time ti,k, for
k = 1, . . . ,Ki, and Ki is the number of sampling points of
trajectory i.

Consider a point k of trajectory i, interactions at point
Pi,k, denoted Φi,k, may be defined as the total number
of times that the protection volume around point Pi,k is
violated. Figure 6 illustrates interaction in the horizontal
plane between N = 3 trajectories measured at point Pi,k.

The interaction associated with trajectory i, denoted Φi,
is therefore defined to be:

Φi =
Ki

∑
k=1

Φi,k. (8)

Finally, the total interaction between trajectories, Φtot , for
a whole traffic situation is simply defined as:

Φtot =
N

∑
i=1

Φi =
N

∑
i=1

Ki

∑
k=1

Φi,k. (9)

One can observe that the measurement of the interaction
between trajectories implicitly take into account the dura-
tion of conflict between trajectories. A practical method-
ology to compute the value of the interaction between
trajectories in a large-scale context is presented in Section
IV.

B. Route/Departure-time allocation

In order to separate the trajectories in 3D space and
time domain, we rely on a route/departure-time allocation
techniques introduced in [7] and [11]. The objective is
to find alternative 4D trajectory for each flight, so as to
minimize the total interactions between trajectories.

Given data. A problem instance is given by:
• A set of initial N discretized 4D trajectories with

associated controlling FAB;
• The discretization time step, ∆t;
• The number of allowed virtual waypoints, M;
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Fig. 7. Initial and alternative trajectories with rectangular-shape possible
location of M = 2 virtual waypoints.

• The maximum allowed advance departure time shift
of each flight i, δi

a < 0;
• The departure time shift step size, δs;
• The maximum allowed delay departure time shift of

each flight i, δi
d > 0;

• The maximum allowed route length extension coeffi-
cient of each flight i, 0≤ di ≤ 1;

• The length of the initial en-route segment of each flight
i, Li,0.

The alternative departure time and the alternative route
to be allocated to each flight are modelled as follows.

Alternative departure time. The departure time of each
flight can be shifted by a positive (delay) or a negative
(advance) time shift. Let δi ∈ ∆i be a departure time shift
attributed to flight i, where ∆i is a set of acceptable time
shifts for flight i. The departure time ti of flight i is therefore
ti = ti,0+δi, where ti,0 is the initially-planned departure time
of flight i. The departure time shift δi will be limited to lie
in the interval ∆i := [δi

a,δ
i
d ]. Common practice in airports

conducted us to rely on a discretization of this time interval
using time-shift step size δs. This yields Ni

a := −δi
a

δs
possible

advance slots and Ni
d := δi

d
δs

possible delay slots of flight i.
Therefore, we define the set, ∆i, of all possible departure
time shifts of flight i by

∆i :={−Ni
a.δs,−(Ni

a−1).δs, . . . ,

−δs,0,δs, . . . ,(Ni
d−1).δs,Ni

d .δs}.
(10)

Alternative trajectory design. In this work, an alter-
native trajectory is constructed by placing a set of virtual
waypoints, denoted

wi = {wm
i |wm

i = (wm
ix′ ,w

m
iy′)}

M
m=1, (11)

near the initial en-route segment and then by reconnecting
the successive waypoints with straight-line segments as
illustrated in Fig. 7. To limit the route length extension,

the alternative en-route profile of flight i must satisfy:

Li(wi)≤ (1+di), (12)

where Li(wi) is the length of the alternative en-route profile
determined by wi. Fig. 7 illustrated initial and alternative
trajectories, constructed with M = 2 waypoints, where
the location of each waypoint is constrained to be in a
rectangular-shape possible location. Let W m

ix′ be a set of
all possible normalized longitudinal locations of the mth

virtual waypoint on trajectory i. For each trajectory i, the
normalized longitudinal component, wm

ix′ , is set to lie in the
interval:

W m
ix′ :=

[(
m

1+M
−bi

)
,

(
m

1+M
+bi

)]
, (13)

where bi is a (user-defined) parameter that defines the
range of possible normalized longitudinal component of the
mth virtual waypoint on trajectory i. To obtain a regular
trajectory, the normalized longitudinal component of two
adjacent waypoints must not overlap, i.e.(

m
1+M

+bi

)
<

(
m+1
1+M

−bi

)
(14)

and hence the user should choose bi so that

bi <
1

2(M+1)
. (15)

Let W m
iy′ be a set of all possible normalized lateral loca-

tions of the mth virtual waypoint on trajectory i. Similarly,
the normalized lateral component, wm

iy′ , is restricted to lie
in the interval:

W m
iy′ := [−ai,ai], (16)

where 0 ≤ ai ≤ 1 is a (user-defined) model parameter that
defines the range of possible normalize lateral location of
the mth virtual waypoint on trajectory i, chosen a priori so
as to satisfy (12).

Let us set the compact vector notation: δ :=
(δ1,δ2, . . . ,δN), and w := (w1,w2, . . . ,wN),

We shall denote by ui the components of u. It is a vector
whose components are related to the modification of the ith

trajectory, thereby our decision variable is:

u := (δ,w).

Finally, the interaction minimization problem can be
formulated as a mixed-integer optimization problem, as
follows:
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min
u=(δ,w)

Φtot(u)

subject to
δi ∈ ∆i,

wm
ix′ ∈W m

ix′ ,

wm
iy′ ∈W m

iy′ ,

for all i = 1, . . . ,N,m = 1, . . . ,M,

(P1)

where W m
ix′ , and W m

iy′ are defined by (13), and (16) respec-
tively.

IV. INTERACTION DETECTION

In order to evaluate the objective function, at a candidate
solution, (u), one needs to compute interaction between
the N aircraft trajectories. To avoid the N(N−1)

2 time-
consuming pair-wise comparisons, which are prohibitive
in our continental-scale application context, we propose
a grid-based interaction detection scheme which is imple-
mented in a so-called hash table as presented in [7] and
[11].

First, the airspace is discretized using a four-dimensional
grid (3D space + time), as illustrated in Figure 8. The
size of each cell in the 4D grid is defined by the min-
imum separation requirement and the discretization time
step, ∆t (see below). Then, for each given 4D coordi-
nate Pi,k(xi,k,yi,k,zi,k, ti,k) of each trajectory i, we iden-
tify which cell, says Ci, j,k,t , of the 4D grid contains
Pi,k(xi,k,yi,k,zi,k, ti,k).

Next, we consider each such cell Ci, j,k,t and we suc-
cessively check its surrounding cells (there are 33 = 27
such neighbouring cells, including cell Ci, j,k,t itself). If
one cell is occupied by an aircraft other than aircraft i
itself, the horizontal distance (dh) and the vertical distance
(dv) between the corresponding aircraft coordinates are
measured. A violation of the protection volume is identified
when both dh < Nh and dv < Nv.

In order not to underestimate interaction, and to avoid
using small value to ∆t which leads to large number of
trajectory samples and long computational time, we propose
an inner-loop algorithm, detecting interaction between two

Simulated 
annealing 

Hill-climbing 
local search 

condition Entry update best 
found solution 

current  
solution 

current  
solution 

true 

false 

Fig. 9. Structure of the proposed hybrid algorithm of simulated annealing
and hill-climbing local search methods.

sampling times, t and t + ∆t, by interpolating aircraft
positions with a sufficiently small step size, tinterp. The
interpolation is performed only if no conflict is detected
at time t. Then, one checks each pair of these interpolated
points. The algorithm stops when an interaction is identified
or when every pair of the interpolated points has been
checked.

V. RESOLUTION ALGORITHMS

The 4D trajectory planning methodology for a distributed
ATFM model, presented in this paper, relies on the in-
teraction minimization problem introduced in Section III
whose objective function values are obtained by simula-
tion through the interaction detection scheme developed in
Section IV. To solve the problem, a hybrid metaheuristic
approach adapted to handle an air-traffic assignment prob-
lem at the continent scale is used. It relies on a classical
simulated annealing (SA) algorithm and two different local-
search (LS) modules. The LS allows the system to intensify
the search around a potential candidate solution while the
SA allows the system to escape from a local trap and
thereby ensuring the exploration of the solution space. The
proposed hybrid algorithm combines the SA and the local
search algorithm such that the LS is considered as an inner-
loop of the SA, which will be performed when a pre-defined
condition is satisfied. The structure of the proposed hybrid
algorithm of SA and LS methods is illustrated in Figure 9.

This hybrid SA-LS optimization algorithm has been
applied to solve 4D trajectory planning at continent scale in
[7] and [11]. In these works, the objective is, also, to min-
imize the total interaction between trajectories. However,
the air traffic flow were managed based on a centralized
decision making. In order to apply the hybrid SA-LS
algorithm to our proposed distributed ATFM model, the LS
search strategy and the neighborhood structure are modified
according to our proposed ATFM strategy described in
Subsection II-C (to be described below).

For our problem, the simulated annealing proceeds as
follows. First, we evaluate the objective function at the
current configuration (w,δ)C. It is denoted ΦC. Then a
neighboring solution, (w,δ)N , is generated by a neigh-
borhood function. Then, a new solution for this chosen
flight is generated according to a pre-defined neighborhood



structure. If the neighborhood solution improves the ob-
jective function value, then it is accepted. Otherwise, it is
accepted with a probability e

−∆Φ
T , where ∆Φ = ΦN−ΦC is

the difference of energy between current state C and new
state N. When the maximum number of iterations, nT , at a
given temperature is reached, the temperature is decreased
according to the user-provided pre-defined schedule, and
the process is repeated until the pre-defined final tempera-
ture, Tf inal , is reached. More detail on simulated annealing
can be found, for instance, in [8].

Local search modules. The local search modules we use
are heuristic methods that accepts a new solution only if
it yields a decrease of the objective function. The process
repeats until no further improvement can be found or until
the maximum number of iterations nTLOC is reached. The
two local-search modules correspond to the two following
strategies:

• Intensification of the search on one Particular Tra-
jectory (PT). Given a flight i, this state-exploitation
step focuses on improving the current solution by ap-
plying a local change from the neighborhood structure
only to flight i (only the decision variables (wi,δi) are
affected).

• Intensification of the search on the Interacting Tra-
jectories (IT). Given a flight i, this state-exploitation
step applies a local change, from the neighborhood
structure, to every flight that is both subjected to
the same controlling FABs as flight i, and currently
interacting with flight i.

Neighborhood structure. The hybrid algorithm we are
proposing relies on a neighborhood structure to determine
the next move. First, one has to determine which flight
to be modified. In the framework of a distributed ATFM
we are proposing, first one has to determine the controlling
FABs which generates the highest proportion of interaction.
Then, one chose one of the interacting flights in such FABs
if Φi ≥ τ ·Φavg, where τ is a user-defined parameter and
Φavg = Φtot/N is the average value of interaction.

In order to generate a neighborhood solution for a
given flight, i, from the current configuration (wi,δi)C,
one has to determine whether to modify the location of
waypoints or to modify the departure time in the next
move. In general, searching for the solution in the time
domain would be more preferable since it does not induce
extra fuel consumption. However, empirical tests show that
limiting the search to only that degree of freedom results
in prohibitive computational time. Therefore, we introduce
a user-defined parameter Pw to control the probability to
modify the location of the waypoints wi and such that the
probability to modify rather the departure time is 1−Pw.
For a given flight i, the neighborhood operator generates a
new set of virtual waypoints or a new alternative departure

time according to this probability Pw.
Hybrid algorithm (SA and LS). Here is how the

above-mentioned methods are combined. The methods are
carried out according to pre-defined probabilities, which are
proportional to the control temperature, T . The probability
to carry out simulated annealing step, PSA, is:

PSA(T ) = PSA,min +(PSA,max−PSA,min) ·
T0−T

T0
, (17)

where PSA,max and PSA,min are the maximum and minimum
probabilities to perform the SA (pre-defined by the user).
The probability of running the LS module, PLoc, is given
by:

PLoc(T ) = PLoc,min +(PLoc,max−PLoc,min) ·
T0−T

T0
, (18)

where PLoc,max and PLoc,min are the maximum and minimum
probabilities to perform the local search (defined analo-
gously). And, finally the probability of carrying out both
SA and the local search (successively), PSL, is:

PSL(T ) = 1− (PSA(T )+PLoc(T )). (19)

A key factor in tuning this hybrid algorithm is to reach
a good trade off between exploration (diversification) and
exploitation (intensification) of the solution space.

VI. NUMERICAL EXPERIMENTS

The proposed distributed ATFM model is implemented
in Java. The overall methodology is tested with air traffic
data involving flights over the European FABs, consisting
of nine FABs listed in Table I. First, it is tested with a
set of traffic consist of 4,000 flights over the European
FABs on a UNIX platform with 1.7 GHz processor and
8 GB memory. The parameter values chosen to specify the
optimization problem are given in Table II. The parameter
values that specify the resolution algorithm are given in
Table III. Then, it is tested with a full day en-route air
traffic over the European FABs consisting of 26,122 flights
on a UNIX platform with 2.4 GHz processor and 32 GB
memory, using the same parameters as given in Table II
and III, except that this time the number of iteration NI is
set to 2,700.

TABLE I
EUROPEAN FABS.

No. FAB name
1 Baltic FAB
2 Blue Med
3 FAB Central Europe
4 Danube FAB
5 FAB Europe Central
6 NEFAB
7 NUAC program
8 SW Portugal-Spain FAB
9 FAB UK Ireland



TABLE II
CHOSEN (USER-DEFINED) PARAMETER VALUES FOR THE

OPTIMIZATION PROBLEM.

Parameter Value
Discretization time step, ∆t 20 seconds
Discretization time step for possible departure-time shift, δs 20 seconds
Maximum departure time shift, deltai

a = δi
d := δ 120 minutes

Maximum allowed route length extension coefficient, di 0.20
Maximum allowed flight level shifts, li,max := lmax 2
Maximum number of virtual waypoints, M 3

TABLE III
EMPIRICALLY-SET (USER-DEFINED) PARAMETER VALUES OF THE

RESOLUTION METHODOLOGY.

Parameter Value
Minimum probability to perform SA step, PSA,min 0.8
Maximum probability to perform SA step, PSA,max 0.9
Minimum probability to perform local search step, PLoc,min 0.4
Maximum probability to perform local search step, PLoc,max 0.6
Number of iterations at each temperature step, NI 400
Number of iterations of the inner-loop local search step, nTLOC 5
Geometrical temperature reduction coefficient, β 0.99
Final temperature, Tf (1/500).T0
Inner-loop interpolation sampling time step, tinterp 5 seconds
Probability to modify horizontal flight profile, Pw 1/3
Probability to modify flight level, Pl 1/3
Threshold value, Φτ 0.5 Φavg

The initial and final total interaction between trajecto-
ries, the computation time, and the number of iterations
performed to solve the distributed problems compared
to the one solved based on centralized decision making
methodology (proposed in [7] and [11]) are reported in
Table IV. Evolution of the interaction between the 4,000
trajectories in each FAB and in the FAB-Flight Interaction
Matrix during the optimization process using distributed
and centralized models are presented in Figure 10, 11,
12, and 13 respectively. One can observe in Figure 10
and 12 that the FABs that has the highest level of initial
interaction is FAB number 5 (FAB Europe Central). The
controlling FABs which generates the highest interaction
in FAB number 5 are FAB number 1,4, and 5. In the
case of distributed model, the resolution algorithm tries to
minimize the total interaction by modifying flight plans of
flights associated to FAB number 1,4, and 5 before other
FABs. While, in the centralized model case, the resolution
algorithm modifies flight plans of flights that involves in

TABLE IV
INITIAL AND FINAL TOTAL INTERACTION BETWEEN TRAJECTORIES

FOR 4,000 TRAJECTORIES.

case N ATFM initial final solved no. of cpu time
strategy ΦD

tot ΦD
tot interactions iterations (mins)

Distributed 0 100% 8,306 2.47
1 4,000 48,272

Centralized 0 100% 5,035 2.08
Distributed 0 100 % 509,924 369.67

2 26,122 266,318
Centralized 0 100% 632,002 563.53

high interaction, without taking into account the FAB-flight
interaction information.

Fig. 10. Evolution of the FAB-flight interaction matrix for 4,000 trajec-
tories during the optimization process using distributed ATFM model.

Fig. 11. Evolution of the interaction in each FAB for 4,000 trajectories
during the optimization process using distributed ATFM model.

Similarly, the evolution of the interaction between the
full-day traffic, consisting of 26,122 trajectories, in each
FAB and in the FAB-flight matrix during the optimization
process using distributed and centralized models are pre-
sented in Figure 14, 15 , 16, and 17 respectively.

Again, one can observe that the FABs that in the case
of distributed model, the resolution algorithm tries to min-
imize the total interaction by modifying flight plans of
flights associated to the FABs that generate high interaction
to the global system before other FABs. Although the tra-
jectories can be separated only by modifying the horizontal
flight profile and the departure time of each flight, the res-
olution algorithm finds an interaction-free solution in both



Fig. 12. Evolution of the FAB-flight interaction matrix for 4,000 trajec-
tories during the optimization process using centralized ATFM model.

Fig. 13. Evolution of the interaction in each FAB for 4,000 trajectories
during the optimization process using centralized ATFM model.

Fig. 14. Evolution of the FAB-flight interaction matrix for 26,122 tra-
jectories during the optimization process using distributed ATFM model.

Fig. 15. Evolution of the interaction in each FAB for 26,122 trajectories
during the optimization process using distributed ATFM model.

Fig. 16. Evolution of the FAB-flight interaction matrix for 26,122
trajectories during the optimization process using centralized ATFM
model.

Fig. 17. Evolution of the interaction in each FAB for 26,122 trajectories
during the optimization process using centralized ATFM model.



case 1 and case 2. In the case of small data set (case 1), the
computation time to reach interaction-free solution are not
significantly different when using distributed and central-
ized model. However, when the number of traffic increases
(case 2), the distributed model converges to interaction-free
solution faster than the centralized model. This is because
the distributed ATFM strategy targets more on the FABs
that generates high interaction. Nevertheless, both models
yield interaction-free solution with computation time that is
still viable for strategic planning and pre-tactical planning
purpose.

VII. DISCUSSIONS

In this paper, we have presented a distributed air traffic
flow management model, aiming to minimize total interac-
tion between aircraft 4D trajectories at continent-scale. The
objective was to develop a basis of information exchange
and interaction among FABs for implementing distributed
AFTM. The overall methodology is implemented and tested
on a continent-size air traffic over the European FABs,
and then compared with the one obtained using central-
ized ATFM model. The methodology based on distributed
model converges to interaction-free solution faster than the
centralized model. Furthermore, the color maps shows that
the convergence rate of the distributed model is much better
than centralized model and is viable for strategic planning
as well as pre-tactical planning purpose.
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