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Abstract— This paper presents a method to translate strategic 
convective weather forecasts into a metric that estimates the 
impact of convective weather on air traffic flows.  The translation 
method is validated by measuring the flow rates of aircraft using 
weather impacted airspace in both en route and terminal 
airspace. Validation results show agreement between the airspace 
permeability estimates produced by the model and flow rates 
measured across airspace resources controlling arrival and 
departure flows. Features from single and ensemble storm-
resolving forecasts, combined with two different probabilistic 
forecasts, were used to generate 0-12 hour estimates of airspace 
permeability including prediction intervals. The skill of the 
combined forecast and each contributing forecast was quantified 
across varying forecast horizons. The algorithms were 
implemented in a real-time system that was evaluated at several 
U.S. facilities between 2014 - 2016. 
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I.  INTRODUCTION 

Convective weather accounts for the majority of the delay 
in the U.S. National Airspace System (NAS) [1]. To mitigate 
these delays, forecasts of convective weather are used by traffic 
flow managers to attempt to match traffic demand to capacity 
constraints of specific air traffic resources such as en route 
flows or departure fixes via a strategic management plan. 
Traffic demand for impacted resources is managed through the 
application of Traffic Management Initiatives (TMI) that either 
completely remove demand from an impacted airspace 
resource or that reduce demand by delaying the departure of 
flights filed through the impacted airspace. Typical strategic 
TMI programs used by air traffic managers include mandatory 
playbook reroutes, Ground Delay Programs (GDP), and 
Airspace Flow Programs (AFP). Since these TMIs require the 
pre-departure management of demand, the lead time for such 
decisions may be several hours in advance of the event onset to 
ensure that the TMI is in place soon enough to capture demand 
prior to departure.  This also allows airline operators to plan for 
the schedule and fueling consequences of the TMI. 

Several weather-only convective forecasts are currently 
available to the traffic planner in the strategic time domain 
including the Consolidated Storm Prediction for Aviation 
(CoSPA) [2], Short Range Ensemble Forecast (SREF) [3], and 
Collaborative Convective Forecast Product (CCFP) [4]. 
However, these forecasts do not provide direct guidance about 

the aviation impact on air traffic resources. The precise 
location, severity, scale, and timing of operationally-significant 
storms and the human response to those storms can be 
notoriously difficult to predict.   Therefore, the decision maker 
is left to make critical TMI decisions based on a subjective 
assessment of potentially conflicting weather forecast 
information. 

The lack of an explicit translation of weather forecasts into 
resource constraints is a shortfall in the current weather 
information available to air traffic managers for strategic traffic 
flow management. There are several consequences of this 
shortfall.  First, without an explicit translation there is a lack of 
an operationally-relevant methodology to assess weather 
forecast resource impact and overall forecast performance. 
Each participant (e.g., Air Traffic Control System Command 
Center (ATCSCC), Air Routes Traffic Control Center 
(ARTCC) Traffic Manager Unit (TMU) and Airline Operations 
Center (AOC)) comes into the collaborative strategic planning 
process with their own set of operational objectives, favorite 
forecast information, risk tolerance, etc. This wide and often 
divergent range of opinions and goals must somehow be 
melded into a plan of action. Without shared objective 
forecasts of weather impacts and estimates of decision risk, 
there is little common ground on which to base discussions 
about the best plan of action that addresses the different 
legitimate concerns of stakeholders. Second, the utility of 
convective weather forecasts is directly related to the quality of 
decisions and NAS performance outcomes that the forecasts 
can support. The definition of explicit, validated weather 
translations provides an objective and operationally relevant 
measure of truth against which forecasts can be compared.  
Without translation-based forecast evaluations, it is difficult to 
determine how much of an operational shortfall in convective 
weather mitigation is due to poor weather forecasts and how 
much is the result of poor interpretation and application of 
forecast information. 

Previous efforts to estimate convective weather impacts 
have focused either on individual ATC sectors [5] or sector-
traversing flows [6].  Such resources are important to tactical 
operations, as traffic managers seek to avoid sector overloads 
that can result in sector closures and excessive airborne 
holding. However, sector-level impacts are a poor match for 
strategic planning. Strategic planners usually focus on key, 
large-scale traffic flows that traverse congested en route 



airspace or that carry traffic to or from transition airspace for 
busy metroplexes. Furthermore, the precision of convective 
weather forecast needed to estimate sector capacities is 
unachievable in the strategic planning time horizon. 

This paper describes a weather translation algorithm that 
has three main components. First, a given weather situation is 
mapped into a 0%-100% measure of permeability for defined 
airspace regions and traffic flow directions. Second, based on 
analysis of historical flight patterns, permeability is related to 
maximum achievable and sustainable traffic flow rates and 
transit times for that airspace. Third, multiple heterogeneous 
weather forecast products are assimilated to generate a 
prediction of permeability and flow rate from 0-12 hours in the 
future. This prediction also includes a measure of uncertainty 
based on the real-time quality and variability of the weather 
products contributing to the prediction. The result is a timeline 
of forecasted airspace impact including uncertainty bounds. 
The algorithm performing these steps was implemented in a 
real-time decision support tool that was evaluated in the field 
during the summers of 2014, 2015, and 2016. 

II. MODEL OVERVIEW 

The translation of convective weather forecasts into an 
airspace impact classification began with a translation of 
weather truth data into an estimate of airspace permeability. 
The airspace permeability was then validated with an observed 
real-time operational flow rate that was assumed to represent, 
to first order, the operational impact of convective weather on 
the air traffic operations.  

The translation model is based upon the Weather 
Avoidance Fields (WAF) developed as part of the Convective 
Weather Avoidance Model (CWAM) [8], the definition of 
airspace resources that are operationally significant and whose 
capacities are measureable, and the assessment of operational 
impact of weather on a trajectory. The initial development of 
the model focused on traffic flow through enroute airspace, 
with an emphasis on the region where major arrival and 
departure routes transition between the Cleveland ARTCC 
(ZOB) and the New York ARTCC (ZNY).  

An example of the airspace resource definition for this 
enroute traffic flow is shown in Fig. 1. The resource definition 
consisted of three components: airspace crossing; airspace 
boundary; and airspace traversing trajectories, all of which 
define a strategic flow through the airspace. The airspace 

crossing represents an imaginary line for which all aircraft in 
the strategic flow that traverse this resource will intersect. The 
airspace boundary represents the region for which the model 
will evaluate the weather characteristics to estimate the 
permeability. Finally, the airspace traversing trajectories 
represent notional routes perpendicular to the aircraft crossing 
that are possible trajectories through the weather. 

The method of assessing the impact of the weather on a 
trajectory takes into account the scale and severity of storms 
that impact the flight trajectory. Storm scale is represented by 
the length of time that a trajectory spends inside a Convective 
Weather Avoidance Polygon [9]. Severity is represented by 
maximum blockage [10] calculated along the trajectory. Each 
notional route is then assigned an impact of RED (impassable), 
YELLOW (uncertain), DARK GREEN (passable with 
acceptable storm-avoiding deviations), or GREEN (passable) 
based on the two-dimensional heuristic trajectory impact model 
as shown in Fig. 2. 

Finally, the permeability of the airspace, or the availability 
of passable corridors that traverse the airspace, is estimated by 
taking a weighted average of the trajectory impacts for the 
notional routes that traverse the airspace. The four impact 
categories are weighted as follows: GREEN routes are 
weighted by 1.0 (100% probability of successfully flying 
through), DARK GREEN by 0.8 (20% impacted), YELLOW 
by 0.5 (50% impacted), and RED by 0.0 (route is completely 
blocked). 

Recent efforts have focused on the modification of the 
model to terminal airspace with an emphasis on the O’Hare 
International Airport (ORD) operations.  An example of the 
airspace resource definition for this region is shown in Fig. 3.  
For terminal airspace, the notional routes are no longer 
perpendicular but are orientated along radials extending out 
from the airport with a specified minimum and maximum 
distance.  The airspace crossing line is the inner circle which 
will be used later for model validation. 

The method of assessing the impact of the weather on the 
airspace still takes into account the scale and severity of storms 
but is based upon the terminal WAF [11] and related 
Convective Weather Avoidance Polygons.  As in the enroute 
model, each notional route is assigned an impact category as 
defined in Fig. 2 and the permeability is computed by taking a 
weighted average of the trajectory impacts. 

 
Figure 1. Example enroute airspace resource definitions. 

 
Figure 2. Trajectory impact model. 



III. MODEL VALIDATION 

In order to validate the model, it is necessary to 
demonstrate that current-weather permeability estimates 
correlate to observed operational behavior. High permeability 
values should support sustained, high traffic throughput, while 
low permeability values should represent highly constrained 
airspace. During times of high permeability, it is expected that 
there may be small, weather-avoiding deviations that will not 
significantly impact traffic flow rates. During times of low 
permeability, while it is possible there may still be some traffic 
passing through the airspace, the majority of traffic should be 
rerouted or delayed out of the impacted airspace. 

An example plot of the enroute traffic flow rate and 
permeability is shown in Fig. 4 for 13 June 2014 in Cleveland 
Center (ZOB) / New York Center (ZNY) transition airspace. 
On this day, a cold front was oriented across the airspace with 
two lines of convective weather. As shown, the permeability 
drops starting at approximately 1600 UTC (noon local time). 
As the spatial extent and intensity of the weather grew, the 
observed flow rate and permeability estimate decreased 
synchronously until 1930 UTC. As the weather developed, the 
air traffic managers were able to reroute the excess demand 
north into the Boston ARTCC and south into the Washington, 
DC ARTCC. At 1930 UTC it is observed that the permeability 
estimate began to increase while the flow rate continued to 
drop, reaching a minimum of 11 aircraft per hr after 2100 
UTC.  This noticeable discrepancy between the flow rate and 

permeability is explained through an analysis of the weather 
and TMI program logs. As the weather moved eastward, it 
exited the ZOB/ZNY transition airspace, producing the 
observed increase in permeability. However, the weather then 
began to impact the NY metro airports, resulting in Ground 
Stop programs that held all flights heading into NY, thereby 
decreasing demand into the transition airspace even though 
adequate capacity was available in that region. 

A statistical validation of the enroute impact model was 
performed for the ZOB/ZNY transition airspace using data 
from 139 case days between 2011 and 2015.  The data set was 
filtered to only include hours between 18 UTC and 00 UTC 
when the airspace experiences the highest demand.  Fig. 5 
shows resultant permeability estimates binned into increments 
of 20%. A correlation between the airspace impact model and 
flow rate is clearly visible.   As the convective impact increases 
(measured by a decreasing permeability), the flow rate 
decreases accordingly.  

The observed distributions within each permeability band 
in Fig. 5 imply a distinction between sustainable and 
achievable flow rates.  The core box-and-whisker groupings 
(between 10th and 90th percentiles) span weather-impacted flow 
rates that air traffic personnel sustained for long periods of 
time. In contrast, the highest-observed rates (between the 90th 
percentile whisker and the maximum-observed diamond), were 
achieved but not sustained beyond a few 5-min periods. From 
the data that were collected, the achievable high rates were 
generally observed immediately following the onset of weather 
events, during times of decreasing permeability, and only for 
short durations. Higher than expected or desired flow rates may 
be possible with additional workload and coordination burdens 
that may not be easily sustained for long durations.  

Using the mapping of permeability to flow rate provided in 
Fig. 5, planners could create traffic management programs that 
are tailored for the specific scenario of the day.  For instance, 

Figure 3. Example terminal airspace resource definitions. 

 
Figure 4.  Observed flow rate and airspace permeability estimates.

 
Figure 5.  Observed flow rate for the ZOB/ZNY transition airspace.



for short-lived events, air traffic planners may choose to set 
flow rates near the maximum achievable rate for the 
permeability estimate forecasted. In this instance, planners may 
feel confident in the ability to push the workload of the air 
traffic controllers and sustain high flow rates due to the limited 
impact duration of the event.  On another day, a planner may 
predict that the convective weather will be long-lived and that 
it will not be possible to set higher rates due to the difficultly in 
sustaining a high workload for a long period of time.  In this 
scenario, planners may choose to set rates closer to the median 
flow rates observed for this airspace. 

A statistical validation of the terminal impact model was 
performed for the O’Hare International Airport from the same 
139 case days. The data set was filtered to only include the 
hours between 12UTC and 00UTC when the airport is under 
the highest demand. Fig. 6 shows the airport operations count 
vs. permeability estimates binned into increments of 20%. It is 
important to note that the y-axis represents the total number of 
airport operations per hour ( both arrivals and departures). A 
correlation is clearly visible for the terminal impact model with 
airport operations decreasing as the permeability decreases. 

IV. IMPACT FORECASTS 

Section II described the translation of a given current-
weather situation into a permeability metric. For operational 
use, it will be necessary to provide forecasts of permeability in 
the 0-12 hour timeframe. Additionally, the ability to observe 
the level of uncertainty in that forecast would aid decision-
makers in judging the necessity and strength of any TMI 
responses. Accordingly, a permeability forecasting capability 
was developed that also conveys uncertainty information. 
Rather than focus on only a single forecast source, a focused 
effort was made to incorporate the best attributes from 
multiple, heterogeneous forecast products. 

 

Convective weather forecasts can generally be categorized 
as one of two types: storm-resolving or probabilistic.  Storm-
resolving forecasts provide a single depiction of two- or three-
dimensional future weather events over a specified geographic 
area in a high resolution image. These forecasts are 
deterministic and attempt to represent the future state of actual 
meteorological quantities. As a result, storm-resolving 
forecasts by themselves contain little or no uncertainty 
information. In contrast, a probabilistic forecast assigns 
likelihood to a particular weather event (e.g., occurrence of 
thunderstorms) and displays the probability of this event at any 
given point and time. The method described below can be 
applied to any number of forecasts that fall into these 
categories. In this work, the following four forecast sources 
were utilized since they form the core set of products typically 
used in traffic management: 

Extrapolation Forecasts: The Corridor Integrated Weather 
System (CIWS) and CoSPA extrapolation forecast is a storm-
resolving forecast that applies motion tracking algorithms to 
national weather mosaics of precipitation intensity and echo 
tops [12]. These tracking vectors are used to advect current 
weather and predict storm location up to 8 hours into the 
future. The CIWS/CoSPA forecast has 1 km horizontal 
resolution and a new forecast is issued every 2.5 min. The 
major advantages of extrapolation forecasts are that they have 
low latency and typically outperform numerical model 
forecasts at short forecast lead times (1-2 hours).  At later lead 
times however, forecast performance degrades. 

High Resolution Rapid Refresh (HRRR): The HRRR 
model is a 3 km model that has been under development at the 
National Oceanic and Atmospheric Administration/Earth 
System Research Laboratory Global Systems Division since 
2008 [13]. The HRRR is capable of providing storm-resolving 
forecasts of precipitation intensity and echo tops up to 18 hours 
into the future.  This forecast is issued hourly, and typically 
exhibits 1 to 2 hours of latency.  In contrast to the extrapolation 
forecast, numerical weather models like the HRRR typically 
perform worse in short lead times due to model spin-up which 
is often the effect of the model adapting to data assimilation 
used to initialize the model.  The HRRR is currently running 
operationally at the National Centers for Environmental 
Prediction (NCEP).   

Localized Aviation Model Output Statistics Program 
(LAMP):  The  LAMP model, developed by the 
Meteorological Development Laboratory of NOAA’s National 
Weather Service provides probabilistic forecasts of 
thunderstorms by updating the Global Forecasting System’s 
(GFS) Model Output Statistics (MOS) using observational data 
(METAR, lightning, radar), output from simple advective 
models, and geo-climatic data (high resolution topography and 
relative frequencies) [14].  Probabilistic forecasts of 
thunderstorms are issued hourly on a 20 km grid.  Outputs are 
available in 1-2 hour intervals. The LAMP forecast is running 
operationally in the Advanced Weather Interactive Processing 
System (AWIPS) at Weather Forecast Offices. 

Short Range Ensemble Forecast (SREF): The Storm 
Prediction Center’s SREF Calibrated Thunderstorm Probability 
field is created  by post-processing all 21 members of the 

 
Figure 6.  Observed airport operations for O’Hare International Airport. 



SREF along with a three-member time-lagged ensemble and 
the Weather Research and Forecasting - North American 
Mesoscale Model (WRF-NAM) [15]. These forecasts are 
combined to create a single probabilistic forecast of 
thunderstorms on a 32 km grid.  This forecast is issued every 6 
hours, and forecasts in hourly time intervals. 

A. Forecast Model Development 

To combine the different forecast models, we use a 
supervised machine learning algorithm that extracts features 
measured from each of these forecasts in an airspace region to 
predict the posterior distribution of permeability conditioned on 
these forecasts.  This posterior distribution describes the range 
of possible permeabilities and their respective probabilities. 
Obtaining a full distribution (rather than a point prediction) 
allows us to compute uncertainty in our prediction and convey 
this in the form of a prediction interval.   

For this methodology to be effective, a historical database 
of forecasts along with corresponding validation data must be 
available. In this study, a two-year history (2013 and 2014) of 
data from summer months (May – September) was used for 
model training.  The summer of 2015 was kept separate from 
training and used for validation. 

To apply a machine learning methodology, each input 
forecast for an airspace region must be converted into a vector 
of features with fixed length. Because the forecasts are of 
different types (storm-resolving and probabilistic) different 
features are extracted depending on the type of forecast. For the 
storm-resolving forecasts, precipitation intensity and echo tops 
forecasts are combined to create WAF and CWAP forecasts. 
The WAF and CWAP are processed using the permeability 
algorithm (Section II) to compute a forecast of permeability for 
each region. Other features are also computed, such as 

maximum route WAF, mean storm size within the region, and 
mean encounter time along each notional trajectory.   

In addition to using the latest available forecast, a four-
member time-lagged ensemble of HRRR forecasts was used to 
create the same features as described above. A time-lagged 
ensemble of forecasts is one method of estimating uncertainty 
by looking at how the different forecasts evolve at a fixed valid 
time. Time-lagged ensembles that consistently forecast impacts 
on an area, in general, indicate a greater level of confidence 
than ensembles that demonstrate a significant amount of 
variability. 

For probabilistic forecasts, it is not possible to explicitly 
create WAF or CWAP since these forecasts do not provide 
precipitation intensity and echo tops information. Instead, 
various statistical properties of the forecasts were gathered in 
the area surrounding each airspace region. These features 
include percentiles of convective probability (10th, 25th, 50th , 
75th, 90th) within the region, areal coverage of convective 
probability exceeding various thresholds (10%, 25%) and 
average convective probability within quadrants of the region. 
These features are used to convey the forecasted impact on the 
region, and are later translated into an estimate of permeability. 

Features extracted from each input forecast are represented 
by vectors ࢞ଵ, ࢞ଶ, … , ࢞ே೑, where ௙ܰ is the number of forecasts 
(including time-lagged ensemble members), shown as the first 
stage in Fig. 7. Training data of the form ቀ࢞௜

ଵ, ࢞௜
ଶ, … , ࢞௜

ே೑,  ௜ቁ are݌
used, representing a set of forecast features all valid at the same 
time i, and ݌௜ is the observed permeability (based on current-
weather CIWS data) at that time. These data were gathered 
over the summers of 2013 and 2014 around 13 regions in the 
Northeast quadrant of the U.S.  For each day, a new set of 
forecast features were measured at the top of each hour. For 

 
Figure 7. Permeability forecast model. 



each of these times, features were gathered at hourly forecast 
leads out to 12 hours, with the exception of the extrapolation 
forecast which was only available out to 8 hours. Because 
forecasts suffer from latency, and because not all forecasts are 
generated hourly, the most recently-available forecast was 
chosen to create features for each target time.  

The observed permeability, ݌௜, corresponding to each 
forecast valid time was measured using precipitation intensity 
and echo tops from CIWS. The technique outlined below was 
applied separately for each lead hour using as many of the 
forecast features as were available. 

The first training step is to map features from each input 
forecast into an estimate of permeability.  Prior to model 
fitting, all forecast features are scaled such that they have mean 
0 and unit variance. Forecast features ࢞௞ are mapped to a 
forecast of permeability using a linear combination of the 
components of ࢞௞. The weights in this linear combination are 
found by fitting a Ridge Regression [16] separately for each 
forecast type. This involves finding the coefficient vector ࢼ௞ 
and ܾ଴ that minimize the following objective function: 

ሺ݇ࢼ, ܾ0
݇ሻ ൌ argmin

ሺ0ܾ,ࢼሻ
ቀ∑ ൫݌

݅
െ ሺࢼ ∙ ࢏࢞

࢑ ൅ ܾ0ሻ൯
૛
൅

݇
2݅|ࢼ| ቁ   (1)                

 

where
௞
is a regularization parameter chosen to minimize 

error on a holdout set chosen using a 10-fold cross validation 
[17]. As a final post-processing step, the outputs obtained from 
this step are rescaled so the output values ൛̂݌௜

௞ൟ over the training 
set span the interval [0%, 100%].  In the following, ̂݌௞ ൌ ௞ࢼ ∙
࢞௞ ൅ ܾ଴

௞ represents the estimate of permeability obtained from 
forecast ݇. 

Estimates of permeability derived from each forecast are 
then combined (middle of Fig. 7) to estimate the posterior 
distribution of observed permeability ݌ conditioned on the 
vector of forecasted permeability ࢖ෝ ൌ ሺ̂݌ଵ, ,ଶ̂݌ … ,  . i.e	ே೑ሻ,̂݌
,ଵ̂݌|݌ሺܨ ,ଶ̂݌ … ,  is the conditional Cumulative ܨ ே೑ሻ, wherê݌
Distribution Function (CDF) of ݌. Quantile Regression  was 
chosen as the method for estimating the conditional quantiles 
of ݌ (these characterize the conditional CDF) [18].  Quantile 
Regression seeks to find a function ఛ݂ሺ࢖ෝሻ that estimates the 
100߬% percentile of the random variable ݌ as a function of ࢖ෝ 
by minimizing the following functional over the training set  

ሼ࢖ෝ௜, ௜ሻሽ: த݂݌ ൌ argmin୤∈ୌሺ∑ ρதሺ݌௜ െ ݂ሺ̂݌௜ሻሻ୧ ሻ.           (2) 

Here, ρத is the “check-mark” function defined as 
 

      ρதሺtሻ ൌ ൜
τ ∙ t, t ൐ 0

െሺ1 െ τሻ ∙ t, t ൑ 0                                      (3) 

 
The minimum above is taken over a suitable set of 

functions ܪ.  Typically ܪ is chosen to be all linear functions of 
the components of pො, however here we introduce non-linear 
interaction terms between the different forecasts into the model 

by using an ܪ that covers all second order polynomials of the 
inputs ࢖ෝ, i.e. 

ܪ       ൌ ቄ݂ ∶ ݂ሺ࢖ሻ ൌ ܿ଴ ൅ ∑ ܿ௜݌௜ ൅ ∑ ݀௜,௝݌௜݌௝
ே೑
௜ୀ௜,௝ୀ௜

ே೑
௜ୀଵ ቅ .           (4) 

The optimal values of the coefficients ܿ௜ and ݀௜,௝ for the 
forecast models considered here was found using the interior 
point (Frisch-Newton) algorithm [19]. 

The two steps described here – the translation of weather 
features into permeability estimates followed by a combination 
of permeability forecasts into conditional quantiles – can also 
be viewed as a feed-forward neural network with multiple 
input layers (one for each of the ௙ܰ forecasts) feeding one 
hidden layer that contains the vector ሺ̂݌ଵ, ,ଶ̂݌ … ,  ே೑ሻ. The output̂݌
layer of the network contains quantiles of the distribution of 
permeability as shown in Fig. 7. 

An example permeability forecast made using this 
methodology is shown in Fig. 8. The individual model inputs 
are shown in the top plot and display an overall drop in 
permeability across the airspace region. The bottom plot shows 
the resultant combined permeability forecast. The center line 
represents the median of expected permeability; the upper and 
lower curves that make up the prediction intervals are given by 
the 20th and 80th percentiles, respectively. With these choices of 
quantiles, we expect the prediction intervals to capture at least 
60% of all observations. This target for prediction interval 
accuracy is important when performing validation. The 
permeability forecast model was assessed using data from the 
summer of 2015 (recall training data came from the summers 
of 2013 and 2014). We begin by examining a case study, and 
then will provide performance statistics for the entire summer. 

Fig. 9 shows a sample of verification for a storm impacting 
New York airspace on 14 July 2015. This plot shows the 
sequence of 1, 4, and 8 hour permeability forecasts (including 
uncertainty bounds) made over a period of 60 hours (updating 
every 15 min).  The x-axis represents the valid time of each 
forecast. The thick black curve in each plot shows the observed 
permeability measured at each time. Not surprisingly, the 1 
hour forecast (top) shows greater skill and thinner prediction 
intervals than seen in the 4 hour and 8 hour forecasts.  
Prediction intervals generally become wider when the forecast 
intensifies (i.e., permeability drops into yellow and red 
regions). The main drop in permeability at roughly 2100 UTC 
was detected well across lead times, and the transition was 
mostly captured by the prediction intervals at 4 hour and 8 hour 
leads. At approximately 1600 UTC, the 8 hour forecast was 
late in detecting a drop in permeability, but quickly caught up 
when storms began to intensify. Both the 4 hour and 8 hour 
forecasts decayed the storms too quickly, as both had 
permeability returning to 100% earlier than what was observed.   

 

 





 

 
Figure 8.  Example permeability verification for 1 hour (top), 4 hour (center), and 8 hour (bottom) forecasts. 

 
Figure 9.  Example permeability verification for 1 hour (top), 4 hour (center), and 8 hour (bottom) forecasts. 



B. Forecast Model Assessment 

As one means to quantitatively assess model skill, the 
correlation coefficient r was used: 

ݎ ൌ
,	݌	൫ݒ݋ܿ 	݂0.5ሺ࢖ොሻ	൯ ොሻ࢖0.5ሺ݂ߪ௣ߪ

൘                                             (5) 

The correlation coefficient is a measure of how well the 
observed permeability is related to the median curve in the 
combined forecast. 

The square of the correlation coefficient, ݎଶ, for forecasts 
made in three disjoint airspace regions (Chicago, New York, 
and Washington, DC) is shown in Fig. 10 as a function of 
forecast lead time. Because the dataset is dominated by cases 
with no weather impact, cases with observed permeability of 
100% were removed prior to computing correlation, leaving 
approximately 6,000 forecasts per hourly forecast lead out to 
12 hours. In terms of correlation, the combined forecast offers 
a clear improvement over the permeability estimates derived 
from individual forecasts alone. This improvement is most 
striking in the 3-4 hour lead time. 

It interesting to examine the interrelationships between 
forecasts in the permeability model shown in Fig. 10. For short 
lead times, permeability measured from the extrapolation 
forecast dominates the other input forecasts, but quickly loses 
skill past 3 hours. As the skill of the extrapolation forecast 
drops, the HRRR and LAMP forecasts become the most 
skillful at predicting permeability. Permeability estimated from 
the SREF probabilistic forecast generally showed the least skill 
of the four forecasts considered here. We believe that this is 
mostly due to infrequent updating of the SREF (every 6 hours) 
compared to the other forecasts considered here (which are 
updated at least hourly). One conclusion is that frequently-
updating forecasts are better suited for estimating permeability 
than are forecasts that update infrequently. Note that the 
translation of weather forecasts into a specific metric 
(permeability) enables us to quantitatively compare model 
performance in terms of airspace impact. Such relationships 
have been postulated qualitatively in the past; this work 
represents the first known analysis providing a quantitative 

comparison of the relative performance of different forecast 
sources. 

V. OPERATIONAL FIELD EVALUATIONS 

The weather impact algorithms described above were 
implemented in a real-time decision support tool called Traffic 
Flow Impact (TFI) in 2014 - 2016. The primary display format 
for TFI (Fig. 11) includes the 0-8 hour CoSPA weather forecast 
shown graphically on the top, with a timeline of the impact 
category for the chosen airspace regions shown across the 
bottom in a manner similar to that used by the operational 
Route Availability Planning Tool (RAPT). Each row in the 
timeline represents a different airspace resource (Flow 
Constrained Area, FCA). 

Each column in the timeline along the bottom of Fig. 11 
represents the permeability impact category going out from 0 
to 12 hours using a three-color categorization scheme. 
Permeability values above 85 were colored green in the 
timeline cell (signifying minor impact), values between 50 – 85 
were colored yellow (moderate impact), and values less than 50 
were colored red (significant impact). In addition, the user 
could select a given FCA row and view a drill-down impact 
timeline, shown on the top left in Fig. 11. 

The objective of the summer operations observations was to 
gain valuable insight into the potential usefulness of the TFI 
permeability forecast and guide the development of the 
algorithms and validation process. Input from experienced 
operational traffic flow managers familiar with the complexity 
of the NAS and who perform the daily decision-making that 
impacts NAS performance is critical to developing future 
advanced methods and products. An initial, informal evaluation 
was conducted in the summer of 2014. At that time, the 
concept of TFI was shown to several traffic managers in the 
ATCSCC to gather initial feedback on the display and its 
functionality while the underlying algorithms were being 
further developed and matured. 

Formal field demonstrations of TFI were conducted  during 
the previous two convective seasons.  Once from 9 July 2015 
to 31 October 2015 and then again from 1 June to 31 October 
2016. These demonstrations involved FAA, National Weather 
Service, and commercial airlines.  During the field 
demonstrations, the 0-8 hour CoSPA weather forecasts were 
viewable by operational users via web-based displays such as 
that shown in Fig. 11. Given the importance of convective 

Figure 10.   Skill of individual and combined permeability forecasts 
Figure 11 Traffic Flow Impact (TFI) display.



forecasts to air traffic management in the New York 
metroplex, we conducted focused field operational evaluations 
covering eight  days when storms were forecast to develop 
across the Eastern U.S. Observers simultaneously visited four 
FAA ARTCCs (Boston, Washington DC, New York, and 
Cleveland) and the ATCSCC. Five airline operations centers 
(Delta, Southwest, American, United, and JetBlue) were also 
visited during field observations. Observers embedded at each 
facility documented the use of TFI in the strategic planning 
process for planning Airspace Flow Programs, Ground Delay 
Programs, and enhanced reroute planning. Since TFI was a 
new application available to traffic planners, personnel 
performed training during the months preceding the release 
and conducted additional in-situ training during the field 
observations as needed. Each time a user referred to, modified, 
or commented on TFI or other traffic management tools, the 
observer would record the time, event, and actions taken using 
a standardized data-entry form. 

More than 600 person-hours of observations were gathered 
across the five FAA and five airline facilities during the eight 
observation days. ATCSCC planners and specialists reviewed 
TFI on each of the mornings during the strategic planning 
period (approximately 1000-1600 UTC) to aid in developing 
collaborative traffic management decisions. A total of 124 
events were recorded in which personnel referred to or used 
TFI in traffic management discussions or decision-making. Of 
the 124 observed events, TFI was used to support general 
situation awareness 89 times, to determine parameters for 
AFPs 19 times, and in other activities (such as reroute 
planning) 16 times. Users were observed viewing the drill-
down plots of the TFI application in order to track the 
forecasted convective impact on the timeline. In particular, 
users specifically concentrated on the starting and ending times 
of forecasted convective events in order to determine the start 
time and duration of any TMIs that were going to be issued.  

Subjective feedback on TFI was also solicited from 47 
users at the end of each summer (17 in 2015 and 30 in 2016) 
using a survey form with a scale from 1 (strongly disagree) to 7 
(strongly agree) for each question. Fig. 12 shows the response 
distributions from two of the questions. As expected from a 
new concept implemented in a preliminary engineering 
configuration without formal integration into decision-making 
processes or training, the user responses were varied. Fig. 12 
(a) illustrates that the users generally agreed that TFI was 
helpful in understanding weather impacts, and (b) was helpful 
in facilitating discussions with other stakeholders. This 
feedback supports the general hypothesis that TFI can provide 
users with information that aids them in collaboratively 
evaluating weather impacts, but also points to the need to 
further explore how TFI-like information should be more 
explicitly integrated into traffic management workflows across 
stakeholders. It is also apparent that additional work is 
warranted to assess the best settings for thresholds of impact 
categories, and to ascertain how uncertainty information can 
best be displayed and applied in operational decision-making. 
In some cases, indications of large uncertainty may lead traffic 
managers to implement less aggressive but more flexible 
decisions so as to leave open opportunities to adjust as more 
information is gathered over time. 

VI. CONCLUSIONS  

This paper has presented the results of research to predict 
the impact of convective weather on operations using a flow-
based permeability measure.   The results have shown good 
agreement between the permeability estimate and measured 
flow rates for a major air traffic resource controlling flow 
east/west bound for the NY metro airports and for a terminal 
area around Chicago O’Hare International Airport. The 
permeability estimate forms the basis for a weather impact 
assessment that air traffic planners could use to anticipate the 
constraints on the air traffic control system and set rates as well 
as start times of traffic management initiates. 

By translating convective weather forecast information into 
the parameters used in selecting TMIs (e.g., time of onset, level 
of impact [permeability and flow rates], and duration), it is 
hypothesized that more effective and timely TMIs can be 
formulated and assessed in operations. Additionally, we 
believe that communicating forecast uncertainty as expressed 
using those same decision variables provides an objective, 
quantitative basis to better understand and communicate the 
risks and benefits of various levels of TMI strategies. However, 
more research and evaluation is needed to verify these 
hypotheses and ensure that decision support information meets 
user needs. 

Future model development should continue to validate the 
permeability estimates for a wide range of strategic flows 
through airspace resources with different configurations, traffic 
demands, and weather scenarios.  The validation methodology 
should also look at ways to measure and account for times 

Figure 12. Selected subjective responses. 

 



where high flow rates are maintained at the expense of higher 
controller workload.  This will be important to answer the 
question of whether the weather impact was managed through 
reduced flow rates or higher workload.  In the future, given 
objective forecasts from strategic weather forecast products 
such as CoSPA or SREF and a translation model, as described 
in this paper, it would be possible to develop disciplined TMI 
decision making methodologies to manage an appropriate flow 
rate while not overtaxing the air traffic control personnel. 
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