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Abstract—In the absence of opportunities for capacity expan-
sion or operational enhancements, air traffic congestion mitiga-
tion may require scheduling interventions aimed to control the
extent of over-capacity scheduling at busy airports. While existing
approaches have focused on minimizing the overall impact of
scheduling interventions across the airlines, this paper designs,
optimizes, and assesses a novel approach for airport scheduling
interventions that incorporates inter-airline equity objectives. It
relies on a lexicographic modeling architecture based on effi-
ciency (i.e., meeting airline scheduling preferences), equity (i.e.,
balancing scheduling adjustments fairly among the airlines), and
reliability (i.e., mitigating airport congestion) objectives, subject
to scheduling and network connectivity constraints. Theoretical
and computational results show that ignoring inter-airline equity
can lead to highly inequitable outcomes, but that our modeling
approach achieves inter-airline equity at no, or small, losses in
efficiency.

Keywords-airport demand management; efficiency-equity trade-
off; integer programming

I. INTRODUCTION

Many airports and air traffic management systems world-
wide have had to accommodate growing volumes of operations
with limited infrastructure capacity and operating capabilities.
To cope with this challenge, busy airports outside the United
States operate under a demand management regime known as
schedule coordination, which imposes strict limits on the num-
ber of flights that can be scheduled per hour (or any other unit
of time), and distribute a corresponding number of slots across
the different airlines through an administrative procedure [1].
In contrast, US airports have been subject to weak scheduling
constraints since the phase-out of the High Density Rule,
effective in 2007. This has created large imbalances between
schedules and capacity at the busiest airports, resulting in
severe congestion, whose nationwide impact was estimated at
over $30 billion for the year 2007 [2]. This has motivated the
imposition of “flight caps” at a few of the busiest airports,
including New York’s John F. Kennedy International Airport
(JFK), Newark International Airport (EWR), and LaGuardia
Airport (LGA). Given forecasts of significant air traffic growth
over the next 20 years [3], such demand management practices
are expected to remain a prominent lever to ensure adequate
levels of service at the busiest airports worldwide.

The topic of airport demand management has attracted
significant attention in the economics and operations research

literatures [4]. Proposed mechanisms fall into two broad
categories: (i) market-based approaches based on congestion
pricing [5, 6, 7] and slot auctions [8, 9], and (ii) administrative
approaches relying on non-monetary scheduling interventions
that propose adjustments to airlines’ preferred schedules of
flights in order to limit, or control, peak-hour scheduling levels
at busy airports. While market-based mechanisms could poten-
tially enhance social welfare, all existing demand management
practices are based on the administrative approach, both at
schedule-coordinated airports operating under the aegis of the
International Air Transport Association (IATA) and at US
airports operating under the “flight caps” regime.

Recent research has showed the potential to improve cur-
rent scheduling intervention practices under the administrative
approach to achieve adequate levels of congestion while min-
imizing deviations from airlines’ scheduling preferences. Sev-
eral papers have aimed to enhance the procedure at the IATA
schedule-coordinated airports to match airlines’ scheduling
requests as closely as possible [10, 11, 12]. In the US context,
marginal reductions in allocated capacity across the airlines
could reduce delays significantly, improve airline profitability
and enhance passenger welfare [13, 14]. This motivated recent
models of intra-day scheduling interventions, which optimized
congestion-mitigating adjustments in airline timetabling of
flights [15, 16]. On the negative side, all these existing ap-
proaches are focused exclusively on overall scheduling levels
at the airports, without considering explicitly the impact of
the interventions on the different airlines. In turn, they may
displace a disproportionate number of flights from one airline
(or a small number of airlines).

This paper provides an original approach that optimizes
scheduling interventions at busy airports in a way that achieves
reliability (i.e., on-time performance) objectives, minimizes
interference with airlines’ competitive scheduling and, for the
first time, balances the impact of such interventions equi-
tably among the airlines. This approach takes as inputs, (i)
capacity estimates at an airport under consideration, obtained
from historical records of operations, and (ii) a schedule of
flights requested by the airlines to a central decision-maker
(e.g., administratively appointed schedule coordinators at slot-
controlled airports, the Federal Aviation Administration (FAA)
in the United States). It then produces a schedule of flights



to reduce anticipated delays at the considered airport, while
minimizing the displacement from the schedule requested
by the airlines, and incorporating novel inter-airline equity
objectives.

In the aviation context, this builds upon recent developments
in Air Traffic Flow Management (ATFM). ATFM aims to
optimize the flows of aircraft at airports or through air traffic
control sectors over the day of operations to reduce local
imbalances between demand and capacity. Whereas early
ATFM developments were exclusively based on efficiency
objectives (minimizing total congestion costs), recent studies
have incorporated inter-airline equity considerations, aiming
to make the ATFM outcomes more acceptable to each airline
[17, 18, 19, 20, 21]. This paper aims to integrate similar
objectives into the optimization of scheduling interventions.
However, unlike ATFM, no standard of equity has been ac-
cepted in the industry with respect to scheduling interventions.
Moreover, scheduling interventions may result in flights being
rescheduled later or earlier than their preferred times requested
by the airlines. This contrasts with the situation in ATFM
where flights cannot be moved earlier than their scheduled
time. Thus, the ATFM schemes of ration-by-schedule and
schedule compression do not have any direct analogs in the
context of scheduling interventions. It is thus necessary to
propose new metrics of inter-airline equity and to develop new
modeling frameworks for scheduling interventions.

From a modeling standpoint, this paper builds upon the In-
tegrated Capacity Utilization and Scheduling Model (ICUSM)
from [16] that optimizes such interventions through temporal
shifts in demand (i.e., changes in intra-day flight timetabling),
and no reduction in overall demand (i.e., no change in the set
of flights scheduled in the day). It extends it in a way that
balances scheduling adjustments equitably among the airlines.
Specifically, this paper makes the following contributions:
• Quantifying and optimizing the trade space between

performance attributes for scheduling interventions. We
identify efficiency (i.e., meeting airline scheduling pref-
erences), equity (i.e., balancing scheduling adjustments
fairly among the airlines), and reliability (i.e., mitigating
airport congestion) as three performance attributes. We
develop quantitative indicators for each of them, using a
unified framework of scheduling interventions. We then
formulate a tractable lexicographic architecture to char-
acterize and optimize the trade space between efficiency,
equity, and reliability in airport scheduling interventions.

• Identify conditions under which efficiency and equity can
be jointly maximized. We summarize results showing
that, in the absence of network connections and in the
case where all flights are equally costly (or equally
inconvenient) to reschedule, efficiency and equity can be
jointly maximized when the imbalances between demand
and capacity are limited to non-consecutive periods in
the day, or when the schedules of flights of the different
airlines exhibit the same intra-day patterns. We then
describe instances where the schedules of flights, network
connections, or unequal flight valuations can give rise to

a trade-off between efficiency and equity.
• Generating and solving real-world full scale computa-

tional scenarios at the John F. Kennedy Airport (JFK).
We show that, under a wide range of realistic and
hypothetical scheduling conditions, the consideration of
efficiency-based objectives exclusively in airport schedul-
ing interventions may lead to highly inequitable out-
comes, but that inter-airline equity can be achieved at no
(or minimal) efficiency losses. This suggests that existing
approaches for scheduling interventions can be extended
to include inter-airline equity considerations.

In Section II, we formulate our model of scheduling
interventions with inter-airline equity considerations. Sec-
tion III summarizes some theoretical results that identify some
scheduling conditions under which efficiency and equity may
be jointly maximized, and, conversely, the conditions under
which a trade-off between these two objectives may arise. In
Section IV, we show computational results from a case study
at JFK Airport. Section V concludes.

II. MODEL DEVELOPMENT

We formulate our model’s inputs, decision variables, con-
straints, and objectives of reliability, efficiency, and inter-
airline equity. We then provide the solution architecture used
to solve this multi-criteria decision-making problem.

A. Inputs

We denote by Π the airport where the scheduling interven-
tions are considered. We consider the following sets:

T = {1, ..., T} = set of time periods, indexed by t
F = {1, ..., S} = set of flights, indexed by i or j

F arr/Fdep = set of flights arriving at/departing from Π

C ∈ F × F = set of connecting flight pairs (i, j)

A = set of airlines, indexed by {1, ..., A}
Fa = set of flights from airline a at airport Π

A connection refers to any pair of flights between which a
minimum and/or a maximum time must be maintained to
enable an aircraft or passengers to connect. Note that the set
of flights considered in the model may include flights that are
not scheduled to land or take off at the airport Π where the
scheduling interventions are applied, i.e., F arr ∪ Fdep may be
a strict subset of F . This arises from the need to maintain
feasible connections in a network of airports.

We also introduce the following parameters:

Sarr
it =

{
1 if i is scheduled to land no earlier than t
0 otherwise

Sdep
it =

{
1 if i is scheduled to take off no earlier than t
0 otherwise

tmin
ij = minimum connection time between i and j

tmax
ij = maximum connection time between i and j

λarr
t = limit on the number of arrivals at Π during t

λdep
t = limit on the number of departures at Π during t



vi = “valuation” of flight i

Note, first, that the limits on the number of scheduled
arrivals and departures λarr

t and λdep
t can be adjusted to

reflect various levels of scheduling interventions. At schedule-
coordinated airports, this corresponds to the values of the
declared capacity. Alternatively, they can also be determined
through the integration of on-time performance targets using
the procedure developed in [16].

The “flight valuations” vi aim to reflect airlines’ preferences
regarding which flights to reschedule, and which ones to
maintain at requested times. Flights with lower valuations
can be thought of as less “costly” to reschedule, or as the
flights that exhibit more timetabling flexibility. Note that this
setting captures the current paradigm under which “a flight is
a flight” with vi = 1 for all i. More broadly, this setting
captures potential extensions of existing mechanisms, such
as non-monetary processes that would allow the airlines to
indicate their preferences through ranking or credit allocation,
or auction-based mechanism where airlines would submit a
bid for each flight i. While the design of such mechanisms
is beyond the scope of this paper, our modeling approach
incorporates inter-airline equity objectives in instances with
either identical or differentiated flight valuations.

B. Variables

The model determines which flights to reschedule to later or
earlier times to minimize the displacement from the airlines’
preferred schedule of flights (as mentioned in the introduction,
no flight request is rejected by the model). This is modeled
with the following decision variables:

warr
it =

{
1 if i is rescheduled to land no earlier than t
0 otherwise

wdep
it =

{
1 if i is rescheduled to take off no earlier than t
0 otherwise

ui = displacement of i (in 15-minute periods)

Note that the variables warr
it and wdep

it take the form, for
each flight i, (1,...,1,0,...,0). By convention, we assume that
warr
i,T+1 = wdep

i,T+1 = 0,∀i ∈ F .
a) Constraints: The optimization is subject to schedul-

ing, network connectivity and schedule limits constraints.

warr
it ≥ warr

i,t+1 ∀i ∈ F ,∀t ∈ T (1)

wdep
it ≥ w

dep
i,t+1 ∀i ∈ F ,∀t ∈ T (2)

warr
i1 = 1 ∀i ∈ F (3)

wdep
i1 = 1 ∀i ∈ F (4)∑

t∈T
(warr

it − Sarr
it ) = ui ∀i ∈ F (5)∑

t∈T

(
wdep
it − S

dep
it

)
= ui ∀i ∈ F (6)∑

t∈T

(
wdep
jt − w

arr
it

)
≥ tmin

ij ∀(i, j) ∈ C (7)∑
t∈T

(
wdep
jt − w

arr
it

)
≤ tmax

ij ∀(i, j) ∈ C (8)

∑
i∈F arr

(
warr
it − warr

i,t+1

)
≤ λarr

t ∀t ∈ T (9)∑
i∈Fdep

(
wdep
it − w

dep
i,t+1

)
≤ λdep

t ∀t ∈ T (10)

Constraints (1) and (2) ensure that warr and wdep are non-
increasing in t, consistent with their definition. Constraints (3)
and (4) ensure that no flight is eliminated. Constraints (5)
and (6) define flight displacement as the difference between
rescheduled and original scheduled times, and ensure that
the scheduled block-times are left unchanged. Constraints (7)
and (8) maintain connection times within the specified ranges.
Constraints (9) and (10) ensure that the number of scheduled
arrivals and departures do not exceed their respective allowable
limits λarr

t and λdep
t .

C. Objectives

We consider the following three performance attributes of
scheduling interventions: efficiency, inter-airline equity, and
reliability.

a) Efficiency: This refers to the ability to meet airline
scheduling preferences. Since no flight is eliminated, effi-
ciency is measured by the displacement from the schedule of
flights requested by the airlines. We consider two efficiency
objectives: (i) min-max efficiency, defined as the largest dis-
placement sustained by any flight and denoted by δ, and (ii)
weighted efficiency, defined as the weighted sum of schedule
displacements sustained by all flights, and denoted by ∆.

δ = max
i∈F
|ui| =⇒ min δ (11)

∆ =
∑
i∈F

vi |ui| =⇒ min ∆ (12)

b) Inter-airline Equity: This refers to the ability to
balance schedule displacement fairly among the airlines. We
describe each airline’s disutility as the weighted average of
per-flight displacements, denoted by σa. Perfect equity is
achieved when the weighted sum of displacements borne by
any airline is proportional to its number of flights scheduled
at airport Π, i.e., when the weighted average of per-flight
displacements is the same for all airlines. In order to maximize
inter-airline equity, we minimize airline disutilities lexico-
graphically, i.e., we first minimize the largest airline disutility
(i.e., the largest weighted average per-flight displacements
borne by any airline), then the second-largest, etc. This extends
the min-max equity formulation proposed in [22, 23].

σa =
1

|Fa|
∑
i∈Fa

vi |ui| ,∀a ∈ A =⇒ lex minσ (13)

We denote the largest airline disutility by Φ:

Φ = max
a∈A

σa (14)

c) Reliability: This refers to the ability to mitigate airport
congestion. Airport delays can be quantified as a function of
flight schedules and airport capacity by means of a queuing
model. In this paper, we use the model developed in [24],



which captures the variations in the number of arrivals and
departures scheduled over the course of the day and their
impact on the utilization of airport capacity by air traffic
controllers. Since airport capacity patterns are fixed, this
essentially provides a relationship between the number of
flights scheduled (determined by the limits λarr

t and λdep
t ) and

the resulting expected arrival and departure delays over the
course of the day.

D. Lexicographic Modeling Approach

We characterize the trade space between efficiency, equity,
and reliability by determining its Pareto frontier, i.e., the set
of solutions such that no other feasible solution could improve
at least one of the three objectives without worsening at least
one of others. This representation of the trade space is flexible
enough to be used by system managers and policy makers
to select the most appropriate level of compromise between
these objectives. To this end, we develop a lexicographic
optimization approach that (i) fixes scheduling limits (hence,
reliability targets); (ii) maximizes efficiency under schedule
limits; and (iii) maximizes equity under schedule limits and
efficiency targets.

First, we fix the schedule limits λarr
t and λdep

t with respect to
reliability objectives. We then aim to find the “best” schedule
(in terms of efficiency and equity) that meets these constraints.

Second, we determine the schedule of flights that maxi-
mizes efficiency, subject to scheduling constraints, network
connectivity constraints, and schedule limits constraints. We
formulate the efficiency-maximizing problem by lexicograph-
ically maximizing, first, min-max efficiency δ, and, second,
weighted efficiency ∆. This is motivated by the objective of
avoiding large flight displacements, and consistent with the
literature on this topic [15, 16]. This is expressed in Problems
P1 and P2 described below:

a) P1: We minimize min-max efficiency metric δ, sub-
ject to scheduling, network connectivity and schedule limits
constraints. We denote by δ∗ its optimal value.

min δ

s.t. Constraints (1) to (10)

b) P2: We minimize weighted efficiency metric ∆, sub-
ject to scheduling, network connectivity and schedule limits
constraints, and subject to the constraint that no flight may
be displaced by more than δ∗. We denote by ∆∗ its optimal
value.

min ∆

s.t. Constraints (1) to (10)
Min-max efficiency: |ui| ≤ δ∗,∀i ∈ F

Third, we maximize inter-airline equity, subject to schedul-
ing constraints, network connectivity constraints, schedule
limits constraints, and efficiency targets. This is formulated
in the class of problems P3(ρ) described below:

c) P3(ρ): We fix efficiency targets, and we lexicograph-
ically minimize airline disutilities, subject to scheduling, net-
work connectivity, schedule limits, and efficiency constraints.
We characterize the trade space between efficiency and equity
by varying the efficiency target. Specifically, we impose that
min-max efficiency must be optimal (i.e., no flight may be
rescheduled by more than δ∗) and we denote by ρ ∈ [0,∞)
the relative loss in weighted efficiency that is allowed (i.e., the
weighted displacement must not exceed (1 + ρ)∆∗). When
ρ = ∞, we only maximize equity (without any weighted
efficiency consideration). When ρ = 0, we maximize equity,
under optimal min-max and optimal weighted efficiency.

lex min σ

s.t. Constraints (1) to (10)
Min-max efficiency: |ui| ≤ δ∗,∀i ∈ F

Weighted efficiency:
∑
i∈F

vi |ui| ≤ (1 + ρ) ∆∗

Problems P1, P2, and P3(ρ) together determine the Pareto
frontier of the trade space between efficiency, equity, and
reliability. First, variations in the schedule limits λarr

t and
λdep
t quantify the trade-off between the costs of scheduling

interventions (in terms of inefficiency and inequity) and delay
reductions. Second, for any schedule limits λarr

t and λdep
t ,

varying the parameter ρ quantifies the potential trade-off
between weighted efficiency and inter-airline equity (under
optimal min-max efficiency).

We denote by σ∗(ρ) the equity-maximizing vector of
airline per-flight displacements, as a function of ρ, and
Φ∗(ρ) = maxa∈A σ

∗
a(ρ). We denote by ∆eq the smallest

equity-maximizing value of ∆, and by ρ∗ the minimum loss
in weighted efficiency required to attain optimal equity (i.e.,
∆eq = (1 + ρ∗)∆∗). With these notations, the “price of
efficiency” and the “price of equity” will be characterized by
Peff = Φ∗(0)−Φ∗(∞)

Φ∗(∞) , and by Peq = ∆eq−∆∗

∆∗ = ρ∗, respectively.
They correspond to the relative loss in one objective when the
other one is optimized.

Figure 1 illustrates our approach to maximizing weighted
efficiency and inter-airline equity, for given schedule limits
λarr
t and λdep

t , and the optimal value of min-max efficiency δ∗.
Specifically, it shows hypothetical variations in three airlines’
disutilities (σ1, σ2, and σ3) as a function of the weighted
efficiency target ∆ = (1 + ρ)∆∗. By construction, the region
on the left side of ∆∗ is infeasible, i.e., the weighted schedule
displacement must be at least ∆∗. Moreover, the largest airline
disutility Φ is a non-increasing function of the value of
weighted efficiency ∆ (i.e., of ρ). Note that the other airlines’
utilities (here, σ2 and σ3) may increase or decrease as Φ is
reduced. As the largest airline disutility Φ attains its optimal
value, the second-largest disutility may still be larger than
its optimal value. In this case, further increases in ρ may
yield further improvements in the lexicographic minimization
of airline disutilities. Optimal equity is attained when the
largest, second largest, third largest, etc., airline disutilities
have all reached their optimal values (i.e., the values that
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Fig. 1: Schematic trade space between efficiency and equity

would be obtained without any efficiency consideration, or
with ρ =∞). This representation shows the price of efficiency
and the price of equity as the relative difference between
Φ∗(∞) and Φ(0) and between ∆∗ and ∆eq, respectively. Note
that Figure 1 shows an instance where the order of airline
disutilities remains identical for all values of ρ (i.e., in this
case, σ∗1(ρ) > σ∗2(ρ) > σ∗3(ρ),∀ρ ≥ 0), but this need not be
the case (i.e., the curves may intersect).

III. EFFICIENCY/EQUITY TRADE-OFF

In this section, we summarize some theoretical results that
identify some conditions on the scheduling inputs provided by
the airlines under which efficiency and equity can be jointly
optimized and, conversely, some conditions where a trade-off
arises between the two objectives. Further details on these
results can be found in [25].

We consider the case where: (i) no network connections
need to be maintained (C = ∅) and (ii) all flights are equally
valued (vi = 1,∀i ∈ F). We denote by Darr

t and Ddep
t

the number of arrivals and departures, respectively, scheduled
during period t before the scheduling interventions, i.e., Darr

t =∑
i∈F

(
Sarr
it − Sarr

i,t+1

)
and Ddep

t =
∑
i∈F

(
Sdep
it − S

dep
i,t+1

)
.

Similarly, we denote by Darr
at and Ddep

at the number of arrivals
and departures, respectively, scheduled by airline a during
period t,so

∑
a∈AD

arr
at = Darr

t and
∑
a∈AD

dep
at = Ddep

t for
all t ∈ T .

Proposition 1 shows that efficiency and equity can be jointly
maximized if the number of flight arrivals and the number of
flight departures scheduled over any set of three consecutive
time periods is lower than the total number of arrivals and
departures, respectively, that can be scheduled over the same
three periods.

Proposition 1: If
∑t+1
l=t−1D

arr
l ≤

∑t+1
l=t−1 λ

arr
l ,∀t ∈ T and∑t+1

l=t−1D
dep
l ≤

∑t+1
l=t−1 λ

dep
l ,∀t ∈ T , then there exists a

solution that simultaneously maximizes efficiency and inter-
airline equity.

Proposition 2 shows that efficiency and equity can be jointly
maximized if each airline’s share of flights is identical across
all periods. Specifically, we assume that the number of arrivals
(resp. departures) scheduled by each airline a during each
period t is the product of an airline-related factor αarr

a (resp.
αdep
a ) and a period-related factor βarr

t (resp. βdep
t ). In that

case, there is significant flexibility in terms of the airlines
whose flights should be rescheduled, which enables equity-
maximization at no efficiency loss.

Proposition 2: If there exist integers
(
αarr
a

)
a∈A

,
(
βarr
t

)
t∈T

,(
αdep
a

)
a∈A

and
(
βdep
t

)
t∈T

such that Darr
at = αarr

a β
arr
t and

Ddep
at = αdep

a βdep
t for all a ∈ A, t ∈ T , then there exists a

solution that simultaneously maximizes efficiency and inter-
airline equity.

The conditions of these two propositions are illustrated
in Figure 2 (for the schedule of arrivals or the schedule of
departures). Under the conditions of Proposition 1 (Figure 2a),
the imbalances between demand and capacity are small enough
so no time period is such that some flights get displaced to
that period and some other flights get displaced from that
period. Under the conditions of Proposition 2 (Figure 2b),
the schedules of flights of the airlines exhibit the same intra-
day variations. Even though these conditions are usually not
exactly satisfied in practice, our computational experiments

(a) Proposition 1

(b) Proposition 2
Fig. 2: Example of scheduling conditions of Propositions 1 and 2



reported in Section IV show that the insights derived in these
two cases can be relevant and applicable in practical settings.

Conversely, a trade-off between efficiency and equity might
arise through (i) inter-airline variations in intra-day flight
schedule patterns (we refer to it simply by ‘differentiated
schedules’), (ii) network connections, and (iii) intra-airline
variations in flight valuations (we refer to it simply by ‘differ-
entiated valuations’). These conditions are shown in Figure 3
and discussed below.

Figure 3a shows that weighted efficiency and equity may
not be jointly maximized with differentiated airline schedules,
in a 7-period case with 2 airlines and 26 flights per airline, and
a simple capacity constraint that ensures that no more than 10
flights may be scheduled per period. We assume that all flights

(a) Differentiated schedules

(b) Network connections

(c) Differentiated valuations
Fig. 3: Example of conditions with an efficiency/equity trade-off

are valued equally and that there are no connections. We also
assume that airline 1’s flights (shown in red) are concentrated
at later periods, and airline 2’s flights (shown in green) are
concentrated at earlier periods. Since capacity is only eceeded
during period 5, when all flights scheduled are airline 1’s
flights, efficiency would be maximized by displacing 2 flights
from period 5 and 2 flights from period 6 (all from airline 1) to
later times, by 1 period each. The resulting total displacement
is equal to 4 periods, and the airline disutilities are equal to
4/26 for airline 1 and 0 for airline 2. In contrast, equity is
maximized by displacing 3 flights of each airline to earlier
times, by 1 period each (2 flights from airline 1 from period 5
to period 4; 1 flight from each airline from period 4 to period
3; 2 flights from airline 2 from period 3 to period 2). The
resulting total displacement is equal to 6 periods, and each
airline’s disutility is equal to 3/26.

Figure 3b shows that weighted efficiency and equity may
not be jointly optimized with network connections, with 5
periods, 2 airlines with 13 flights each, and a capacity of
6 flights per period. We represent connections by dashed,
gray “links” between flight pairs, and we assume that each
connection requires a 2-period interval between the flights in
the connection at a minimum. Airline 2’s network involves
a number of connections, whereas airline 1’s network has
no connections. In this case, efficiency is maximized by
displacing 4 of airline 1’s flights (from period 4 to period
3) by 1 period each. The resulting total displacement is equal
to 4 periods, and the airline disutilities are equal to 4/13 for
airline 1 and 0 for airline 2. In contrast, equity is maximized
by displacing 3 flights of each airline, by 1 period each (only
3 flights from airline 1 from period 4 to period 3, as well as
one flight from airline 2 from period 4 to period 3 and 2 flights
from airline 2 from period 2 to period 1 to maintain 2-period
connection times). The resulting total displacement is equal to
6 periods, and each airline’s disutility is equal to 3/13.

Figure 3c shows that weighted efficiency and equity may
not be jointly optimized with differentiated flight valuations,
with 5 periods, 2 airlines with 10 flights each, and a capacity
of 6 flights per period. Every flight has a value vi = 1, except
the 6 flights from airline 1 in period 3, three of which have a
value vi = 0.1 each, and the other three have a value vi = 1.9
each. Efficiency is maximized by displacing the three flights
of value vi = 0.1 and three flights of value vi = 1 from period
3. The optimal value of the weighted displacement is equal to
3.3 and the airline disutilities are equal to 0.3/10 for airline
1 and to 3/10 for airline 2. In contrast, equity is maximized
by displacing four flights of airline 1 (the 3 flights with value
0.1 and one flight with value 1.9) and two flights of airline
2 (with value 1 each). The weighted displacement is equal to
4.2 and the airline disutilities are equal to 2.2/10 for airline 1
and to 2/10 for airline 2.

IV. COMPUTATIONAL RESULTS

We implement the models developed in Section II for a case
study at JFK Airport. We show that, in realistic instances, inter-
airline equity can be significantly improved at no (or minimal)



efficiency losses if flights are equally valued. We then show
that significant equity gains can be obtained even under dif-
ferentiated flight valuations, at small losses in efficiency. The
price of equity is consistently significantly smaller than the
price of efficiency even under differentiated flight valuations.

A. Experimental Setup

We consider data from September 18, 2007 at the John
F. Kennedy Airport (JFK), one of the busiest US airports
with a peaked schedule of flights that offers opportunities
for delay reductions through scheduling interventions. Since
no scheduling interventions were in place at JFK in 2007,
it is representative of airlines’ scheduling preferences. Flight
schedules were obtained from the Aviation System Perfor-
mance Metrics (ASPM) database [26]. We consider four
groups of airlines: (i) Delta Airlines (DAL) and its regional
partners (which operated a total of 320 flights on 09/18/2007 at
JFK), (ii) American Airlines (AAL) and its regional partners
(260 flights), (iii) JetBlue Airways (JBU) (174 flights), and
(iv) all other airlines, each of which represents a smaller share
of traffic at JFK (408 flights combined). These scheduling
data were used to construct sets F , F arr, Fdep, Fa, Sarr, and
Sdep. We reconstructed aircraft and passenger connections to
determine C, tmin, and tmax using the ASPM database [26], the
minimum aircraft turnaround times estimated in [27], and the
passenger connections database developed in [28].

To determine the schedule limits λarr
t and λdep

t , we used the
results from [16]. This approach starts with airport capacity
estimates, i.e., estimates of the average number of arrivals
and departures that can be operated per unit of time, obtained
from [29]. With the actual schedule of flights on 09/18/2007,
the peak expected arrival and departure queue lengths are
equal to 14.6 aircraft and 28.1 aircraft, respectively—obtained
using the model of airport congestion from [24]. By vary-
ing on-time performance objectives (expressed as maximum
allowable targets for expected arrival and departure queue
lengths), we obtain a variety of values of λarr

t and λdep
t . In this

section, we name “Test 1”, “Test 2”, “Test 3” and “Test 4”
four computational tests with increasingly stringent on-time
performance targets and corresponding progressively lower
values of the schedule limits. Details can be found in [25].

B. Results under Uniform Flight Valuations

We first consider the case where all flights are equally
valued, i.e., vi = 1,∀i ∈ F . This corresponds to current
practice, where the airlines do not provide any inputs on
relative timetabling flexibility of their flights, and scheduling
interventions are thus performed under the “a flight is a
flight” paradigm. We compare the results obtained under an
efficiency-maximization objective (Problems P1 and P2) to
those obtained with the various levels of inter-airline equity
objectives (Problems P3(ρ)). This comparison thus shows
the extent to which inter-airline equity can be achieved in
scheduling interventions under realistic conditions.

Note that the solution of Problem P2 is arbitrarily “chosen”
by the optimization solver from the set of (possibly) multiple

optimal solutions. In order to characterize the equity range
among efficiency-maximizing solutions, we also determine the
solution which minimizes inter-airline equity, i.e., which lexi-
cographically maximizes airline disutilities, while ensuring the
optimal value of efficiency. This characterizes the efficiency-
maximizing solution that performs the worst in terms of inter-
airline equity. We denote this problem by P2.

Table I shows, for each of the four tests, the total schedule
displacement faced by each airline (that is, the number of
its flights displaced by 15 minutes each, as the maximum
displacement δ∗ is equal to 1 15-minute period in all our case
studies), and each airline’s disutility (i.e., its weighted average
per-flight displacement) for Problems P2, P2 and P3(ρ∗). It
also reports the ratio of the largest to smallest airline disutility.
As the schedule limits become smaller, the resulting schedule
displacement increases, as noted by [16], but these results
show that, for any test considered, the modeling approach
developed in this paper provides strong equity gains at no
loss in efficiency. Note, first, that Problem P2 results in max-
min ratios maxa σa

mina σa
ranging between 10 and 50. For the cases

considered, AAL and JBU tend to be much more signifi-
cantly penalized than DAL, which is reflected through more
of their flights being rescheduled and through much higher
disutility values. The set of efficiency-maximizing solutions
thus contains highly inequitable outcomes. Problem P2 does
not result in the most inequitable outcome in that set, but
provides solutions that still impact some airlines (here, AAL,
JBU and the “other” airlines) more negatively than others
(here, DAL). Inter-airline equity is achieved only by solving
Problem P3(ρ∗). In that case, airline disutilities are much
closer to each other than those obtained by solving Problems
P2 and P2. Note that the differences in airlines’ schedules
of flights and network connectivities result in all four airlines
not having the exact same disutility, but differences are very
small (i.e., the max-min ratio maxa σa

mina σa
is very close to 1)

under the equitable solution. Most importantly, the equity-
maximizing solution (Problem P3(ρ∗)) results in the same total
displacement as the efficiency-maximizing solution (Problem
P2) in all cases considered. Only the distribution of schedule
displacement across the airlines is modified. In other words,
efficiency and equity can be jointly maximized, and the price
of equity (ρ∗) and the price of efficiency are both zero.

Therefore, joint optimization of efficiency and equity is
achievable under current schedules of flights and uniform flight
valuations (which is the assumption widely used in current
practice). In light of the results from Section III, this suggests
that inter-airline variations in flight schedules and network
connectivities are relatively weak and do not create, by them-
selves, a trade-off between efficiency and equity. This is due to
the fact that peak-hour schedules typically include flights from
several airlines and the schedules of all airlines exhibit network
connections to some extent (so the situations depicted in
Figures 3a and 3b are not typical of actual scheduling patterns
at busy airports). Under these conditions, incorporating inter-
airline equity objectives in scheduling interventions can thus
yield significant benefits by balancing scheduling adjustments



TABLE I: Number of flights displaced and airline disutilities per airline under uniform flight valuations

Number of flights displaced Disutility: σa = 1
|Fa|

∑
i∈Fa |ui|

Test Model DAL AAL JBU Others All DAL AAL JBU Others maxa σa
mina σa

Test 1 P2 1 13 1 5 20 0.3% 5.0% 0.6% 1.2% 16.00
P2 1 9 2 8 20 0.3% 3.5% 1.1% 2.0% 11.08

P3(ρ∗) 4 5 3 8 20 1.3% 1.9% 1.7% 2.0% 1.57

Test 2 P2 1 29 9 7 46 0.3% 11.2% 5.2% 1.7% 35.69
P2 7 18 8 13 46 2.2% 6.9% 4.6% 3.2% 3.16

P3(ρ∗) 13 10 7 16 46 4.1% 3.8% 4.0% 3.9% 1.06

Test 3 P2 1 28 27 9 65 0.3% 10.8% 15.5% 2.2% 49.66
P2 10 27 10 18 65 3.1% 10.4% 5.7% 4.4% 3.32

P3(ρ∗) 18 14 10 23 65 5.6% 5.4% 5.7% 5.6% 1.07

Test 4 P2 37 113 39 17 206 11.6% 43.5% 22.4% 4.2% 10.43
P2 50 57 32 67 206 15.6% 21.9% 18.4% 16.4% 1.40

P3(ρ∗) 57 46 31 72 206 17.8% 17.7% 17.8% 17.6% 1.01

more fairly among the airlines at no efficiency losses.

C. Results under Differentiated Flight Valuations

We now consider the case where all flights are not equally
valued, and compare the outcomes of scheduling interventions
when only the efficiency objectives are considered to the
outcomes when equity objectives are also considered. This
captures potential extensions of existing and other previously
proposed mechanisms for airport scheduling interventions that
would allow the airlines to provide the relative timetabling
flexibility of their flights (e.g., auction, credit-based mecha-
nism). Since the flight valuations rely on information that is
often private to the airlines and since they are challenging
to estimate using available public data, we use a sampling
approach to simulate them. Specifically, we consider the case
where the average flight valuation is identical for all airlines,
to identify the impact of the distribution of flights valuations.

We keep the average flight valuation of all airlines equal to 1
(without loss of generality), and vary the distribution of flight
valuations for one given airline a. We set vi = 1,∀i /∈ Fa. We
partition the set of flights Fa of airline a into two subsets F (1)

a

and F (2)
a such that F (1)

a ∩F (2)
a = ∅ and F (1)

a ∪F (2)
a = Fa. We

can think of F (1)
a (resp. F (2)

a ) as the set of the more flexible
flights (resp. the less flexible flights) of airline a. We choose
to represent the valuations of the flights in F (1)

a (resp. F (2)
a )

by a Gamma distribution Γ1(µ1, k) (resp. Γ2(µ2, k)) with
mean µ1 (resp. µ2) and shape parameter k, with µ1 < µ2. We
adjust the shape parameter of these distributions such that the
95th percentile of the former distribution coincides with the
5th percentile of the latter. These choices of distributions and
parameters are made in order to provide a transparent and
flexible bimodal characterization of flight valuations such that
the valuations of flights in F (1)

a are, in most cases, lower than
the valuations of flights in F (2)

a . Finally, we set the values

of flights in F (1)
a (resp. F (2)

a ) equal to Θ−1
1

(
1/(∣∣∣F(1)

a

∣∣∣+1
)),

Θ−1
1

(
2/(∣∣∣F(1)

a

∣∣∣+1
)), ..., Θ−1

1

(
|F(1)
a |/(∣∣∣F(1)

a

∣∣∣+1
))(

resp. Θ−1
2

(
1/(∣∣∣F(2)

a

∣∣∣+1
)),Θ−1

2

(
2/(∣∣∣F(2)

a

∣∣∣+1
)), ...,

Θ−1
2

(
|F(2)
a |/(∣∣∣F(2)

a

∣∣∣+1
))), where Θ1 (resp. Θ2) denotes

the cumulative distribution function of Γ1(µ1, k) (resp.
Γ2(µ2, k)). This sampling strategy ensures that the resulting
set of flight valuations is distributed “smoothly” across
the distributions considered without sampling these values
multiple times. For each airline, we vary two parameters:

(i) the fraction of flights in F (1)
a , denoted by η =

|F(1)
a |
|Fa| (so

that 1− η =
|F(2)
a |
|Fa| ), and (ii) the mean valuations of flights in

F (1)
a , i.e., µ1 (such that ηµ1 + (1 − η)µ2 = 1). Within each

set, F (1)
a and F (2)

a , we sort flights from the least valuable to
the most valuable using 10 random permutations. In other
words, the 10 tests have the same sets of flight valuations,
but differ in terms of which actual flights are more flexible
and which are less flexible.

Table II shows results (in Test 4, which corresponds to the
most stringent schedule limits) under different sets of flight
valuations provided by DAL (left) and AAL (right)—similar
results are obtained by varying the flight valuations provided
by the other airlines. The first row provides a baseline where
all flights are equally valued (i.e., vi = 1,∀i ∈ F). In the top
half, we assume that F (1)

a and F (2)
a both comprise 50% of

the flights from DAL or AAL, and we progressively increase
the valuation differential µ2 − µ1. In the bottom half, we fix
µ1 = 0.75 and we progressively decrease the proportion of
flights in F (1)

a (and we thus decrease µ2 to ensure that ηµ1 +
(1 − η)µ2 = 1). Table II reports, in each scenario, the total
schedule displacement

∑
i∈Fa |ui| of each airline a obtained

in the equity-maximizing scenario (i.e., Problem P3(ρ∗)), as
well as the prices of equity and efficiency, averaged across all
10 samples.

The observations from variations in µ2 − µ1 (top) and in
η (bottom) are threefold. First, as an airline’s flight valua-
tions become more differentiated, the displacement of this
airline’s schedule increases. In turn, flight valuations create,
for each airline, a trade-off between prioritizing which flights
get rescheduled, on the one hand, and minimizing their total
displacement, on the other hand. Second, as the variance
in any airline’s flight valuations increases, other airlines’



displacements do not change significantly (in fact, sometimes
they decrease a little). In other words, the model can account
for any airline’s scheduling preferences without negatively
impacting the other airlines. Third, the price of equity is much
smaller than the price of efficiency across all the scenarios
considered, therefore indicating strong gains in inter-airline
equity at small efficiency losses.

V. CONCLUSION

Any airport demand management scheme involves a
trade-off between mitigating airport congestion, on the one
hand, and minimizing interference with airlines’ competitive
scheduling, on the other hand. In this paper, we have devel-
oped, optimized and assessed models for airport scheduling
interventions that, for the first time, incorporate inter-airline
equity considerations. Theoretical and computational results
have shown that, under a wide range of realistic and hypo-
thetical scenarios, inter-airline equity can be achieved at no,
or small, efficiency losses. In other words, achieving maximum
equity requires a small sacrifice (if any) in terms of efficiency
losses. On the other hand, for some of our computational
scenarios, our results showed that ignoring inter-airline equity
(i.e., considering efficiency-based objectives exclusively, or, in
some cases, requiring maximum efficiency) may lead to highly
inequitable outcomes. This further highlights that it is critical
to explicitly incorporate inter-airline equity objectives in the
optimization of scheduling interventions. In turn, this offers the
potential to extend existing approaches to airport demand man-
agement (either the schedule coordination practices in place
at busy airports outside the United States, or the scheduling
practices at a few of the busiest US airports where flight caps
are in place) in a way that balances scheduling interventions
fairly among the airlines, thus considerably enhancing their
applicability in practice.
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