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Abstract— A dual-component ground holding (GH) algorithm 

based on real-time air traffic classification and offline ground 

holding program parameter optimization is proposed. Numerical 

simulations are developed to quantitatively evaluate this new 

concept. GH program performance is evaluated based on airborne 

delay, ground delay, and lost throughput costs. Preliminary results 

show that the developed machine-learning-based traffic pattern 

classifier can propose ground holding control parameters which 

would result in savings within mean absolute percentage error of 

17.96% of the potential optimal ones. 
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I. INTRODUCTION 

During nominal operations, flights are scheduled so that 
demand does not exceed capacity at neither the departure nor the 
arrival airport. Weather uncertainty and unexpected passenger 
or aircraft troubles, however, often lead to uncoordinated 
demand and cause congestions in the arrival flow. In order to 
manage such congestions at the arrival airport, some flights can 
be held on the ground at the departure airport. This traffic 
management initiative, called ground holding (GH) or ground 
delay, is meant to reduce airborne holding, thus leading to fuel 
savings, lower air traffic controllers’ workload and higher safety. 
When GH is modeled as a completely deterministic problem, the 
optimal time for which a flight needs to be delayed at the origin 
airport can be calculated accurately. In reality, however, traffic 
flow includes many uncertainties, such as departure time errors 
and flight time errors, which makes the GH problem a 
probabilistic one. If the calculated GH is too short, the flight will 
still have to spend unnecessary time in the air, thus burning fuel 
and occupying airspace. On the other hand, if the calculated GH 
is too long, the flight will be able to land without any holding in 
the air, but landing capacity (throughput efficiency), will be lost. 
Finding the balance between those two is the key to the GH 
problem.  

The most common approaches to the GH problem are 1) 
either set a constant buffer (maximum allowed value for the 
airborne delay) regardless of the specific traffic situation, which 
can then be somewhat adjusted for each flight manually by air 
traffic controllers, or 2) using complex dynamic models which 
include real-time optimization and, in most cases, require time-
based management. Cox and Kochenderfer [1] showed that the 
dynamic approach (2) outperforms the static approach (1) in 

simulation, but it is often difficult to implement in real 
environment. Our preliminary discussions with involved parties 
also confirmed that complex dynamic solutions are hard to 
implement in a still human-centered air traffic management. 

On the other hand, recent technological advances have 
widened the opportunities for data collection and analysis, thus 
triggering more intensive data-driven research in the air traffic 
management field. EUROCONTROL’s researchers have shown 
that machine learning (in particular deep learning) combined 
with traditional prediction methods can tackle route uncertainty 
with success, thus increasing the trajectory prediction accuracy 
and overall ATM system performance [2]. Predicting delays is 
of key importance for air traffic flow management, so naturally 
data-driven research in this field can also be seen [3].   

Data-driven research for ground holding program 
optimization is most often based on the so-called “similar days” 
concept [4], [5], [6], [7]. Essentially, such researches aim at 
identifying similar days in the past data available, so that they 
can provide hints on the potential performance of the ground 
delay program applied on the target day.     

Estes, Ball and Lovell [5] proposed a black-box-like tool 
which can help the decision-makers with ground delay planning. 
The key strength of their tool lies in the fact that it does not 
require any explicit modeling of the airspace system, but relies 
on finding similar days in the data and makes predictions based 
on the data (ground delay program’s performance metrics) 
available for those similar days. Their research provided strong 
foundation of machine learning applications to the GH problem. 
They also mentioned that similar approach can be used by 
decision-makers to help them “propose GDPs and receive 
estimates of the predicted performance”.  

Our research aims in the same direction as Estes, Ball and 
Lovell’s work. We look for efficient ways to help air decision-
makers to plan traffic management initiatives, in particular 
ground holding assignments. The lack of sufficient data, 
however, does not allow us to apply the same approach as the 
one proposed in [5]. Instead, we build a simulated database 
based on numerical simulation of ground holding program 
practiced in Japan, i.e. the constant buffer method. We evaluate 
each GH control based on airborne delay costs, ground delay 
costs, and lost throughput costs. The lost throughput cost 
corresponds to the capacity utilization metric introduced by Liu 
and Hansen [8]. We then develop a traffic pattern classifier 



which predicts the optimal ground holding control parameters 
based on traffic features. Our approach will allow us to simulate 
both past and future traffic initiatives, and thus be used in 
immediate as well as long-term, tactical level planning and 
performance analysis.   

The rest of the paper is organized as follows. The operational 
concept and basic principles governing the development of the 
proposed classifier are presented in Section II. The numerical 
simulations developed to generate the ground holding control 
database are shown in Section III. The design and feasibility 
testing of the proposed traffic pattern classifier are presented in 
Section IV. We finish with some concluding remarks and 
discuss directions for future study in Section V.  

II. OPERATIONAL CONCEPT 

A. Overall concept 

The long-term goal of this research is to develop a ground 
holding algorithm based on real-time air traffic pattern 
classification and off-line buffer optimization. The operational 
concept is shown in Figure 1. The input of the real-time 
component consists of traffic features, which might include the 
initial ETA queue or the corresponding traffic density, 
uncertainties related to departure and flight times, as well as 
capacity prediction. Weather information is also considered part 
of the traffic features, and can be handles as raw information (for 
example, current and predicted wind, visibility, etc.) or 
translated into some of the components mentioned above (for 
example, bad weather is likely to result in high departure and 
flight time uncertainties, and reduced capacity). The traffic 
pattern classifier feeds the traffic features into a pre-trained 
machine learning algorithm to determine the class to which the 
current traffic most likely belongs to. Each class is characterized 
by the potential results of the ground holding when performed 
for this class’s traffic and the optimal ground holding decision 
parameters associated with it. For example, Class A might mean 
high effect of the ground holding program, i.e. traffic should be 
managed through ground holding to achieve fuel burn savings, 
reduction of air traffic controllers’ workload and increased air 
traffic safety; Class B, on the other hand, might mean that the 
effect of ground holding cannot compensate for uncertainties in 
the environment and the air traffic managers are therefore not 
advised to enforce ground holding program. Once the traffic is 
classified, the optimal ground holding parameters will be 
extracted from a database created beforehand. This database is 
the output of the off-line component of the algorithm. Based on 
the ground holding optimal control parameters, departure times 
can be assigned to each flight part of the ground holding program.    

B. Basic principles 

The proposed ground holding algorithm is governed by the 
following basic design principles: 

1) The traffic pattern classifier acts as a decision support 
tool to aid the selection of the most adequate ground 
holding parameters. 

2) The ground holding database can contain both 
simulated and real data, and thus model past as well as 
new operations. 

3) Introduction of the traffic pattern classifier decreases 
optimality, but eases real-life implementation of the 
algorithm.  

These basic design principles are discussed in this subsection.  

Decision support tools are no novelty in the air traffic 
management field. The proposed traffic pattern classifier’s 
output will not be automatically reflected into the ground 
holding program chosen for the particular day and time. Our 
discussions with air traffic controllers have suggested that 
controller’s experience and expertise play a considerable role in 
ground holding assignments. In our view, the traffic pattern 
classifier can, to a certain extent, automate this process and 
deliver predictable performance independent on individual 
experiences. However, there is a possibility that, eventually, the 
proposed algorithm will not outperform the top air traffic 
manager when it comes to mimicking past operations, in 
particular.  The purpose of the traffic pattern classifier is to raise 
the average performance of the ground holding program. 

One of the main strengths of the proposed algorithms is that 
it can be applied to new traffic management initiatives, as well. 
The introduction of new traffic management initiatives is often 
preceded by extensive simulations which estimate the benefits 
and compare the results with past operations. These numerical 
simulations include complex modeling of operations and traffic 
characteristics, and account for various uncertainties, for 
example departure time delays and enroute flight time errors. A 
common approach to statistically analyzing such uncertainty 
effects is performing Monte Carlo simulations, which are in 
computationally expensive. The computational time increases 
with the complexity and fidelity of the model. High-fidelity 
models take long computational time, but provide more reliable 
traffic simulations and ground holding program performance 
evaluation. By building a data base of simulated traffic and 
ground holding control results, the computational time necessary 
for each particular day/time analysis becomes irrelevant. 
Numerical simulations can also fill the gap of lack of experience 
with new traffic management initiatives, and thus help air traffic 
managers with their efficient implementation.  

The machine learning used in the proposed ground holding 
algorithm does not generate any new knowledge on ground 
holding flight assignments itself. The ground holding parameters 
are chosen real time, but among the predefined set available in 
the database. Therefore, the introduction of traffic pattern 
classifier can lead to sub-optimal solutions. However, it solves 
the computational time issue caused by high-fidelity traffic 
model simulations and is an important step to real-world 
implementations. Such an approach might not be common in the 
air traffic management field, but has been widely discussed 
among weather, water, and climate researchers (for example, see 
the number of presentations related to model learning at the 99th 
AMS Annual Meeting [9]).  Here, we test the feasibility of the 
concept by analyzing quantitatively results obtained through 
numerical simulations. 



 

Figure 1. Operational concept of the proposed ground holding algorithm 

III. OPTIMAL GROUND HOLDING DATABASE GENERATION 

A. Ground holding simulation for a single ETA queue: 

assumptions 

First, the ground holding database needs to be built. 
According to the operational concept, this database may consist 
of both real past data and simulated data. In this subsection, the 
assumptions governing the simulated data are described, and an 
example of the generated data is shown.  

At this stage of the research, we consider the static case, i.e. 
information on all flights in the traffic is known at the start of 
the ground holding time calculations. Each traffic scenario is 
described by an Estimated Time of Arrival queue (ETA queue) 
for 30 aircraft. Assuming required separation of 2 min at the 
arrival control fix, 30 aircraft account for 1 hour traffic (2 min 
separation after the last aircraft assures the following ETA queue 
arrival time calculation can start at time zero again).  

Ground delays are assigned so that the predicted airborne 
delay (AirborneATCDelay) does not exceed a certain maximum 
airborne delay threshold (Buffer).  For example, assuming Buffer 
is set at 9 min, if the predicted AirborneATCDelay is 15 min, the 
ground delay GroundDelay will be 6 min. The role of Buffer is 
twofold. First, it is set to absorb departure time uncertainties and 
flight time uncertainties so that the throughput is maximum even 
in the case of late departures, for example. If Buffer is small, 
more flights will be subject to ground holding and there will be 
less airborne delays, but the risk of losing throughput increases. 
On the other hand, if Buffer is large, airborne delays will increase 
and the ground holding program will not be efficient. This 
tradeoff is a key consideration when setting the ground holding 
program parameters. The other aspect which needs to be taken 
into account when setting the Buffer is the maximum amount of 
airborne holding which can be managed safely within the 
airspace prior to the arrival fix. This constraint depends on the 
properties of the particular airspace and air traffic control 
practices. Here, we consider the arrival flow to Japan’s busiest 
airport, Tokyo International Airport (Haneda Airport), and 
discussions with air traffic controllers have shown that a 
constraint of 9 min is feasible.  

In our simulations, we model departure time errors 
(DeptError) of non-ground holding flights by a normal 
distribution with mean 0 min and standard deviation of 5 min. 

We assume that once a flight is assigned ground delay, it cannot 
depart prior to its assigned time, and therefore the DeptError 
distribution is changed as shown in Figure 2. Further sensitivity 
analysis of departure time errors can be found in previous work 
by the authors [10]. 

 
Figure 2. DeptError distribution assumptions 

 

The flight time error EnrouteError is modeled by a normal 
distribution (mean zero, standard deviation 1 min) for all flights. 
Under the above assumptions, the time of arrival (ATA) of each 
flight can be determined as follows: 

ATA = ETA + GroundDelay + DeptError
+ EnrouteError
+ AirborneATCDelay (1) 

Note that the required separation is included in 
AirborneATCDelay. The calculation flow of ATA is shown in 
Figure 3. Further discussions regarding the sequencing timing 
are ongoing with air traffic controllers.  

ETA queues are randomly generated so as to meet average 
demand/capacity ratios set in advance. We introduce capacity 
coefficient Cap defined as average capacity/demand, i.e.  Cap= 
0.8 means that the average demand exceeds the capacity by 25%. 
Therefore, ETA of flight i is determined as: 

𝐸𝑇𝐴𝑖 = (𝑆𝑒𝑝𝑅𝑒𝑞 ∗ 𝑁𝑢𝑚𝐹𝑙𝑖𝑔ℎ𝑡𝑠 ∗ 𝐶𝑎𝑝) ∗ 𝑟𝑎𝑛𝑑𝐸𝑇𝐴  (2)  

where randETA is a random number (mean=0, std=1). 

The evaluation of the ground holding for each ETA queue 

was done considering the following three costs: ground delay 

cost, airborne delay cost, and what we refer to as “lost capacity 

cost”, or the decrease of the throughput at the control fix.  

Traffic pattern 
classifier

Pattern 
Classification 

with 
Machine 
Learning

Traffic class
selection

Class A Class B

Traffic class C
最適なEDCT
パラメータ設定

Traffic class B
最適なEDCT
パラメータ設定
Traffic class A

Optimal control 
parameters

Optimal ground holding  
database

Ground 
holding time 

for each flight

Initial ETA 

Traffic 
FEATURES

a) DeptError [min]  when ground 

holding program is not enforced

b) DeptError [min]  when ground 

holding program is enforced. 

DeptError of flights for which 

GroundDelay>0 is non negative.



 

Figure 3. ATA calculation flow 

The ground delay cost (cg) and the airborne delay cost (ca) 

are defined per flight per minute, whereas the lost capacity cost 

(cc) is defined for the whole ETA queue per minute. Research 

with relative values of ca /cg varying between 1 and 10 can be 

found in [1]. Here, we determine the values for cg and cg based 

on the report prepared by Westminster University [11].  For 

B738, the cost of 5 min ground delay is 80 EUR, and the cost 

of 5 min airborne delay is 210 EUR. For B736 these values are 

130 EUR and 370 EUR, and for B744- 190EUR and 540EUR, 

respectively. For JFY2016, the relative contribution of these 
aircraft classes to the entire traffic is 5:2.7:2.3 [12], so on 

average, the cost of 1 min ground delay is 24 EUR and the cost 

of 1 min airborne delay is 66 EUR. To evaluate lost capacity, 

we consider the average profit per passenger (approximately $8 

[13]). The required separation is assumed to be 2 min, i.e. 2 min 

of capacity lost means another flight might have been 

accommodated at the airport (terminal area). Assuming 200 

passengers per flight, a profit of $1600 per flight is unrealized. 

Conversion to EUR (2018/08/20, 1USD=0.8743EUR）gives 

the value of cc=700 EUR/min. All cost assumption values are 

summarized in Table 1. These particular values are 

implemented in the simulation for quantitative analysis, and can 

be changed to suit new/more accurate data when such become 
available.  

TABLE 1. COST ASSUMPTIONS 

Notation Explanation Value [EUR] 

cg Airborne delay cost per flight, per minute 24 

ca Ground delay cost, per flight, per minute 66 

cc Lost capacity cost, per minute 700 

 

 The numerical simulations developed in this research 
consider departure time errors and flight time errors. Therefore, 

even for the same ETA queue, the final ATA will vary. To 

exclude this variations from the results, the evaluation of each 

ground holding is done in respect to a nominal case, where no 

flights are subject to ground holding, i.e. the entire delay is 

absorbed in the air. Considering all of the assumptions above, 

the cost function is defined as follows:  
 

Minimize 
𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑙𝑎𝑦𝐶𝑜𝑠𝑡

= ∑ (𝐺𝑟𝑜𝑢𝑛𝑑𝐷𝑒𝑙𝑎𝑦𝑖
𝐺𝐻𝑃

𝑁=30

𝑖=1

− 𝐺𝑟𝑜𝑢𝑛𝑑𝐷𝑒𝑙𝑎𝑦𝑖
𝑁𝑜𝑚𝑖𝑛𝑎𝑙) ∗ 𝑐𝑔

+ ∑ (𝐴𝑖𝑟𝑏𝑜𝑟𝑛𝑒𝐴𝑇𝐶𝐷𝑒𝑙𝑎𝑦𝑖
𝐺𝐻𝑃

𝑁=30

𝑖=1

− 𝐴𝑖𝑟𝑏𝑜𝑟𝑛𝑒𝐴𝑇𝐶𝐷𝑒𝑙𝑎𝑦𝑖
𝑁𝑜𝑚𝑖𝑛𝑎𝑙) ∗ 𝑐𝑎

+ (max(𝐴𝑇𝐴𝑖
𝐺𝐻𝑃) − max(𝐴𝑇𝐴𝑖

𝑁𝑜𝑚𝑖𝑛𝑎𝑙))

∗ 𝑐𝑐 

 

(3) 

In the nominal case, 𝐺𝑟𝑜𝑢𝑛𝑑𝐷𝑒𝑙𝑎𝑦𝑖
𝑁𝑜𝑚𝑖𝑛𝑎𝑙 = 0.  

B. Ground holding simulation for a single ETA queue: 

sample results 

This subsection presents the simulation results for a sample 

ETA under the assumptions discussed above. Since 

uncertainties in departure time and flight time are considered, 
Monte Carlo simulation is used to evaluate the performance of 

the ground holding control. The value of Buffer is varied 

between 1 min and 15 min over 1 min interval. For each Buffer 

value, Monte Carlo simulations are run 1000 times. Figure 4 

shows the median value convergence for a sample ETA queue.  

 
Figure 4. Convergence of the cost function  

First, consider the ETA queue shown in Figure 7. Altogether, 
there are 30 flights with ETAs unevenly distributed between 0 
and 60. The ground holding effect for ETA1 and Buffer varying 
between 1 min and 15 min is shown in Figure 6. The horizontal 
axis shows the Buffer value in minutes, while the vertical axis 
shows the cost compared to the nominal case, and lower values 
mean decreased cost, i.e. negative values, of mean savings. For 
each value, simulation results are shown by a box plot. The 
median value is shown in red, and the bottom and top edges of 
the box indicate the 25th and 75th percentiles. The whiskers 
show all points but the outliers. From these results it is obvious 
that the total delay cost determined according to Equation (3) 
varies with Buffer values. The median total cost is minimum for 
Buffer = 6 min (median cost savings are 7800 EUR). With the 
increase of Buffer value, however, the effect of departure time 
and flight time uncertainties decreases, so from the operational 
perspective the optimal Buffer choice is not straightforward. 
Small Buffer leads to more ground holding, so the ground delay 
costs is maximum for Buffer=1. On the other hand, airborne 
delay costs increases with Buffer value.  

Next, consider another sample ETA queue (Figure 7). The 
traffic is highly concentrated at the beginning, and sparse after 
that. The general trend for total costs, ground delay cost, 
airborne cost and lost capacity cost are similar to those observed 
for ETA1. However, most savings are achieved for Buffer=11 
min (median savings 2794 EUR), which is considerably less than 
the savings for ETA1. For Buffer values less than 7, ground 
holding control will likely induce extra costs, not savings (the 
median exceeds zero).  
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Figure 5. ETA1 

 

 
Figure 6. Simulation results for ETA1 

 

Figure 7. ETA2 

 

 

Figure 8. Simulation results for ETA2 



These two sample ETA queues illustrate two important 
control results: 

1) Savings due to ground holding are dependent on the ETA 
queue. Choosing the optimum Buffer value might not be 
sufficient to produce sufficient savings, i.e. the ground holding 
effect for some ETA queues is limited.  

2) The optimum Buffer value which minimizes the cost 
function depends greatly on the individual ETA queue.  

Therefore, if the air traffic manager can correctly classify the 
ETA queue pattern, i.e. the traffic pattern, they will be able to 
set the optimum ground holding program parameters (here, 
choose the Buffer value) and decide whether to actively pursue 
the ground holding program application to this particular traffic 
in view of the potential savings.  

C. ETA queue and ground holding results: database 

generation 

Following the methodology described above, a database for 
1000 different ETA queues is generated. To account for 
departure time and flight time uncertainties in each ETA queue, 
1000 run Monte Carlo simulations are done. As a results, the 
generated database has the following information for each 
ground holding control: ETA queue (ETA for all 30 flights in 
the queue), median value of the cost function for each Buffer 
between 1 and 15 min, the optimum Buffer which minimizes the 
median value of the cost function, traffic parameters such as 
separation required at the control fix, uncertainties distribution 
parameters of the departure and flight times.   

IV.   TRAFFIC PATTERN CLASSIFIER: DESIGN AND RESULTS 

A. Problem statement 

Here, we propose traffic pattern classifier which applies 
machine learning techniques to aid traffic controllers in their 
decision on ground holding program parameter settings. As with 
any machine learning problem, choosing appropriate features 
which describe the characteristics of the input and the 
phenomena involved is the key to correct classification. Apart 
from the ETA, all parameters defining the ground holding 
control are the same for all cases. Here, we define relative traffic 
density as the feature describing the ETA queue and the required 
separation at the control fix. The relative traffic density is 
calculated every minute in the (0, 60) interval and is here 
denoted as 𝑟𝑡𝑑𝑖 (0<i<60). The calculation concept of  𝑟𝑡𝑑𝑖  is 
illustrated in Figure 9. Assume one calculates 𝑟𝑡𝑑20. We define 
the vicinity of i=20 by two parameters, 𝑤𝑚𝑖𝑛𝑢𝑠and 𝑤𝑝𝑙𝑢𝑠 . In 

Figure 9, both 𝑤𝑚𝑖𝑛𝑢𝑠 and 𝑤𝑝𝑙𝑢𝑠  take the value of 5 min. As 

stated earlier, the required separation is ReqSep is 2 min, so 
altogether 5 flights can be handled between (𝑖 − 𝑤𝑚𝑖𝑛𝑢𝑠) and  

(𝑖 + 𝑤𝑝𝑙𝑢𝑠) . The number of flights with ETA between 

(𝑖 − 𝑤𝑚𝑖𝑛𝑢𝑠) and  (𝑖 + 𝑤𝑝𝑙𝑢𝑠) is 7.  

Therefore, 𝑟𝑡𝑑20 is calculated as: 

𝑟𝑡𝑑𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑇𝐴 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 𝑖𝑛 [𝑖 − 𝑤𝑚𝑖𝑛𝑢𝑠 ,𝑖 + 𝑤𝑝𝑙𝑢𝑠)

𝑤𝑚𝑖𝑛𝑢𝑠+𝑤𝑝𝑙𝑢𝑠

𝑅𝑒𝑞𝑆𝑒𝑝⁄
 

(4) 

𝑟𝑡𝑑20 =
7

5
= 1.4  

 

Figure 9. Relative traffic density calculation 

For 𝑖 < 𝑤𝑚𝑖𝑛𝑢𝑠  and 𝑖 > 60 − 𝑤𝑝𝑙𝑢𝑠 , evenly distributed 

ETA flights 2 min apart are added before and after the ETA 
queue for consistency in the calculations. 

The simulations presented in this paper use all 58 rtd values 
and consider a window defined by 𝑤𝑚𝑖𝑛𝑢𝑠 = 2  min and 

𝑤𝑝𝑙𝑢𝑠 = 2 min. Parameter trial and error tests showed that 

reducing the number of parameters, i.e. not using all 58 values, 
can be feasible if dimension reduction becomes necessary at a 
later stage.  

We try to answer three questions by applying machine 
learning. 

1) What are the potential cost savings for the particular ETA 
queue? 

2) What Buffer should be set to achieve those savings? 

3) How robust are the potential cost savings in respect to the 
Buffer value, i.e. if Buffer is selected with a certain error, how 
much will the achieved savings differ from the potential optimal 
ones?  

We formulate the problem as a regression problem. We use 
support vector machine with a quadratic kernel. The classifier is 
developed in MATLAB® 2018b and uses Statistics and Machine 
Learning Toolbox [14]. Validation is done by cross-validation. 
The data consists of 1000 ETA queues (rtd values) and the 
median value of the cost function for Bufferi (i=1,2,…15) as 
determined for each ETA queue (Costi). We make use of the 
Buffer setting assumptions, which consider only integer values. 
As seen from the optimization results for each individual ETA 
queue shown in Section IIIB, The cost function value does not 
change greatly when the value of Buffer is in the vicinity of the 
optimal Buffer value. Therefore, the restriction on Buffer being 
an integer will not impact optimality significantly. In addition, 
the current system assigning ground holding delays uses integer 
values for Buffer, as well, so from practical perspective the 
assumption holds as well. Costi are the target values for the 
regression problem. Therefore, for each ETA queue and each 
Bufferi, a predicted value of Costi is found. Next, for each ETA 
queue, we can determine CostOptPredicted and 
BufferOptPredicted as the minimum Costi for 𝑖 ∈ [1, 15]. 

B. Simulation results 

A plot of CostTrue versus CostPredicted is shown in Figure 
10. The root mean square error RMSE of CostPredicted over all 
Buffer values is 632.4 EUR. However, the prediction accuracy 
is considerably higher for Buffer values greater than 4 min 

wminus wplus

10 20 30



(Figure 11). Here, it should be noted that all BufferOpt in the 
original data set lie in the [4,14] min interval. The difference 
between CostTrue and CostPredicted for each buffer is shown 
in Figure 12.  As seen from the RMSE values, predictions of the 
potential cost savings for low buffer values are more inaccurate.  

 

Figure 10. True versus predicted Cost 

 

Figure 11. RMSE of CostPredicted over all Buffer values 

 
Figure 12. Prediction errors of Cost for each Buffer value 

So far no analysis of the optimal Buffer (BufferOpt) and its 
associated cost (CostOpt) is done. Assuming no constraints on 
the Buffer choice exist, BufferOptPredicted can be found as the 
value which minimizes CostPredicted for each ETA queue. 
Comparison of CostOptTrue and CostOptPredicted is shown in 

Figure 13. RMSE is 451.5 EUR. The high accuracy of the 
prediction shows that a decision on whether ground delay should 
be introduced for a certain ETA queue can be made based on the 
cost savings predicted by the traffic pattern classifier. This 
answers Question 1 discussed in the subsection above. 

 

Figure 13. CostOptTrue versus CostOptPredicted 

 The answer to Question 2, i.e. what Buffer should be set to 
achieve optimal savings us given by the value of 
BufferOptPredicted. This root mean square error RMSE is 1.28 
min.  

Next, we investigate the robustness of the solutions, 
answering Question 3. Assume we choose the optimal Buffer 
value according to the prediction BufferOptPredicted.  In such a 
case, the potential savings will be CostBufferOptPredicted, which, by 
definition are worse than CostBufferOptTrue=CostOptTrue. Let us 
denote these unrealised savings by CostUnrealised and define the 
mean absolute percentage error M as follows:  

𝐶𝑜𝑠𝑡𝑈𝑛𝑟𝑒𝑎𝑙𝑖𝑠𝑒𝑑 = 𝐶𝑜𝑠𝑡𝐵𝑢𝑓𝑓𝑒𝑟𝑂𝑝𝑡𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐶𝑜𝑠𝑡𝑂𝑝𝑡𝑇𝑟𝑢𝑒  

𝑀 =
100%

𝑛
∑ |

𝐶𝑜𝑠𝑡𝐵𝑢𝑓𝑓𝑒𝑟𝑂𝑝𝑡𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖−𝐶𝑜𝑠𝑡𝑂𝑝𝑡𝑇𝑟𝑢𝑒𝑖

𝐶𝑜𝑠𝑡𝑂𝑝𝑡𝑇𝑟𝑢𝑒𝑖
|𝑛

𝑖=1   

(5) 
 

(6) 

Frequency of true and predicted values of BufferOpt are 
shown in Figure 14. Compared with the true values, the 
predicted values favor BufferOpt= 6 min more often.  In the true 
values, the BufferOpt is more evenly distributed between 5, 6 
and 7 min. BufferOpt is the control parameter defining the results 
of each GH control. Choosing BufferOpt according to the 
predicted value of BufferOpt will result is sub-optimal control 
(unrealised savings).  

 

Figure 14. Frequency of each BufferOpt value in the true and predicted data 



Such unrealised savings due to erroneous Buffer selection are 
shown in the histogram in Figure 15 (average value is 297.5 
EUR). In the original data, however, the CostOpt sensitivity to 
BufferOpt is not particularly strong around BufferOpt, which 
explains the relative good performance and high accuracy with 
mean absolute percentage error M of 17.96% and RMSE of 
472.4 EUR.  

 

Figure 15. Unrealised savings due to suboptimal Buffer selection 

From implementation perspective, each ETA queue can be 
characterized either by its potential CostOpt, or classified into a 
discrete operational class, such as the ones discussed in the 
operational concept description in Section IIA. Such a 
classification can provide a quick reference for decision-makers. 
Discussions with air traffic managers are ongoing regarding the 
introduction of such classes and the thresholds defining them.   

Here, we conclude that our preliminary simulation results are 
sufficient to prove the feasibility of the traffic pattern classifier 
concept and its application to traffic management initiatives, in 
particular ground holding. 

V. CONCLUDING REMARKS 

In this paper, we proposed the concept of a traffic pattern 
classifier applied to optimal ground holding. We tested the 
concept which consists of real-time air traffic pattern 
classification and off-line buffer optimization on simulated data 
and proved its feasibility. The input of the real-time component 
consists of traffic features, which are fed into a pre-trained 
machine learning algorithm to determine whether ground 
holding should be applied to the current traffic and if so, what 
parameters should be selected for the ground holding program 
so that the potential savings are the greatest. Based on the ground 
holding optimal control parameters, departure times can be 
assigned to each flight part of the ground holding program. Even 
though the investigated machine learning algorithm needs 
tuning to improve the performance of the classifier, the classifier 
successfully predicted the potential savings from ground holding 
program and predicted an optimal buffer setting which would 
result in sub-optimal cost savings (the RMSE was 472.4 EUR).  

Future work is planned in three major directions. First, the 
database will be improved to include more detailed models of 
the traffic and, whenever possible, real past data. We are 
currently developing departure time error models to describe the 
departures from major domestic airports in Japan. We are also 
working on the inclusion of predictability as traffic feature, as 
discussed by Liu and Hansen [15], to better describe the 

uncertainties of the environment. Second, the machine learning 
algorithms used in regression simulations will be revised to 
improve prediction accuracy. Third, opening the “black box” 
governing the classifier and transforming it into a grey one, i.e. 
visualizing some of the decision steps in the classification 
process and providing this information to controllers is being 
investigated. Such a “grey box” approach will be essential if the 
traffic pattern classifier is to be used in practice. Discussions 
with decision makers for prototype testing in real environment 
over the next 3 years are also ongoing. 
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