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Abstract—Air Traffic Control (ATC) radio communications 

contain a wealth of situational context information. While 

valuable, this information resource has been difficult and 

expensive to use for large scale analyses because raw speech audio 

cannot be directly used in analyses without human or computer 

interpretation. To help the Federal Aviation Administration 

(FAA) better understand National Airspace System (NAS) 

dynamics, The MITRE Corporation (MITRE) has been 

developing voice data analysis capabilities that can enable 

information from ATC voice communications to be automatically 

processed on a large scale and used in post-operational analyses. 

These capabilities use an array of technologies to segment audio 

data by speaker role, transcribe the audio to text, and extract 

semantic entities such as aircraft identifiers and clearances. The 

data derived by these capabilities can inform large-scale analyses, 

augmenting existing data sources such as radar tracks and flight 

plans, and enable studies and the generation of metrics that were 

previously impractical. This paper describes these voice data 

processing capabilities and presents one example of the use of voice 

data: to enable better understanding of Performance-Based 

Navigation (PBN) procedure utilization in the NAS. This paper 

describes an initial use of voice data analysis to better understand 

approach procedure utilization, which opens the door for many 

new analyses.   

Keywords-automatic speech recognition, natural language 

processing, neural networks, air traffic control, performance-based 

navigation 

I.  INTRODUCTION 

Air Traffic Control (ATC) radio voice communications are 
a critical mechanism for coordinating aircraft movement 
through the National Airspace System (NAS) and will continue 
to be even with the expected increase in the use of Data 
Communications in the future. Controller-pilot communications 
provide key information on the flight’s intent, controller 
interventions, and the ultimate outcome of each flight operation. 
In some cases, voice communications offer additional insight 
into a given event; in other cases, voice communications are the 
only data source that holds certain information about what 
happened and why. However, recorded controller-pilot voice 
communications have been difficult to use for large-scale 

analyses because raw speech audio cannot be directly used in 
analyses without human or computer interpretation.  

The Federal Aviation Administration (FAA) has been 
investigating how automatic speech recognition and language 
processing technologies can be used to extract information from 
ATC voice communication, specifically to improve the safety of 
NAS operations in real time and to better assess NAS operations 
through post-operations analyses. On behalf of the FAA, The 
MITRE Corporation (MITRE) has been researching and 
developing ATC-specific applications of these technologies. 
This research includes improving speech recognition and 
language processing accuracy and evaluating how particular 
applications can benefit the FAA enterprise. Some applications 
require voice data processing in real time—e.g., to detect a 
controller clearance that may result in a safety risk, such as an 
instruction for an aircraft to line up and wait where an arrival is 
on short final approach to the same runway, and immediately 
alerting the controller to that issue. Other applications involve 
post-operations analysis of the NAS using automatic processing 
of large quantities of audio data, often in conjunction with other 
aviation data sources.  

This paper describes automated voice data analysis 
capabilities that MITRE has developed on behalf of the FAA and 
how the resulting information can be used to better understand 
the NAS. The goal of this paper is to expose and promote the 
value of voice data analysis. To that end, we describe not only 
the analysis capabilities we have developed, but also specific use 
cases of the data towards operational analysis of Performance 
Based Navigation (PBN) and other approach procedures. Large-
scale ATC voice data analysis is still relatively new, but we hope 
this paper provides insight to organizations around the world on 
ways to integrate voice data into their research, analysis, and 
decision-making to improve the safety and efficiency of global 
air traffic management.  

Section II provides background on the FAA voice switch and 
recording infrastructure, the PBN research needs that voice data 
analysis can help address, previous research on ATC speech 
recognition, and the challenges unique to large-scale processing 
of ATC voice data. Section III describes the voice data analysis 
capabilities that MITRE has developed and is continuing to 
improve. Section IV describes how the voice data analysis 



capability is then leveraged to better understand approach 
procedure utilization in the NAS. Section V describes next steps.  

II. BACKGROUND 

A. FAA Voice Recording Infrastructure 

DALR (Digital Audio Legal Recorder) is an FAA system for 
capturing, compressing, encoding, and storing controller-pilot 
voice communications within a facility [1]. DALR retains the 
most recent 45 days of recorded audio for legal purposes. In 
addition, many facilities locally use recorded DALR audio for 
quality control, training, and other purposes. Users at a facility 
retrieve audio from the facility’s DALR system via a text-based 
user interface on a proprietary, dedicated DALR computer. The 
DALR system itself does not provide a mechanism for remote 
or automated (i.e., computer-to-DALR) access to recorded 
audio.  

Each facility has the discretion to select what audio to record.  
For example, a facility may record all audio received at the 
controller position, which can include both air/ground (i.e., 
speech between controller and pilot) and ground/ground (i.e., 
speech between different controllers, either within or between 
facilities) communications, or just audio transmitted and 
received over the radio, which would include only air/ground 
communications for specific frequencies. Regardless of the 
source of the audio, DALR does not record the push-to-talk 
information that delineates the start and end of each controller 
radio transmission. When both controller and pilot audio is 
recorded on the same channel, which is the typical recording 
configuration, DALR does not retain information about which 
speech is from the controller and which speech is from pilots. To 
reduce storage requirements, the DALR system stores 
continuous stretches of non-silence audio in individual files, 
retaining the wall-clock time associated with the audio as 
metadata. These files do not correspond directly to individual 
transmissions—one DALR file may be eight seconds long and 
contain one controller transmission and pilot readback, while 
another DALR file may be two minutes long and contain many 
transmissions. 

The DALR system identifies the stored audio with a unique 
channel number and allows a facility to configure a channel map 
that specifies the control position code associated with each 
channel number. This mapping is valuable when identifying the 
ATC sector, ATC position, or other FAA ATC identifier 
associated with an audio recording. 

DRAAS (DALR Remote Audio Access System) is a new 
FAA system designed to overcome some of the access 
limitations of the DALR system by providing a mechanism for 
remote and automated access [2]. In addition, through the FAA 
Comprehensive Electronic Data Analysis and Reporting 
(CEDAR) system, DRAAS can access the facility channel maps 
that document the facility sector or position associated with each 
DALR channel number [3]. Through the DRAAS interface, 
facility DALR recordings can be retrieved remotely using the 
facility name, DALR channel number, and a date-time period. 
Currently, DRAAS provides access to audio from 129 NAS 
facilities; more than 200,000 hours of silence-reduced audio are 
recorded each month.  

B. Performance Based Navigation (PBN) Research Need 

The FAA has major challenges in meeting future demand 
for airport and airspace resources, while balancing its need to 
protect the environment, reduce traffic delays, and improve 
operational safety. The FAA is addressing these issues through 
the NextGen Air Transportation System (NextGen), which 
relies heavily on PBN procedures and optimized airspace. PBN 
leverages modern navigation technology to facilitate aircraft 
flying more direct routes and conforming tightly to planned 
paths. The navigational technology needed for some PBN 
procedures, the complexity in developing procedures, and the 
difficulty in integration of PBN operations brings significant 
costs to both the FAA and NAS users.  

The FAA has developed a PBN NAS Navigation Strategy 
that outlines a roadmap for deployment and maintenance of 
navigation services, along with goals for increased usage of and 
conformance on PBN procedures. With the implementation of 
PBN procedures, there will also be a pressing need to reduce 
the complexity and cost to the FAA of maintaining legacy 
Instrument Flight Procedures (IAPs). The FAA is implementing 
several plans to reduce maintenance costs, including the Very 
High Frequency (VHF) Omni-directional Range (VOR) 
Minimum Operational Network (MON) and a process for 
cancellation of approach procedures as part of the National 
Procedures Assessment (NPA) 

For the reasons outlined above, the FAA and NAS 
stakeholders have an ongoing need to track the current state of 
PBN in the NAS and understand PBN procedure conformance 
and usage in detail. To support that need, MITRE has developed 
automated capabilities and metrics to characterize PBN 
operations in the NAS, using a fusion of trajectory-based data, 
aircraft intent (filed/amended flight plans), and aircraft 
equipage data.  

However, there are significant challenges and limitations 
associated with tracking procedure conformance and usage 
through radar track and flight plan data. Approach procedures 
present a particular challenge because the flight plan does not 
contain the expected or cleared approach. Relying solely on 
radar track data to determine approach procedure conformance 
and usage is not sufficient, because overlays (where approaches 
have very similar or identical lateral paths) and common 
waypoints may exist between a conventional and a PBN 
approach procedure, or vectors to Instrument Landing System 
(ILS) approaches may be similar to defined PBN paths. Further, 
aircraft flying straight-in approaches without a downwind leg 
often follow a very similar trajectory regardless of approach 
type, making it sometimes impossible to determine usage based 
solely on track points. As a result, using track data alone, 
approach procedure usage can only be determined for Required 
Navigation Performance (RNP) approaches that contain a 
Radius-to-Fix (RF) leg, because the RF legs provide a 
procedure geometry (usually not similar to other approach 
paths) that can be monitored for conformance. RNP approaches 
with RF legs represent about 1 percent of Instrument Flight 
Rules (IFR) arrivals in the NAS, thus motivating an exploration 
of additional information and techniques that can be used to 
determine approach procedure usage across a wider range of 
arrivals and approach types.  
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Controller-pilot voice communications provide an 
alternative source for determining approach usage. All arrivals 
flying under IFR where radar services are provided by ATC are 
issued approach clearances, which include the name (or type) 
of the approach and arrival runway. To discover the approach 
clearance for a single flight, manually listening to audio of the 
controller-pilot interaction is sufficient. However, to track 
approach procedure utilization across the NAS and over a 
period of time, and then correlate utilization to other flight 
metrics (e.g., safety events), manual transcription is not 
practical. Voice data analysis capabilities that can process ATC 
communications on a large scale present a solution to this 
analytical shortfall. 

C. Computational Linguistics in ATC 

Computational linguistics, of which automatic speech 
recognition is a subfield, has been present in ATC since the late 
1980s [4]. With modern advances in computational linguistics 
areas such as speaker diarization, automatic speech recognition, 
semantic parsing, and dialogue modeling [5][6][7][8][9], the 
research and use of these technologies in the ATC domain has 
become increasingly prevalent. Although early use cases were 
focused around training and simulation, where the phraseology 
could be tightly controlled [10], more recent use cases have 
diversified into operational scenarios that included controller 
workload estimation [11], safety monitoring [12][13], and 
assistant-based efficiency improvements [14], including 
controller workload reduction by automatically updating 
clearances in radar data blocks [15].  

Automatic speech recognition remains a focal area for 
research because of how different ATC radio communications 
are from conversation speech. The speed of speech, the brevity 
of the structured phraseology, the variations in speaker style by 
region, and the audio fidelity of ATC radio communications all 
negatively impact speech recognition accuracy. Furthermore, 
although some applications can be designed to anticipate and 
mitigate the impact of errors in speech recognition, many 
applications in the ATC domain require higher recognition 
accuracy in order to attain user acceptance. Most recently, 
Kleinert et al. examined the benefits of performing semi-
supervised, site adaptation with context incorporation in their 
Assistant Based Speech Recognizer and observed notable 
accuracy improvements [16]. In 2018, Airbus, in collaboration 
with Institut de Recherche en Informatique de Toulouse (IRIT) 
and Safety Data Analysis Services hosted an ATC speech 
recognition challenge focused on audio transcription and 
callsign extraction of ATC audio at the flight deck [17][18]. The 
winners of the challenge, a joint team from Vocapia Research 
and Laboratoire d'informatique pour la mécanique et les 
sciences de l'ingénieur (CNRS-LIMSI), achieved very good 
accuracy with word errors rates between six and eight percent 
using deep neural network (DNN) models for speech 
recognition and a combination of regular expressions and 
consensus network search for callsign extraction [18][19].  

D. Challenges Unique to Large-Scale Voice Data Processing 

This large-scale processing of audio data has presented 
some challenges that we had not encountered while researching 

real-time speech recognition applications. These challenges 
involve dealing with scalability and audio quality. 

One challenge comes from scaling up to handle over 3,000 
channels with differing acoustic and language characteristics. It 
is not practical for us to perform the same degree of manual 
channel/facility/sector/position-specific customization that we 
were able to do with single-facility audio. We do perform some 
site adaptation leveraging digital data sources, but other 
adaptation techniques would require manual effort beyond our 
current resources. Another scalability challenge is finding the 
correct pronunciations for the over 40,000 waypoint and 
procedure names that could be spoken throughout the NAS. 

Another set of challenges come from the audio path. The 
systems that record the audio mix audio from multiple sources 
(i.e., pilot, controller, intercom) and discard the push-to-talk 
information delimiting individual transmissions. The systems 
that record and distribute the audio perform multiple lossy 
encode-decode format conversions, with one step using a 
particularly high-loss compression algorithm. 

One advantage of this large-scale post-processing is that we 
can bring in non-voice ATC context information and we can 
use algorithms that look both forward and backward in time to 
aid with accurate speech recognition. For example, we can 
know an aircraft’s arrival time (and sometimes runway) when 
we try to recognize its landing clearance. Another advantage is 
that, while we do need to concern ourselves with overall 
computer resource usage, we do not need to worry about lag 
time processing individual transmissions. 

III. VOICE DATA ANALYSIS CAPABILITIES 

MITRE’s voice data analysis capabilities process controller-
pilot voice communications on a large scale to generate text 
transcripts and extract valuable aviation information that can 
facilitate post-operations analysis. Using a combination of 
digital signal processing (DSP) and machine learning (ML) 
techniques, these capabilities form an audio processing pipeline 
(Figure 1) that ingests audio files, splits them into audio 
segments corresponding to individual radio transmissions, and 
produces text transcriptions, speaker role labels, and semantic 
tags identifying the presence of key aviation concepts including 
aircraft identifiers (ACID) and clearances for each audio 
segment. It also fuses these speech-derived artifacts with 
surveillance and other data sources to enable enhanced aviation 
analyses. 

The audio processing pipeline is illustrated in Figure 1.   

 

Figure 1. Voice Data Processing Pipeline 

To keep up with the rate of audio data generation in the NAS, 
this audio processing pipeline is hosted on an Apache Hadoop 



cluster of computers at MITRE. The DNN models used for 
speech recognition are generated in MITRE’s High-
Performance Computing (HPC) facility. The subsections below 
describe individual components in the audio pipeline, 
highlighting the difficulties and areas for improvement in 
specific steps. 

A. Audio Acquisition and Ingest 

Audio acquisition and ingest is the first component in the 
voice data analysis capabilities audio pipeline. This component 
retrieves recorded facility audio files through the DRAAS 
interface and ingests it into the pipeline [3]. As part of the ingest 
process, each audio file is packaged with descriptive metadata 
such as its source facility, radio channel, controller position, 
and start and end times of the audio files.  

Although the audio data undergo decompression at this 
stage, it is not otherwise changed. As such, each audio file 
retrieved through the DRAAS interface is similar to the 
recordings retrieved from the DALR system, i.e. it has variable 
duration, it may contain speech data from one or more speaker 
turns (e.g., each controller and pilot transmission is considered 
a speaker turn), and each speaker turn may be generated by a 
different speaker. Subsequent components in the pipeline will 
pinpoint these characteristics and add them to the metadata 
associated with the audio data.  

Currently, the voice data analysis capabilities pipeline 
ingests audio from 129 FAA ATC facilities, including all Air 
Route Traffic Control Centers (ARTCCs), most major Air 
Traffic Control Towers (ATCT), and most major Terminal 
Radar Approach Control facilities (TRACON). 

B. Speaker Role Identification and Segmentation  

Individual DRAAS audio files do not directly correspond to 
individual controller and pilot transmissions. The files are 
formatted to reduce storage and bandwidth requirements and do 
not retain any controller or pilot push-to-talk metadata. The 
speaker role identification component of the pipeline segments 
DRAAS audio files into individual transmissions and 
distinguishes the speaker as either a controller or a pilot, as 
illustrated in Figure 2.  

 

Figure 2. Example Segmentation and Speaker Role Identification 

The component employs an acoustics-based approach using 
speech features to identify when individual transmissions begin 
and end. It then classifies audio as either controller, pilot, or non-
speech, and then post-processes the classifications to determine 
when transmissions begin and end. 

This component is built on the open source software CMU 
Sphinx-4 from the Carnegie Mellon University [20]. CMU 
Sphinx is a large-vocabulary, speaker-independent, continuous 
speech recognition system based on Hidden Markov Models. 
Custom models trained on a corpus of controller-pilot audio is 
used with the Sphinx recognition engine to perform speaker role 

identification.  The training corpus consists of audio segments, 
each manually labeled as a controller transmission, pilot 
transmission, or a non-speech audio segment. 

Diarization Error Rate (DER) is a frame-by-frame measure 
of this component, where frames are typically 10 milliseconds. 
However, when human transcribers create the “ground truth” 
segmentation reference used the measure DER, there is some 
amount of subjectivity in deciding where each transmission 
segment starts and ends. Given that many ATC transmissions 
are just a few seconds long, errors from the subjective placement 
of the start and end times can significantly inflate the overall 
error numbers, to the extent that they overwhelm the more 
relevant errors. As an alternative to basic DER, we have 
evaluated the component with respect to segmentation (is it 
producing the correct number of segments for a given DRAAS 
file) and speaker role identification (is it producing the correct 
speaker label for a given segment). With both measures, the 
accuracy is approximately 85-90 percent, with variations 
between test samples including facility and speech turn patterns 
(e.g., instances with adjacent pilot transmissions back-to-back).  

C. Automatic Speech Recognition 

The speech recognition component converts audio to text, 
producing a text string for each audio segment that can then be 
parsed for relevant information. This component is built on the 
Kaldi speech recognition engine [21]. Kaldi is an open-source 
software package developed and maintained by Johns Hopkins 
University. It was created for speech recognition research and as 
such is a versatile software package with domain agnostic 
algorithms that can be quickly deployed in new domains with 
different recognition models.  

For the ATC domain, MITRE created a Chain Time-
Division Neural Network (Chain TDNN) [22][23] acoustic 
model (AM) and a statistical language model (SLM) trained on 
a corpus of transcribed controller-pilot audio. The training 
corpus consists of approximately 500 silence-reduced hours of 
transcribed controller-pilot audio that was collected from a 
variety of different audio sources using different types of 
recording hardware. Most of the audio in the training data corpus 
was acquired from DRAAS and has acoustic characteristics 
similar to those in the target audio.  

The same AM and SLM are used for speech recognition on 
audio from all 129 facilities processed by the pipeline. The 
speech recognition component achieves word accuracy around 
85 to 91 percent, with accuracy on controller speech generally 
better than accuracy on pilot speech. In addition, accuracy varies 
between facilities. We have tested accuracy against more than 
20 ATC facilities and have observed accuracy on controller 
speech between 83 and 95 percent, and on pilot speech between 
75 and 89 percent. The variance in word accuracy results from 
variations in speakers, pronunciations, phraseology, and 
acoustics across facilities as well as the amount of facility-
specific data in the training corpus. Test set size and composition 
also influences the variations in accuracy measurement.  

D. Aircraft Identifier Extraction 

Aircraft identifier (ACID) extraction is a subcategory of 
semantic content extraction, however, the importance of this 



particular semantic concept to analysis, subsequent data fusion, 
and overall usability of the speech-derived data warrants 
particular attention.  

Because the word accuracy of the DNN-based recognition 
is fairly high, it is possible to assume that the ACID phrase 
recognized in a transmission is mostly correct, with only one or 
two single word errors. Thus, this component approaches ACID 
extraction post-recognition by attempting to correct errors in 
the recognized ACID phrase. It maps the ACID phrase to its 
nearest match in a candidate ACID list that consists of the list 
of aircraft in the control sector at the time of the radio 
transmission. Specifically, the algorithm first transforms 
consecutive sequences of airline callsign words, aircraft type 
words, and alphanumeric words into parsed ACIDs in symbolic 
form and compares the parsed symbolic form to a list of 
candidate ACIDs in their symbolic form as well to find the 
nearest match, i.e. with the fewest number of omissions, 
substitutions, or additions. For example, if the phrase “delta 
twenty oh five” was recognized, but the controller actually said 
“delta twenty one oh five”, the algorithm would first transform 
the recognized phrase into the symbolic ACID form 
“DAL2005”, then correct it to “DAL2105” after comparison to 
the candidate ACID list, assuming “DAL2105” is the closest 
match to the parsed ACID. The candidate list is updated 
periodically using a combination of track data and transfer of 
control messages. This approach is also adaptable to accepted 
truncations of general aviation callsigns. For example, it can 
correctly map “november three alfa whiskey” to the complete 
ACID symbolic form “N313AW” even though the spoken 
general aviation identifier was acceptably truncated to just the 
last three symbols in the tail number.  

When evaluated on a test set of over 1,300 recognized text 
transmissions from eight tower and TRACON facilities, the 
ACID extraction component yielded an average accuracy of 85 
percent on controller-spoken transmissions and 70 percent on 
pilot-spoken transmissions. Analysis of the error cases showed 
that the ACID extraction component is still susceptible to 
several types of error. First, because this component works on 
the recognized text transcription (i.e., the output of the speech-
to-text component), the recognizer’s accuracy will affect the 
accuracy of the ACID extracted. There is a noticeable drop in 
word accuracy when there is unusual distortion or noise in the 
audio; and when the speaker mumbles or trails off at the end of 
a transmission. Second, because the ACID phrase is parsed 
independent of other semantic content, transformation of an 
incorrect alphanumeric sequence, such as an altimeter setting or 
radio frequency, within the recognized text into an ACID 
candidate could also result in an incorrect extracted ACID. This 
error could occur when an ACID is spoken in an unusual 
position in the transmission, when the ACID was never spoken 
in the transmissions, or when a segmentation error results in 
incorrect concatenation of two separate radio transmissions and 
places ACID phrases in the middle of the recognized text. 
Finally, speaker error (i.e., saying the wrong words) could lead 
to a nearest match that selects the wrong ACID.  

This component is still being improved in several ways: 1) 
improving parsing logic to identify and transform the correct 
word sequence corresponding to the ACID phrase, 2) 
incorporating dialogue modeling (i.e. the transmissions 

preceding and following the transmission being processed) to 
take advantage of conversational context, and 3) prioritizing the 
candidate ACID list and improving ranking of nearest matches. 

E. Semantic Parse 

The semantic extraction component is performed in parallel 
with and independent of the ACID extraction component. This 
component focuses on the extraction of ATC semantic concepts 
such as controller clearances, instructions, advisories, and pilot 
readbacks using a two-tiered, rules-based, domain-specific 
semantic parser. The first tier of the parser accepts text 
transcriptions from the speech recognizer and executes a shallow 
parse, assigning labels to words and phrases that have a semantic 
role in higher-level ATC concepts. For example, this tier labels 
individual words like “cleared” with the “Cleared” label. Longer 
word sequences are favored over shorter ones so that word 
sequences such as “clear to land” or “cleared to land” are 
chunked together under the “CTL” label instead of the “Cleared” 
label. Words with numeric meaning such as “one”, “twelve”, 
“thousand” etc. are given generic labels like “Digit”, with the 
expectation that they are likely parts of a higher-level semantic 
concept but need to be combined with other labeled words and 
further disambiguated before being tagged as such.  

The second tier of the parser operates on labels produced by 
the first tier and executes a rules-based syntactic parse to 
combine labeled semantic roles into high-level semantic 
concepts. The rules configuration of the second tier parser 
defines what labels can be combined (e.g., it is allowable to 
combine “Cleared”, “ILS”, “Runway”, “25R”, and 
“Approach”), the order that they can appear in to qualify for 
combination, the number of labels that can be combined (e.g., 
how many “Taxiway” labels can be associated with a “Taxi” 
label) and for certain words such as numeric sequences, the 
symbol patterns that are acceptable for a specific semantic 
concept type (e.g., “Climb” and “Flight Level” can only be 
associated with a sequence of three “Digit” labels that when 
combined fall within a specified  numerical range. This 
component has been configured with rules to parse over 30 ATC 
clearance concepts.  

The derived data produced by this component allows 
analysts to focus on their higher-level research goals without 
having to deal with the task of extracting meaning from text and 
handling irrelevant variations in controller and pilot 
phraseology. For example, for an analyst evaluating how many 
approach clearances were issued at a certain airport on a specific 
day and what types of approaches were issued, designing a 
search query for all the possible word combinations denoting an 
approach clearance would likely be a complex and frustrating 
task. But with the value-added data from this component, the 
analyst could query directly for the higher-level approach 
clearance concept, which would automatically group and 
retrieve instruction variations such as “expect”, “cleared”, 
“join”, and “intercept”, as well as their associated parameters, 
such as runway and approach type. Furthermore, to this analyst, 
an accuracy measure specifying how many approaches were 
correctly recognized, parsed, and retrieved is much more 
meaningful than the word accuracy achieved by the recognizer.  



As a rules-based parser, this component is susceptible to 
error when faced with previously unseen vocabulary or concept 
combinations outside the defined configurations. Thus, this 
component is still evolving in several ways. First, MITRE 
engineers are adapting the parser to support multi-hypothesis 
parsing for when labels are in contention between different 
higher-level concepts. For example, the transcript, “jetblue forty 
seven twenty seven cleared to land” could be parsed as either a 
complete ACID, “JBU4727”, and a clearance to land without a 
runway; or a shorter ACID, “JBU4720”, and a clearance to land 
on runway seven. Second, engineers are researching the use of 
deep learning based semantic interpretation to improve 
adaptability and anticipate unseen data. 

F. Track Fusion 

Fusion with trajectory data is the final component in the 
audio processing pipeline. It fuses each voice transmission and 
its derived metadata with a corresponding flight in Threaded 
Track Flight Story (TTFS) using the ACID extracted from the 
voice transmission and the start and end times on the 
transmission. TTFS is an existing analytic suite that fuses a 
number of surveillance data sources, including Airport Surface 
Detection Equipment – Model X (ASDE-X), National Offload 
Program (NOP), En Route Automation Modernization (ERAM) 
/ Traffic Flow Management System (TFMS), and most recently 
Automatic Dependent Surveillance-Broadcast (ADS-B), to 
provide complex flight trajectory data and other performance 
metrics for high-fidelity analysis [24]. This final component 
adds voice transmissions and derived artifacts as a new analytic 
layer within TTFS’s extensive data store, enabling expanded 
analysis of ATC and pilot intent, including approach procedure 
clearances, the case study described in the subsequent section.  

IV. CASE STUDY: APPROACH PROCEDURE UTILIZATION 

This section describes how information extracted from 
voice data processing can be used to determine the approach 
clearance issued to arrival flights. A basic assumption of this 
technique for determining approach procedure usage is that the 
approach issued by the controller via voice communications is 
the approach flown by the aircraft.  

A. Input Data  

As described in Section III, the voice data processing 
produces a speaker role, detected ACID, and semantic concepts 
spoken in the transmission. One of the semantic concepts that is 
parsed is the approach clearance, including the name/type of 
approach (e.g., visual, ILS, RNP) and the runway (e.g., 26L, 
spoken as “two six left”). Depending on the approach type, the 
controller may also provide an approach suffix, such as 
“yankee” or “zulu”.  

The approach clearance semantic tag does not differentiate 
between an approach clearance issued by a controller and the 
readback of the approach clearance spoken by the pilot. Because 
many (but not all) readbacks contain the same information as the 
clearance, the semantic parsing component may identify 
approach clearances for the same ACID in consecutive 
transmissions. There are several techniques for assigning a 
single approach clearance to a given flight; we have chosen to 
select approach clearances by applying two criteria to a 

transcription record: (1) it must be labeled as controller speech, 
and (2) it must contain an approach clearance semantic tag.  

However, ATC generally does not mention the arrival 
airport in the transmission and the DALR channel information 
is not sufficient for mapping a control position to a specific 
airport without facility-specific knowledge and a process for 
handling combined positions. The fusion of the transcription 
record with a flight track in TTFS enables the arrival airport to 
be determined automatically. As described in Section III, the 
detected ACID and the transmission times are used to find a 
unique flight track, so that the transcription record can be 
associated with the track and all other information that the track 
record contains, such as the arrival airport. This fusion of voice 
and track data enables analysis by airport.  

The analysis presented in the following sections is based on 
processing of calendar year 2017 voice data for seven 
TRACONs and the fusion of those voice data analysis results to 
track information. The seven TRACONs are: 

• Atlanta TRACON (A80) 

• Boston TRACON (A90) 

• Chicago TRACON (C90) 

• Minneapolis TRACON (M98)  

• New York TRACON (N90) 

• Northern California TRACON (NCT) 

• Potomac Consolidated TRACON (PCT) 

• Southern California TRACON (SCT) 

Some of the analysis presented is based on a subset of the 
data processed.  

B. Approach Clearance Detection Accuracy 

Each step in the voice data processing pipeline can introduce 
errors that may result in a failure to recognize an approach 
clearance, an incorrect approach clearance, or a failure to 
identify the flight within clearance.  

• Audio ingest – if audio is missing from the archive, then 
the approach clearances contained within that audio will 
not be detected.  

• Segmentation and speaker role identification – if an 
approach clearance spoken by the controller is 
incorrectly classified as pilot speech, then that approach 
clearance will be missed, per the approach clearance 
criteria described in the previous subsection. This part 
of the process is roughly 85-90 percent accurate, 
depending on the specific classification being measured. 

• Speech-to-text – if the speech recognition system 
produces a text transcription with substitution errors 
(where the spoken word is substituted for a word not 
spoken) or deletion errors (where a spoken word is not 
transcribed at all), and those errors are critical to the 
approach clearance, then the approach clearance will 
either be missed or will be incorrect.  



• Semantic parse – if approach clearance phraseology 
significantly varies from standard, or if the parser is not 
appropriately configured, then the approach clearance 
will likely be missed.  

• ACID detection – if the ACID detected is incorrect, then 
the fusion of voice data and track data will be incorrect, 
and the flight-specific approach clearance will be 
incorrect. This may cause the approach clearance for a 
flight to be missed. In general, ACID detection can 
range from 70 to 95 percent accurate, depending on the 
facility, type of call signs, and speaker role (i.e., the 
current system is more accurate on controller speech and 
on commercial aviation call signs).  

• Track fusion – if the flight track isn’t accurate enough 
to assign the true arrival airport/runway, a correctly-
detected approach clearance may not be fused to the 
appropriate flight.  

Several filters were used to eliminate approach clearance 
records that are likely incorrect. First, we ensured that the 
identified ACID for a record corresponds to a flight that arrived 
at an airport within the ATC facility. For this analysis, we also 
excluded a small portion of records (less than 1.5 percent) where 
the detected approach clearance is more than 30 minutes from 
the flight’s landing time.  

By comparing the number of known IFR arrivals at a given 
site to the number of approach clearances detected, we can 
estimate an upper bound of the number of flights with no 
associated approach clearance. Using voice data processed from 
2017 from seven TRACONs, we found that upper bound to be 
around 20 percent for most TRACONs. We looked for trends 
within the missing flights and found that general aviation flights 
made up a bigger share (23 percent) of flights without an 
associated approach clearance than would be expected from 
their proportion of the total flights (13 percent). 

C. Approach Utilization Analysis 

This section presents several examples of approach 
procedure utilization analysis made possible by fusing voice 
data to track data and other aviation data sources.  

1) Approach Type Analysis Trends 

Using voice data analysis to determine the approach 
clearance issued for specific flights, we can break down the 
number of approaches flown into each airport by the type of 
approach. See Figure 3, which presents approach types flown at 
each airport in a calendar month of 2017.  

 

Figure 3. Approach Clearance Breakdown by Airport 

This type of breakdown is not possible using only track data 
analysis. Voice communications are a NAS-wide data source 
that can be used to understand which procedures are used when. 
The same information may be collected using Flight 
Management System (FMS) data, but that would need to be 
collected from each airline individually.  

The fused voice and track data can also be analyzed to 
understand trends in where flights are when they receive their 
approach clearances, to compare approach procedure clearance 
trends for differing aircraft equipage, and to understand how 
weather conditions affect approach procedure utilization at 
different facilities.  

2) Comparison with RNP AR Conformance  

As described in Section II.B, while there are some RNP AR 
procedures for which conformance can be accurately detected 
by conformance to the RF leg, there are some RNP procedures 
that may closely resemble visual approaches to the same 
runway; DCA Runway 19 and MDW Runway 22L are two such 
examples. Due to the similar lateral path between the visual and 
RNP AR approaches to these runways, RNP AR procedure 
usage counts based on track data conformance have always 
been caveated appropriately. We can use voice data to better 
understand the limitations of trajectory-based algorithms in 
distinguishing the visual and RNP AR approaches to the same 
runway in these challenging cases.  

Figure 4 illustrates the similarities in lateral paths between 
the visual and RNP AR approaches to DCA Runway 19. The 
tracks are color-coded based on the approach clearance issued 
to each flight. For flights cleared for the LDA approach, the 
tracks are shown in grey.  



 

Figure 4. Track Similarity Between RNP and River Visual Approaches to 
DCA Runway 19 

Figure 5 presents detected approach clearances for DCA 
Runway 19 during a calendar month in 2017, broken down by 
whether the flight conformed to the RNP within 0.12 Nautical 
Miles (NM) or not—shown in blue and red, respectively.  

 

Figure 5. Approach Clearance and RNP Conformance Comparison for 
DCA Runway 19 

Of more than 3,000 flights cleared for the visual approach, 
thirty percent of them (just under 1,000) conformed to the RNP. 
Only about 500 flights were cleared for the RNP. Thus, this 
analysis indicates that a conformance-based estimate of RNP 
utilization for DCA Runway 19 was roughly triple the number 
of RNP AR approaches actually flown. 

The same analysis for MDW Runway 22L indicated a much 
smaller proportion of “false positives” in conformance-based 
RNP AR counts. Out of approximately 350 flights cleared for 
the visual approach to Runway 22L, approximately 150 
conformed to the RNP, and the total number of flights that 
conformed to the RNP was approximately 1,300. Thus, the 

utilization estimate for RNP AR approaches to MDW Runway 
22L appears to be accurate within 10-15 percent.  

3) Identification of Circling Approaches 

Circling approaches sometimes enable lower minima than 
straight-in approaches to the same runway for some terrain- or 
obstacle-constrained paths, enabling operations in poor weather 
conditions. They are also useful when instrument approaches 
are not available to the desired arrival runway. However, they 
are infrequently used across the NAS and add to the FAA 
maintenance footprint of the IAP inventory. The FAA thus 
would benefit from better insight into where and how often 
circling approaches are used to inform whether some can be 
eliminated.  

Although the semantic parsing component was not 
configured to extract “circle” commands (e.g., “cleared ILS 
31C circle 22L”, which is a clearance for the arrival to land on 
Runway 22L), we were able to detect some circling approaches 
by examining clearances for approach types that were not 
published for the arrival runway. In the case of MDW, there is 
no ILS approach published for Runway 22L, but the semantic 
parser was returning approach clearances of type ILS and 
Runway 22L. On four particular days in a calendar month of the 
analysis, 30 percent of the 22L arrivals were given ILS 
clearances according to the semantic parser. Further 
investigation of the transcriptions revealed that these clearances 
were actually circling instructions: cleared ILS 31C circle 22L.  

Figure 6 shows the track path of flights issued the circling 
approach (red) compared to those issued RNP (green) and 
RNAV (blue) approaches to 22L.  

 

Figure 6. Circling (red), RNP (green), and RNAV (blue) Clearances to 
MDW Runway 22L 

We have since added the detection of circling approaches to 
the semantic parser; expanding on the above analysis will 
enable an automated method for understanding how often 
circling approaches are used in the NAS.  

D. Lessons Learned 

Analysis of the approach clearance data revealed circling 
and special procedure clearances at some sites, and some 
phraseology variation in PBN approach clearances. Fusion to 
trajectory-based metrics within TTFS further allowed for 
comparison of results to approach procedure conformance 
algorithms, comparison of missed approach rates by approach 
type.  



While speech recognition showed promise in our analysis of 
approach clearance detection, improvements to the capabilities 
will further enable meaningful analysis, especially when 
identifying outlier events. Detecting such off-nominal events 
revealed limitations of semantic parsing such as corrected 
clearances, where more than one approach type is issued in the 
same sentence by the controller. Such potential improvements 
identified from the approach analysis work will be incorporated 
as we mature our voice data analysis capabilities.  

V. NEXT STEPS 

The previous two sections have described large-scale voice 
data analysis capabilities and provided specific use cases that 
highlight how voice data can be leveraged for analyses that are 
not feasible with other data sources. While we are still improving 
the voice data analysis capabilities, these early analyses 
exemplify how voice data can provide new and valuable 
information to improve our understanding of air traffic 
operations.  

A.  Voice Data Analysis Capability Enhancements 

While some ongoing enhancements to the voice data 
analysis capabilities are incremental improvements to existing 
features (e.g., modifying the semantic parser so that it can detect 
circling approach clearances), other enhancements are more 
transformative.  

One significant planned enhancement is processing 
transmissions as a dialogue. The current set of capabilities treat 
each transmission in isolation, but in many cases, information 
from preceding or succeeding transmissions is needed to 
disambiguate or otherwise make sense of a given transmission. 
One example is ACID detection in cases when the ACID is not 
spoken. When a controller and pilot exchange multiple 
transmissions in a row about the same topic, they may drop the 
ACID from the intermediate transmissions. If that transmission 
is processed in isolation from all others, the automatic 
processing has no ability to determine which ACID should be 
associated with the transmission. By processing transmissions as 
a series, automatic capabilities can be set up to take advantage 
of this dialogue context. For example, a pilot readback of “two 
two zero two four zero” is ambiguous on its own, but it can be 
understood if the preceding controller instruction is known to be 
“united two four zero reduce speed to two two zero knots”. 

B. Other Voice Data Use Cases  

Within the realm of PBN-related analyses, voice data can 
also be used to better understand arrival and departure procedure 
usage. Voice data can help assess procedure conformance—
including why a flight may not conform to an arrival or departure 
procedure—and provide insights into the operational integration 
of capabilities supporting Trajectory-Based Operations (TBO).  

Voice data also contain valuable information pertinent to 
safety analyses. In some cases, voice data can provide 
supplemental information about an event—e.g., whether the 
controller or pilot initiated a missed approach/go around. In 
other cases, voice communications may be the only data source 
that can provide context to an event—e.g., whether pilot-applied 
visual separation has been established.  

Finally, voice data continues to be a valuable information 
source for reviewing individual events for a complete 
understanding of special cases. Even if speech recognition and 
understanding are not perfect, automatically-processed voice 
data make it easier to find the audio of interest among the 
thousands of channels recorded in the NAS throughout the day.  

As voice data processing improves in accuracy, our ability 
to understand air traffic operations will correspondingly 
improve. Research questions previously seen as being 
unanswerable will become possible and allow for new, more 
complex questions to be posed and studied as the NAS 
transitions to TBO.  
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