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Abstract—In this paper, we describe an approach for clustering 

aircraft taxi trajectories on the airport surface. The resulting 

clusters can enable improved or novel analyses and optimization 

of airport surface traffic. In particular, we seek to identify 

anomalous taxi trajectories. While statistically anomalous 

trajectories may be planned or expected by a human controller, 

they may also be unplanned, and thus may represent flights that 

could pose safety risks. We developed a novel hierarchical 

clustering algorithm that groups taxi paths in space and then in 

time. We present results for Charlotte Douglas International 

Airport (KCLT), showing the common taxi trajectories 

represented by the clusters, and then discuss leveraging those 

clusters to identify anomalous trajectories in this dataset. This 

unsupervised machine learning approach is able to successfully 

differentiate between typical and anomalous trajectories in a post 

hoc setting. We have begun to validate the anomalies with subject 

matter experts as being a combination of infrequently-used paths 

and true anomalies. In addition, by clustering in time the 

trajectories in a shape-based cluster, we can separate free-flowing 

trajectories from those with stops and identify some common 

stopping points. Finally, we identify numerous extensions of this 

approach, and other applications for the underlying clustering 

methodology. 
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machine learning; clustering; anomaly detection 

I.  INTRODUCTION 

The surface of a large airport is a complex environment, with 
aircraft arriving and departing on the runways, other aircraft 
taxiing to and from runways and maintenance facilities, and a 
variety of motor vehicles performing other missions. Some 
automation already supports controllers to help ensure safety 
and to maximize efficiency. The importance of these systems 
will increase as the airport surface becomes more congested and 
new air vehicles with different operating characteristics are 
introduced. Many approaches for maintaining safety (e.g., 
identifying flights off their expected taxi route, identifying 
flights that might intrude into the runway), and improving 
efficiency (e.g., deconflicting taxi routes, scheduling runway 
operations) rely on having simplified representations (i.e., a 
common specification, whether point or line-based, across 
multiple flights) of taxi trajectories. To that end, in this paper we 
describe an unsupervised machine learning approach for 

learning these simplified representations from historical 
trajectory data. We provide details on one application of these 
trajectories—identifying anomalous taxi paths—and then 
propose other ways that these clusters may support airport 
operational improvements. 

A trajectory, in our context, is a collection of observations of 
a particle’s path through space over time. These are clearly of 
interest in a variety of transportation applications (e.g., taxiing 
aircraft, cars on a freeway, long-distance cargo ships) and other 
domains, but working with such data directly can be challenging 
for several reasons: 

1. Volume of data: depending on the frequency of observation, 
number of vehicles, etc., the number of records may be 
huge, presenting problems for computation and 
visualization. 

2. Noise in observation: position observations are generally 
imprecise, with the error dependent on vehicle dynamics 
and the surveillance technology employed. 

3. Uneven sampling: observations for different vehicles may 
not occur at the same instants, or the same rate, or may occur 
at an irregular rate. 

Because of these challenges, analyzing taxi trajectories is 
often facilitated by assuming an aircraft is using some standard 
path, hopefully a path learned from observed data. Generating 
these representative paths for groups of flights is an example of 
clustering, a powerful machine learning approach for finding 
relevant patterns in an unlabeled data set [1]. A variety of 
research efforts across domains have examined the problem of 
clustering trajectories, fueled particularly in recent years by 
computational advances. Several recent papers provide a 
thorough review of this area [2] [3]. 

Several recent lines of inquiry specific to aviation have 
examined the development of trajectory clustering approaches 
and their applications, including for flights in the terminal area 
[4] [5], and the en-route airspace [6]. The research described in 
[4] and [6] uses DBSCAN for clustering. The approach taken in 
[5] was a bit different—they represented trajectories as 
sequences of turning points (“waypoints”) and then clustered by 
using NASA’s SequenceMiner engine to look for long common 
subsequences of such “waypoints” in trajectories [7]. A similar 



“partition-and-detect” approach for detecting outlier sub-
trajectories based on shape only has been applied to hurricane 
and animal trajectories [8]. 

Our work is inspired in part by the approach taken in each of 
these papers, as we describe in section 2. However, a significant 
difference between airborne and surface trajectories is that 
aircraft often stop while they are on the airport surface. These 
wide variations in and periods of zero velocity introduce 
significant complications to the pre-processing and clustering 
approaches used in this type of analysis, motivating novel 
contributions in our algorithmic approach, particularly the 
second-level time-based clustering within shape-based clusters. 

One particular application of these clustering techniques 
drives the technical work presented here: the identification of 
anomalous flight trajectories on the airport surface. Anomaly 
detection can be performed without clustering (e.g., see [9], [10] 
for related work for airborne flights). However, clustering can 
enable anomaly detection if data points are considered 
anomalies when they are assigned to small clusters or deemed 
not suitable for assignment to any cluster. 

Little research has been conducted to identify anomalies in 
airport surface surveillance data. In an offline, post hoc analysis, 
anomalous observations can be mined to identify risks that can 
be mitigated with improved procedures, communications, and 
monitoring protocols. In an online, real-time application, partial 
trajectories can be matched to known clusters, and those without 
a suitable match tagged for interrogation by a controller. In this 
paper, we do not attempt to solve all the potential challenges 
derived from these applications, but are motivated by them to 
develop a robust and flexible approach for clustering flight 
trajectories on the airport surface. 

The remainder of the paper focuses on describing the 
developed clustering and anomaly detection approach, the data 
used for the demonstrations, the results of the demonstrations, 
and directions for continued work. 

II. CLUSTERING AND ANOMALY DETECTION APPROACH 

Our algorithmic approach to developing clusters of taxi 

trajectories has several steps, but has the DBSCAN clustering 

algorithm at its core. Of the many clustering approaches that 

exist, DBSCAN (Density-based spatial clustering of 

applications with noise) is one of the most powerful and flexible 

[11]. DBSCAN builds clusters by iteratively finding “core” 

points with many nearby neighbor points. Points with too few 

or too distant neighbors are assigned to no cluster.  

DBSCAN has been successfully applied for clustering 

trajectories of airborne aircraft [4] [5] [6]. Such applications of 

DBSCAN typically involve resampling trajectories at even time 

intervals and then clustering the resulting trajectory points. 

Unfortunately, two related considerations complicate the 

application of DBSCAN for airport surface trajectory clustering 

and anomaly detection: 

1. Aircraft can stop: even those trajectories sharing the same 
2D shape can involve relatively large and operationally-
relevant variations in speed, such as long periods of no 

movement. This is particularly true for departures, which 
may stop in queue, or to absorb assigned delays. 

2. Measurement errors: errors in recorded surface trajectory 
point locations can be large relative to sometimes very low 
trajectory velocities. 

We overcame this issue by developing a two-level 
hierarchical clustering approach outlined in Figure 1. In the first 
level of clustering, we clustered trajectories based on their 2D 
shapes. Then, at the second level, we clustered trajectories that 
shared the same shape (i.e., in the same shape-based cluster) 
based on the time they took to traverse the steps in the shared 
trajectory shape. 

 
Figure 1.  Algorithm flowchart 

This approach aids in the interpretation of clusters and 
outliers by specifying them in distinct dimensions (i.e., space 
and time) that are both important in the airport surface context 
but in different ways that may involve different actions. 

The first stage of our approach is processing the trajectories, 
during which we resample and standardize the trajectories to 
provide vectors of standard length to the clustering algorithm. 
We evaluated using Dynamic Time Warping as a distance metric 
[12], which may have eliminated the need for resampling, but 
determined that our approach would produce more explainable 
results. Furthermore, unlike Dynamic Time Warping, our 
approach provides a natural method for deriving cluster 
centroids from the shape-based clusters’ member trajectories, 
and these centroids are key for computing the distance metric we 
use in the time-based clustering step, as described below. 



In our first level of clustering in the hierarchy, we resampled 
trajectories after even intervals of distance traversed and then 
clustered trajectory shapes represented by the resulting sample 
points. Unfortunately, this approach is vulnerable to 
measurement noise, which can lead to erroneous computation of 
distance traversal, particularly when aircraft are moving slowly 
relative to the magnitude of the measurement noise and 
measurement sampling rate. Inspired by [6], we overcame this 
issue by first resampling the trajectory in time to achieve an even 
1Hz sample rate (with the traces Python package [13]) and then 
passing the 1Hz trajectory latitude and longitude points through 
a low-pass finite-impulse response filter to remove measurement 
noise. We accomplished this filtering with signal processing 

software available in the scipy Python package [14]. We hand-
tuned the filter settings based on visual inspection of the filtered 
trajectories, ultimately selecting transition widths of 0.2 Hz for 
departures and 0.4 Hz for arrivals, and attenuation stop bands of 
40 dB and cutoff frequencies of 0.001 Hz for both departures 
and arrivals.  

The resulting filtered trajectories were again resampled, but 
this time at even intervals of distance traversed. More precisely, 
we resampled to achieve 50 evenly-spaced points for arrivals 
and 100 for departures. The filtered and resampled latitude and 
longitude points were concatenated into one row vector per 
trajectory. Arrival trajectories were then put into an arrival 
matrix with the number of rows equal to the number of arrival 
trajectories and the number of columns equal to 100 (50 latitude 
points followed by 50 longitude points). A corresponding 
departures matrix was created. Prior to clustering, these matrices 
were standardized so that variations in distances associated with 
degrees latitude and longitude did not have undue influence on 
the ensuing clustering.  

After this pre-processing, the resulting trajectories were 
clustered using the scikit-learn Python package [15] 
implementation of DBSCAN. While a distance metric like the 
physical distance between the aircraft on the two trajectories 
summed over sample points would have been more explicitly 
related to the physics of surface trajectories, we instead used the 
default Euclidean distance, emboldened by the success of 
clustering based on this metric in other ATM trajectory 
clustering efforts [4] [6]. 

DBSCAN has two parameters that must be tuned: the 

distance eps within which there must be min_samples other 
samples for a given sample to be considered a “core” sample. 
We developed an approach informed by our anomaly detection 
application to optimize the selection of these values. First, we 
performed an exhaustive search across 132 pairs of parameters 
for arrival clusters and 99 pairs for departure clusters. We then 
selected parameters that maximized the Silhouette coefficient 
[16], a cluster quality metric that is higher when samples in the 
same cluster are close to each other but far from samples in other 
clusters, while keeping the fraction of outliers below a threshold 
we deemed appropriate for our proposed anomaly detection 
application (0.05). Figure 2 shows how the desiderata of high 
cluster quality and a low fraction of trajectories identified as 
outliers can be traded off against each other. Achieving higher-
quality clusters as quantified by the Silhouette coefficient often 
can only be accomplished if more trajectories are deemed 
outliers that do not belong to any cluster. Our 0.05 threshold for 

the fraction of outliers led us to select 0.6 and 1.25 for eps and 

4 and 30 for min_samples, respectively, for arrival and departure 
clustering (achieving Silhouette coefficients of 0.80 and 0.87, 
respectively). 

 
Figure 2.  Arrival clustering parameter selection approach 

The second level in the hierarchical clustering approach 
involves clustering the trajectories within each space-based 
cluster based only on how they moved over the shared trajectory 
over time. The first step in this process is computing the median 
trajectory shape (or cluster “centroid”) from the trajectories in 
the shape-based cluster by computing the median over all the 
trajectories of the latitude and longitude values for each of the 
50 or 100 points in the evenly-spaced representations of the 
trajectories. Next, to completely remove any variations in 
trajectory shapes and isolate the time spent traversing the 
trajectory, each of each trajectory’s filtered 1Hz sample points 
was projected to the closest point on the shape-based cluster 
centroid trajectory. After this projection, each trajectory was 
represented as a vector in which the tth element contains the 
aircraft’s distance along the cluster centroid trajectory t seconds 
after the trajectory began, expressed as a fraction of the total 
centroid trajectory distance to facilitate clustering parameter 
tuning. 

The trajectories were made to have a uniform length equal to 
that of the longest trajectory in the cluster. Shorter trajectories 
padded with ones to represent that those flights already arrived 
at the end of the trajectory by those later times. In this second 
level of the clustering hierarchy, we used the ℓ1-norm of the 
difference between two trajectory vectors as the clustering 
distance metric. More precisely, the distance between the 
distance-along-centroid versions of trajectories i and j is: 

𝐷(𝑖, 𝑗) = ∑|𝑑𝑖(𝑡) − 𝑑𝑗(𝑡)|

𝑇

𝑡=0

 

where di(t) is the distance along the cluster centroid traversed 
by trajectory i at time t expressed as a fraction of the total length 
of the centroid trajectory (i.e., the tth component in its 
representative vector), dj(t) is the corresponding value for 
trajectory j, and T is the duration of the longest trajectory in the 
shape-based cluster. We again clustered with DBSCAN, but this 
time left min_samples at the default value of 5 and set eps to 
20% of the median time duration of the trajectories in the shape-

based cluster. This value for eps would be achieved by two 



median-duration (in time) trajectories that, on average, stay at a 
distance equal to 20% of the total trajectory length from each 
other. The output of this second-level clustering is a time-based 
cluster or outlier assignment for each trajectory within each 
shape-based cluster. 

In the next section, we describe the airport surface 
surveillance data we fed into this algorithm to derive clusters and 
identify outliers. 

III. DATA FOR STUDY 

To demonstrate the filtering and clustering approach 
described in the previous section, we used surface surveillance 
data taken from an archive that Mosaic ATM maintains. In this 
section, we describe the data preparation that preceded our 
modeling effort. 

At most large airports in the U.S., surface surveillance is 
provided by Airport Surface Detection Equipment, Model X 
(ASDE-X). This system fuses position reports from several 
types of radar, multilateration sensors, and Automatic 
Dependent Surveillance - Broadcast (ADS-B) sensors [17]. The 
resulting data is displayed to controllers to provide situational 
awareness, and is distributed through the FAA’s SWIM 
Terminal Data Distribution System (STDDS).  

To generate test and evaluation datasets for this research, we 
parsed the archived XML records from STDDS to create tabular 
data. In the interest of supporting repeatable research, we now 
describe a few details on the fields extracted from the XML and 
the filtering applied. Each XML record may contain position 
reports for multiple flights at a single airport, and we parsed each 
of these, extracting the timestamp, STDDS Track ID (STID), 
callsign, latitude, longitude, altitude, speed, and heading. 
According to the schema, records always include airport, time, 
STID, latitude, and longitude, and we allowed the other four 
fields of interest (callsign, altitude, speed, heading) to be null. 
We infer the callsign for the trajectory as the most-commonly 
appearing non-null value for this field. 

After this parsing and filtering, we group data into individual 
trajectories using the STID. All records for each STID are then 
processed together. Using standard airport adaptation data that 
Mosaic maintains, containing ramp and runway polygons, we 
scan the trajectory to determine the first and last times a flight is 
observed in each runway, and the first and last times it is 
observed in a ramp. Flights that have a last ramp time before first 
runway time are marked as departures, with the opposite 
relationship implying arrivals. Some ambiguous cases are 
identified, and are not included in this analysis at present. To 
simplify our analysis, the trajectory is then filtered to show only 
points between the ramp and runway. Flights that do not include 
a surveillance hit both in a ramp and in a runway are excluded 
from this dataset, although expanding beyond this scope is 
clearly relevant for future work. 

We selected Charlotte Douglas International Airport 
(KCLT) to demonstrate our analysis approach. A diagram of the 
airport is shown in Figure 3. The airport has four runways—
three oriented north-south, and one diagonal, although this one 
is little-used for takeoffs and landings. We processed one week 
of data (November 4-10, 2018) for this demonstration. The 

dataset included 5100 arrivals and 4991 departures, in line with 
the typical KCLT schedule of 700-800 each of arrivals and 
departures per day. 

 
Figure 3.  KCLT airport layout (FAA) 

IV. RESULTS 

We have applied our proposed algorithm to the dataset 
described in the previous section, and here present results of this 
analysis.  

Our first area of interest is in clustering taxi trajectories 
according to their shape alone (i.e., the first level of our 
hierarchical approach). Figure 4 shows the sizes of the shape-
based clusters for arrivals and departures, as well as the number 
of outliers for each. For both arrivals and departures, the number 
of trajectories assigned to each cluster decays roughly 
exponential with the rank of the cluster size, suggesting that the 
bulk of trajectories fall into one of a few common clusters, but 
that many much smaller clusters exist as well. Many more 
clusters were identified for arrivals than departures, including 
many small clusters with less than 10 trajectories, likely because 
arrivals use a greater variety of taxiways and runways than 
departures at KCLT. The number of outliers was nearly the same 
for arrivals and departures, which was by design and enforced in 
our DBSCAN parameter selection process. The number of 
outliers could easily be made higher or lower, with 
corresponding tradeoffs in the quality of the shape-based 
clusters. 



 
Figure 4.  Shape-based cluster size 

However, simply generating clusters is not enough without 
knowing whether they represent reasonable structure in the data. 
Necessarily, there is some subjectivity to judging this, but in 
Figure 5, we show the five largest arrival clusters. Two are paths 
exiting runway 36L taxiing to the main ramp (upper left), while 
two others are paths exiting runway 36R taxiing to the main 
ramp (upper right). One path (lower left) is for exiting 18R 
taxiing to the main ramp. These paths reflect a mix of north and 
south flow operations, and are consistent with existing subject 
matter expertise about taxiway usage at KCLT. 

 
Figure 5.  Largest shape-based arrival clusters 

The centroid of largest of these arrival clusters is represented 
in blue, shown in Figure 6 with 50 randomly-selected individual 
cluster member raw trajectories represented in faint black. The 
centroid here (in blue) follows high-speed exit W7 off 36L, to 
taxiway N, crossing runway 36C, turning south on taxiway E, 
then entering the ramp along E15 at handoff spot 9W. Note that 

one of the randomly-selected taxi trajectories in this figure taxis 
further south along E and enters the ramp along E16 at handoff 
spot 10W. It is interesting that the clustering algorithm grouped 
these with those arrivals entering at 9W, presumably because so 
much of the trajectory was identical, and their operational 
impact is essentially equivalent. 

 
Figure 6.  Detail on largest shape-based arrival cluster 

In Figure 7, we show that the algorithm is equally adept at 
learning realistic structure from departure taxi trajectories. In 
this map, we see three cluster centroids approaching the 
departure queue for runway 36C, and one each approaching the 
departure queue for runways 18C and 36R. Consistent with the 
mixed north/south flow usage, we see both directions of runway 
being used during the one-week study period. 

 
Figure 7.  Largest shape-based departure clusters 

The largest of these departure clusters is represented in blue, 
shown in Figure 8 with 50  randomly-selected individual cluster 
member raw trajectories represented in faint black. These flights 
are transiting from the main ramp to depart on runway 36C. 
They exit the ramp at handoff spot 24, then turn onto runway 23 
to taxi to the southeast, as is the typical present use of this 
runway. Interestingly, in this cluster, some flights turn off 
runway 23 at A4 to reach taxiway A. Most flights, however, 



continue along runway 23, eventually reaching taxiway E to 
travel south to the queue for runway 36C. As for the largest 
arrival cluster, these two different, but functionally identical, 
paths are joined together into the same cluster. 

 
Figure 8.  Detail on largest shape-based departure cluster 

Identifying spatial structure in the taxi trajectory data is an 
important function that we believe may serve many applications. 
However, we are also strongly interested in automatically 
detecting anomalous taxi trajectories. A byproduct of our 
algorithmic approach leveraging DBSCAN is that some fraction 
of our input trajectories is automatically is not affiliated with any 
cluster, and can then be categorized as anomalous. Next, we 
show several interesting trajectories not assigned to any cluster 
by the first level, and describe the nature of the anomaly. In 
Figure 9, a flight arrived on runway 36C (by itself somewhat 
unusual) but then taxied directly to the maintenance hangars 
south of runway 23. This does not represent a safety-related 
anomaly, but is not activity typically observed, or otherwise 
easily extracted from airport surveillance data. 

Figure 10 shows a departure leaving from the northeast 
corner of the main ramp via handoff spot 29, then taxiing south 
along taxiway C to the departure queue for runway 36R. 
Following C all the way south is a common path during north 
flow operations. However, this flight turned off C at runway 23, 
and taxied a short way down 23 before turning off on G to rejoin 
C. This maneuver avoids a known congestion hotspot where C, 
A, and R converge (highlighted on the section of the FAA chart 
included in Figure 3), but was little-observed in our dataset, and 
was flagged as an anomaly. This is a useful finding in a real-time 
application, because the flight may have turned errantly off C. 

 
Figure 9.  Example arrival trajectory anomaly 

 

 
Figure 10.  Example departure trajectory anomaly 



In addition to these trajectories not explicitly assigned to a 
cluster by the algorithm, some of the small clusters may also 
represent anomalous behavior. Increasing the size of the input 

data, or increasing the min_samples parameter may help to 
separate some of these small clusters into more concrete 
“typical” or anomalous groupings. Recall that for this analysis, 
this parameter value was set higher for departures, and so there 
are no corresponding examples for departures to the arrival ones 
shown here. 

For example, in Figure 11, we show four arrival trajectories 
(the minimum) that form one cluster. These flights do three 
unusual things on their route from runway 18R to the main ramp: 
first, they require a longer landing distance and exit on W3 
instead of the typical W4, they use V4 to cross 18C instead of S, 
and they enter the main ramp at handoff spot 12S instead of 
22W. 

 
Figure 11.  Sample small arrival cluster 

In Figure 12, we show four arrival trajectories that form 
another cluster. These flights land on 36R and turn off on 23, as 
in one of the largest arrival clusters shown in Figure 5. However, 
instead of turning off 23 at R to enter the main ramp at handoff 
spot 25, the flights taxi much further down 23 and turn on B to 
M to enter the ramp at handoff spot 22W. This likely happened 
to avoid congestion in the southeast corner of the ramp near spot 
25, but is unusual behavior. 

 

Figure 12.  Sample small arrival cluster 

Next, we examine the impact of the second level of our 
clustering hierarchy by looking within shape-based clusters to 
identify time-based characteristics. In Figure 13, we show the 
fraction of trajectories within each shape-based cluster that are 
not assigned to a time-based cluster, i.e., are an outlier in the 
second level of the hierarchy. From this figure, we can see that 
approximately 50% of shape-based clusters have 5% or fewer 
outliers when clustering in the time domain. In other words, 
within many shape clusters, there is considerable homogeneity 
with respect to time. However, because of this relative 
homogeneity, these clusters are particularly interesting from an 
anomaly detection perspective, as we will show next. 
Conversely, there are some shape-based clusters for which the 
time-based clustering found no structure, e.g., 6 of the 66 space-
based arrivals clusters, and each had the minimum number of 
member trajectories (4). As a result, there is no value added in 
terms of being able to identify anomalies from the time-based 
clustering in these space-based clusters. This lack of structure 
provides one mechanism for categorizing entire space-based 
clusters as anomalous. 

 
Figure 13.  Time-based clustering behavior within shape clusters 

Next, we show the time-based structure identified within 
each of the largest shape-based arrival and departure clusters. 
For this arrival cluster (Figure 14), only one time-based cluster 
is identified. A number of outlier trajectories are also identified 
(shown in red); each of these had stops at different locations and 
of different durations. 



 
Figure 14.  Time-based structure within largest arrival cluster 

In the largest shape-based departure cluster (Figure 15), two 
time-based clusters are identified—one has minimal delay in 
reaching the runway, while the other represents trajectories that 
generally had multiple stops. Two other space-based departure 
clusters also had two time-based clusters within. 

 
Figure 15.  Time-based structure within largest departure cluster 

In this figure, note that a number of trajectories were still left 
out of any time-based cluster because of the diversity in when 
and where flights stopped along their trajectory. In most cases, 
these stops do not seem to correspond with being in the departure 
queue (i.e., near the end of the taxi trajectory) but rather occur 
throughout. This distribution indicates that there is not likely a 
single hotspot of congestion causing these stops, but instead a 
variety of other causes. 

Next, in Figure 16, we provide an example of the importance 
of employing the time-based clustering approach in identifying 
anomalous behavior by looking more deeply at one of the 
outliers from the previous figure. In terms of shape, this flight 
followed an expected, typical path. However, when clustering in 
time, it is exhibits anomalous behavior. At the point highlighted 
with the red circle, the flight stopped for approximately 25 

minutes, as shown in time-space plot in Figure 17. Stopping at 
one point in the active movement area of the airport is clearly 
unusual, indicating that the flight was dealing with some 
maintenance problem or unexpected delay. In a real-time setting, 
this flight could be identified to a controller for further 
investigation, likely after verifying that there was no previously-
known delay mechanism to explain the stop (e.g., ground delay 
program, ground stop, APREQ). 

 
Figure 16.  Example time-based anomaly 

 

 
Figure 17.  Space-time depiction of example time-based anomaly 

In this section, we have shown the results of the analysis 
applying our proposed hierarchical clustering approach to a one-
week data set. We believe that these results provide a compelling 
view into the potential insights available from this approach. 



V. CONTINUING WORK AND CONCLUSIONS 

In this paper, we have described our research adapting 
clustering techniques to develop meaningful results for taxi 
trajectories on the airport surface. We have demonstrated 
technical feasibility in applying them to the post hoc anomaly 
detection application outlined in the introduction. Trajectories 
are grouped into logically-reasonable spatial clusters, with 
commonly-used taxi routes appearing frequently, and together. 
Little-used routes and other anomalies are successfully 
segregated from the clusters representing typical paths. In the 
time domain, we can successfully separate taxi trajectories that 
represent unimpeded motion from those that stop, including 
identifying common stopping points. The time-based level of the 
hierarchy also provides value in helping to identify space-based 
clusters with little or no internal time-based structure, which 
may be a useful proxy for labeling entire clusters as anomalous 
behavior. 

The techniques extend the state of the art and demonstrate 
promise for continued research and development. We have 
identified a number of areas for improving our technical 
approach, including: 

1. Improved computational performance to support analysis 
over longer time periods 

2. Refined approach to time-based clustering to recognize 
equivalence of stopping in same spot for some range of 
times 

3. Inclusion of other aircraft data to refine clusters and 
diagnose performance 

In this paper, we have focused on applying our clustering 
methodology to identify anomalous taxi trajectories in a post hoc 
setting, and have demonstrated the feasibility of this approach. 
However, we believe that there are a number of other valuable 
applications for these clusters that should be pursued. We intend 
to develop a real-time system leveraging this clustering 
approach to flag potentially-troublesome trajectories as they 
unfold. In addition, we believe this clustering approach can be 
very useful to inform other ongoing analysis and modeling 
efforts supporting other automation systems to improve airport 
safety and operational performance. 
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