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Abstract—The ever increasing demand for air travel is likely
to induce air traffic congestion which will elicit great economic
losses. In the presence of limited airspace capacity as well as
the saturated airway network, it is no longer feasible to mitigate
air traffic congestion by adding new airways/links. In this paper,
we provide a “counter-intuitive” perspective towards air traffic
congestion mitigation by removing airways/links from a given
airway network. We draw inspiration from Braess’s Paradox
which suggests that adding extra links to a congested traffic
network could make the traffic more congested. The paper
explores whether Braess’s Paradox occurs in airway networks,
or more specifically, whether it is possible to better distribute
the flow in an airway network by merely removing some of
its airways/links. In this paper, We develop a generic method
for Braess’s Paradox detection for a given airway network. To
validate the efficacy of the method, a case study is conducted, for
South-East Asian airspace covering Singapore airway network,
by using 6 months ADS-B data. The results shows that Braess’s
Paradox does occur in airway networks and the proposed method
can successfully identify the airway network links that may cause
it. The results also demonstrates that, upon removing such links,
the total travel time for a given day traffic at a given flight
level, was reduced from 8661.15 minutes to 8328.64 minutes, a
reduction of 332.5 minutes. This amounts to a saving of 3.8% in
travel time.

I. INTRODUCTION

Present day air traffic network is reaching its operational
capacity [1] and accommodating future air traffic growth will
be challenging for air navigation service providers (ANSP)
[2], [3]. The International Air Transport Association (IATA)
estimates that by 2036 the number of air passengers will
double to 7.8 billion [4]. Such growth will put pressure
on the infrastructure and airspace capacity. As a result, air
traffic congestion is likely to occur [5] which may cause
huge economic losses to ANSP, airlines and customers. For
instance, according to FAA/Nextor, the average cost of aircraft
congestion for U.S. airlines was $68.48 per minute in 2017,
an increase of 7.4% over 2016 [6].

Note that air traffic has long been artificially concentrated on
airways with intermediate waypoints [7], which could result in
congestion [8]. The airway network has evolved, over a period
of time, without any scientific basis. As new waypoints and
airways are added to airway networks to accommodate the
increasing traffic in an as-needed manner, structures of airway

networks become more and more complicated [9], [10], [11].
Such a network may also lead to increasing air traffic con-
troller workload [12], [13]. Therefore it is no longer feasible
to add new airways/links to the airway network to improve the
traffic flow and manage airspace congestion. Applying changes
to airway network to force a better distribution of traffic flow
may reduce the congestion and can provide more flexibility to
flight schedules and routes.

Thus, it becomes necessary to investigate novel methods
for restructuring airway networks so as to better manage
traffic flow. In line with this idea, researchers have made
significant efforts towards designing airspace with optimal
airway structure [1], [14], [15]. These efforts often end up
with complete new airway structure for a given airspace. The
challenge is that, due to operational constraints, complete
redesign of airway networks, so as to obtain the global optimal
airway structures (for a given airspace/FIR), is not feasible.
Also some new concepts are proposed for the operation of
airways, such as defining new airways dedicated to the most
important traffic flows [16], [17] which is similar to the
highways for ground traffic that accommodate flows of car
traffic between big cities, and 4D airways design [18], [19]
that can reduce congestion by planning the space and time of
flights.

In this paper,we focus on how to make minimal changes
to an existing airway network such that it can improve the
traffic flow. Can we achieve this instead by removing some
of the airways, i.e. network links, in air traffic network? The
answer may be yes for some networks. This counter intuitive
phenomenon has been observed in 1969, when a new road was
constructed in Stuttgart. Traffic flow was worsened and only
improved after the road was closed. In 1990, when 42nd street
was closed in New York City, the traffic flow was actually
improved instead of the anticipated traffic congestion. These
paradoxical phenomena are named as the Braess’s Paradox
(BP). The BP was first recognized by an economist Arthur
[20] and it was named after Braess, a mathematician who
articulated the phenomena [21] [22]. Braess noted that when
a new link is added in a user-optimized network, change in
the equilibrium flows might result in a higher cost.

Since its discovery in 1968 [21], BP has generated signif-



icant change to research in ground traffic network. BP has
been studied concisely in its original network form [23], [24],
[25] and in a more general context. Characterizations of the
occurrence of the BP are obtained using separable affine travel
cost functions [26] and using separable monotone travel cost
functions [27]. It is also proved that BP is likely to occur in
a natural random network model [28]. More precisely, for a
given appropriate total flow, it is shown that in almost all
networks, there is a set of links whose removal improves
the travel time at equilibrium [28]. Further, under the future
air traffic management paradigm where aircraft operators can
make the user preferred route (UPR) choices, BP could be a
common phenomenon in the network. However, to the best
of our knowledge this phenomenon has not been explored or
investigated in air transportation networks. One of the possible
reason might be the centralized air traffic management and the
lack of methods for large air traffic data processing.

This paper aims to answer the question whether BP occurs
in airway networks. More specifically, this research investi-
gates if it is possible to improve the performance of an airway
network by removing certain airways/links. If BP does occur
in a given airway network, this paper further aims to identify
the airways/links that lead to BP. To achieve this goal, this
paper first quantifies the performance of an airway network as
the total duration spent by all the aircraft on the given airway
network. Then we propose a generic method for BP detection
for a given airway network. The proposed method consists of
three key steps. The first step mainly deals with air traffic data
pre-processing and building the network. The second step is
about BP detection and identification of the potential links that
may cause BP. The third step is BP verification which aims to
validate if the links suggested by step 2 are indeed the links
that cause BP.

In order to verify the efficacy of the proposed method, this
paper carries out a case study on South-East Asia airspace
covering Singapore Airway Network (referred to as SAN
hereafter), using ADS-B data recorded over 180 days during
the calendar year 2017. In this paper, we choose the flight
level 330 (33,000 ft) and apply the proposed method to the
underlying airway network. In summary, we propose that
traffic flow, on the airway networks, can be improved by
removing airways/links from airway networks.

The remainder of the paper is organized as follows. Section
II introduces the fundamental idea of BP. Section III describes
our studied problem. Section 4 delineates in detail the pro-
posed generic method for BP detection for a given airway
network. Section V demonstrates the case study on SAN and
discusses the results. Section VI concludes the paper.

II. BRAESS’S PARADOX

A. Introduction to BP

BP provides an explanation for the situation where an
alteration to a traffic network to improve traffic condition
actually has the reverse effect and impedes traffic through it.
General characterizations of change in travel costs at equilib-
rium were obtained by adding paths or by varying demands.

In a traffic network consists of links associated with non-
decreasing function of flow known as cost functions, ‘users’
unilaterally choose least cost (or shortest) path on the network.
The resulting flow is known as User Equilibrium (UE), also
known as Wardrop Principle 1 [29]. However, there is a better
flow pattern if the users cooperate with each other to come out
with a flow that is best for all the users in the system. ‘Best for
all users’ means that the total costs incurred to all the users is
minimum. Such a flow is termed as System Equilibrium (SE),
also known as Wardrop Principle 2 [29]. When a new link is
added, it is aimed to reduce the total cost in the system (SE),
but the users pursue a new UE. If we calculate total costs
incurred to all the users of this new UE, it might become
larger than the total costs on the previous UE. BP is rooted
in behavior of the users: they choose their own least cost
routes without any regard for how their choices may affect
others. If the users decided to collaborate to constitute SE,
there would be no place for BP. In Air Traffic this is analogous
to the way airlines do their flight planning exercises. For a
given flight, the Airlines Operations Center (AOC) chooses
the best possible route accounting for aircraft performance
and flight profile, subject to safety and operational constraints.
AOC carries out this exercise using its own business model,
without any consideration to other airlines. In Air Traffic
Management, ATCs largely adhere to the flight plan, however
do makes tactical changes to ensure safety of the flight in
conflict situation or bad weather conditions.

Figure 1. The original network model introduced by Braess. Figure in the left
panel shows the network with extra link l5. Figure in the right panel shows
the network without extra link l5.

Previous investigations on BP were commonly based on the
classical, symmetric four-link network introduced by Braess
[21]. There are few studies on BP in practical large scale
transportation networks with realistic transport demand. Re-
searchers prove that BP detection is highly intractable espe-
cially in real networks and no efficient method has been intro-
duced. A heuristic methodology based on Genetic Algorithm
has been studied to detect BP [30], [31], in which links that
might cause BP is identified by simply testing their closure one
by one and then an algorithm is adopted to run over these links
to find a combination whose closure improves traffic cost. This
method is effective for detecting BP in small scale networks



Table I
DEFINITIONS OF RELATED NOTATIONS AND VARIABLES.

BP Braess’s Paradox
UE User Equilibrium

Link A link of a network is one of the connections between the
nodes of the network

Path A path in a network is a sequence of links which connect a
sequence of nodes

Φ Total flow from origin to destination
T+
Eq Total time spent for all the users to go from origin to

destination with the extra link under user equilibrium
TEq Total time spent for all the users to go from origin to

destination without the extra link under user equilibrium
φi Flow on link i
fi Flow on path i
T Time spent for each user to go from origin to destination

under user equilibrium
Ti Time spent for users to go from origin to destination by

path i

and therefore is not applicable to large, complex real-world
networks. In a different context, a path-based formulation
has been developed [32] to detect BP in a stable dynamic
network. The major limitation of this path-based (not link-
based) formulation is that its computational time cost increases
exponentially if the network grows in size.

Note that most studies on BP detection mainly identify
the links/paths that cause BP by enumerating all possible
removals to see if the removals indeed improve travel cost on
the focal transportation network, with their critical drawback
being the time consuming implementations. In order to assist
better identification of the links/paths that cause BP to a traffic
network, the authors in [33], [34] presented a variant to BP
model which aims to explore a solution that will make some
users better-off but no user is worse-off compared to the
solution to UE. To keep consistency with UE and SE, here
we name it as Braess Equilibrium (BE). As BP detection in
realistic networks is NP-hard [35], the BE model is proved to
be promising for detecting BP from medium scale networks.
Inspired by [33], [34], in this paper we adopt the BE model
to assist in identifying the potential airways/links that cause
BP.

B. An Example of BP

We use the simple network shown in Fig. 1 to explain BP.
As illustrated in Fig. 1, many network users travel from the
origin ‘a’ to the destination ‘z’. Assume that each user chooses
an a-z path independently and selfishly, so as to minimize their
own time cost.

In the network shown in the left panel of Fig. 1,
there are three paths from origin a to destination z:
1 : l1 → l4, 2 : l3 → l2, 3 : l3 → l5 → l4.

The flow on each link is:

φ1 = f1, φ2 = f2, φ3 = f2 + f3, φ4 = f1 + f3, φ5 = f3 (1)

Each link of the network is characterized by its cost func-
tion, which describes the time spent by the users travelling

through the link. Time cost on each link is:

t1 = φ1+50, t2 = φ2+50, t3 = 10φ3, t4 = 10φ4, t5 = φ5+10
(2)

Time cost on each path is:

T1 = 11f1 + 10f3 + 50
T2 = 11f2 + 10f3 + 50
T3 = 10f1 + 10f2 + 21f3 + 10

, (3)

We assume that traffic in the network reaches an equilibrium
state, the natural outcome of "selfish routing" in which all users
find their own optimal paths. In accordance with UE, travel
times are equal on all used paths and are smaller than that on
any unused paths, namely:

T1 = T2 = T3 (4)

The total travel time of all users on the network is:

T+
Eq =

3∑
i=1

Ti =
31Φ2 + 1010Φ

13
(5)

In the network shown in the right panel of Fig. 1,
there are two paths from origin a to destination z:
1 : l1 → l4, 2 : l3 → l2.

The flow on each link is:

φ1 = f1, φ2 = f2, φ3 = f2, φ4 = f1 (6)

Time cost on each link is:

t1 = φ1 + 50, t2 = φ2 + 50, t3 = 10φ3, t4 = 10φ4 (7)

Time cost on each path is:

T1 = 11f1 + 50, T2 = 11f2 + 50 (8)

According to UE, we have:

T1 = T2 (9)

The total travel time for all users on the network is:

TEq =

2∑
i=1

Ti =
11Φ2 + 100Φ

2
(10)

We assume that the traffic demand - the total amount of
traffic flow - in the network is 6, which is represented as:

f1 + f2 + f3 = 6 (11)

Then in the equilibrium state of the network shown in the
left panel of Fig. 1, each of the three paths, i.e., a → b→ z,
a → c → z and a → b → c → z, has a flow of 2 with the
corresponding cost being 92. However, if we remove the link
b→ c to obtain the second network shown in the right panel
of Fig. 1, then in the ensuing equilibrium state, half of the
flow are attached to path a → b → z and the other half to
path a→ c→ z, resulting a cost of 83 for each user which is
better than that of keeping link b→ c.Thus removing links can



improve the performance of the equilibrium flow of a selfish
routing network.

BP happens when the total travel time on the network
without link 5 is less than that on the network with link 5,
that is:

TEq ≤ T+
Eq (12)

By solving inequation 12 we get the interval of demand for
BP to happen: 0 < Φ < 80

9 , that is, with a set of cost functions
for each link of a traffic network, when the traffic demand is
within a certain range, BP will appear. In this simple network,
the mechanism of BP is shown by simple calculations. When
it comes to large and complex networks, BP also widely exists,
however, in a much more intractable manner.

III. PROBLEM DESCRIPTION

An airspace, comprising of several airways and intermediate
way-points, can be seen as a network of links between way-
points. The horizontal projection of such an airway network
can be seen as a planar network with the nodes being the
waypoints and links the airways. An airway of an airway
network is defined as a sequence of segments starting and
ending at fixed waypoints [1]. Fig. 2 exhibits an example of
an airway network.

Figure 2. A graphical illustration of an airway network.

In Fig. 2, the nodes in red denotes the waypoints and the
links in blue signifies the airways. To keep en-route vertical
separation, so as to assure en-route flight safety, an airspace
network often has a layered structure, as shown in Fig. 3.

Fig. 3 illustrates the vertical distribution of aircraft trajecto-
ries on layered airway network. We can see from Fig. 3 that an
airway network is practically in a multi-layer structure. All the
aircrafts in a certain layer have to follow the airway network
at the corresponding layer.

As an airspace has its capacity limit, when air traffic
demand reaches the capacity threshold of an airspace, then air
traffic congestion is likely to occur [36]. In order to mitigate
congestion, one possible way is to add new airways to the
airway network so as to dispatch the congested traffic on
alternate routes. Note that the design of an airway network
has to take into account many factors like procedural, technical
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Figure 3. The layered en-route structure airspace network from ADS-B data
used in the study.

and geographical constraints. An airway network can possess
a very complicated structure as a consequence, and it is
no longer feasible to mitigate congestion by adding extra
airways/links to an airway network.

In this paper, we suggest a “counter-intuitive” method to
mitigate air traffic congestion with the inspiration drawn from
BP. Specifically, we aim to detect BP in a given airway
network at a given layer (flight level). In doing so, for a given
airway network we can identify the airways/links that may
cause BP. By removing those airways/links, the performance
of the given airway network can be improved. In this paper,
we quantify the performance of an airway network as the time
duration spent by all the aircrafts on an airway network in a
given period of time. Therefore, the problem to be investigated
in this paper is to identify airways/links from a given airway
network, at a given layer, such that the removal of such airways
can reduce the travel duration on the focal airway network. In
this paper, we focus on 33000 ft, a heavily congested flight
level in South-East Asia

IV. METHODOLOGY

A. Methodology Overview

The proposed methodology encompasses three key com-
ponents: Trajectory Registration, Cost Function Formulation,
and BP Detection. To better comprehend how the three
components interact with each other, we present a visual
representation of the proposed method in Fig. 4.

In Fig. 4, we take SAN as an example to illustrate the
proposed method. The Trajectory Registration step mainly
aims to map the aircraft trajectory data points, in ADS-B
data, to the SAN. Besides, the Trajectory Registration step also
abstracts air traffic demand (number of aircraft) information
from the ADS-B data for later calculation.

The outcome of the Trajectory Registration step is the
relationship between the flow (number of trajectories) and
flight duration (total flight time) for each link of the SAN.



Figure 4. The diagram of the proposed method for BP detection for a given airway network.

In the flow-duration network shown in Fig. 4, the size of 2
circles on both end of a link represent the significance of flight
duration on that link. The larger the circles are, the longer
the flight duration is. The Cost Function Formulation step
develops the cost function for each link of the SAN.

From the first two steps of the proposed method, we obtain
the cost functions and total traffic demand information. Then
the final step, i.e., BP Detection, is performed through non-
linear programming to identify the links of paradox (LOP)
in the airway network that cause BP. In what follows, we
delineate in detail how each step works.

B. Trajectory Registration

BP detection requires the flow-duration function on each
link of the airway network. With regard to this, we map
the aircraft trajectory data points, from ADS-B data for a
given period of time, on the SAN. The trajectory registration
algorithm is presented in Algorithm 1. The notations are as
follows:
Ti : (T i

1, T
i
2, T

i
3, ..., T

i
k, ..., T

i
ni

) is the i-th trajectory with
T i
k being the k-th waypoint on Ti. Ti consists of ni − 1

consecutive links. We randomly choose two way points T i
k

and T i
g forming the segment ST i

kg . Obviously there are
(
ni

2

)
different trajectory segments.
Aj : (Aj

1, A
j
2, A

j
3, ..., A

j
h, ..., A

j
mj

) is the j-th airway with
Aj

h being the h-th waypoint on Aj . Aj consists of mj − 1
consecutive links. We randomly choose two way points Aj

h

and Aj
l forming the segment SAj

hl. Obviously there are
(
mj

2

)
different airway segments.

The distance between segments ST i
k and SAj

hl is defined as
the sum of the distances between the starting point and ending
points of each segment: D = (xik − xjhl)

2 + (yik − yjhl)
2 +

(xik+1−x
j
h(l+1))

2 +(yik−y
j
h(l+1))

2. The bigger the difference
between 2 segments, the larger the value of the distance.

As illustrated in Fig. 5, from a micro perspective, for each
pair of matched airway segment and trajectory segment, links
composing the trajectory segment will be registered onto links
composing the airway segment. Time spent on each trajectory
link will be added to the duration of its matched airway link.
From a macro perspective, we assign the entire trajectory Ti

Algorithm 1 Trajectory registration algorithm
Input: ADS-B Data

1) Find the best matched airway segments for trajectory Ti:
By traversing all airways, find an airway Aj contains a
sequence of segments S = (Aj

k, ..., A
j
m, ..., A

j
h) which

has the minimum distance Dmin to Ti.
2) If Dmin > D0, Ti will be regarded as noise and

discarded.
3) If Dmin ≤ D0, find the best matched segments Ts =

(T i
l , ..., T

i
p, ..., T

i
q) on Ti for As, so that Ts has the

minimum distance to As.
4) One unit of flow will be added to each segment Asy =

(Aj
y, A

j
y+1), y = k, ...,m, ..., h, in As.

5) Each segment Tsx = (T i
x, T

i
x+1), x = l, ..., p, ...q−1, in

Ts will be registered to the airway segment (Aj
m, A

j
m+1)

in As that has the minimum distance to Tsx.
6) The rest part of the trajectory Ti, (T i

1, ..., Tl) and
(T i

q , ..., T
i
ni

), will be regarded as new trajectories and
being registered from step 1.

Output: Flow-flight duration relation on each link of the
airway network.

onto the airway segment that has the minimum D between
them, with the constraint D ≤ D0. When the minimum D
is larger than D0, we discard this trajectory because it may
be corrupted by noise. D0 is the upper bound of distance.
When a distance is larger than D0, it means there barely exists
similarity between the trajectory and any airway segment.
Then we match the corresponding segment of the trajectory
onto the corresponding segment of the assigned airway. If a
part of a trajectory has the minimum distance to an airway,
then this part will be registered onto the corresponding airway
and the rest part of the trajectory will be regarded as a
new trajectory and undergo the registration process again. We
repeat this step until every part of the trajectory is either
matched onto an airway segment or discarded as a noise. When
a trajectory segment is registered onto an airway segment,
one-unit flow will be added onto links comprising the airway
segment.



Figure 5. Registration of trajectories onto airways. From a macro view, part 1
of trajectory T1 will be registered to airway A1, while part 2 of trajectory T1
will be registered to airway A2. One unit flow will be added to A1 and A2.
From a micro view, the time duration on trajectory links ST 1

1 , ST 1
2 , ST 1

3
will be added to airway link SA2

12, while the time duration on trajectory links
ST 1

4 , ST 1
5 , ST 1

6 will be added to airway link SA2
23.

C. Cost-Function Formulation

After mapping all the segment of all the trajectories onto
their best fitted airway segments, we can get the flow-duration
data on each link for a given period of time, e.g, a period of
one day. The flow on one link is the number of trajectories
matched onto it during the time period, while the flight
duration on one link is the time spent by the trajectory
segments matched onto it. Fig. 6 gives an example of the
flow-duration relation on one link of an airway network.
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Figure 6. An example of the data-driven cost function calculation for one link
of an airway network. (a) shows the original flow-duration relation obtained
by the Trajectory Registration step. (b) shows the linear cost function for the
focal link.

Upon getting the relation between flow and duration, to
determine the overall trend of the relation without loss of
accuracy, we fuse data points under the same flow by taking
the average of them, whereby the red points shown in Fig. 6(a)
are converted into red points in Fig. 6(b). Afterward, we use
the least mean square method to determine the coefficients of
the linear cost function as displayed in Fig. 6(b).

Note that in the literature when investigating BP on road
traffic networks, researchers have utilised linear cost functions
[26], [37], [38], polynomial cost functions [39] and general
monotonous non-decreasing cost functions [40]. We regress
the cost function using linear function, polynomial function
and cubic function and the results show that they have similar
performance. Therefore in this paper, we adopt the linear
function, L = c0 + c1x, in accordance with the principle of
parsimony [41].

D. Origin-Destination (OD) Pair Extraction

From Section II we know that, apart from the cost functions
for all the links of an airway network, to detect BP we
also need to know the OD pair as well the traffic demand
information about the airway network.

From the ADS-B data we know the entry-exit points for
each flight in the SAN. After mapping each flight trajectory
to SAN, we identify the waypoints that are nearest to the entry
and exit points. We then label the two waypoints as an OD
pair. We extract the OD pairs for all trajectories on SAN.

For each OD pair, we know the traffic demand, i.e., the
number of aircraft travelled across the OD pair. We then obtain
the total traffic demand on the focal airway network by adding
together the demand on each OD pair. With the cost functions,
OD pairs and traffic demand information at hand, we then in
the next step illustrate the BP detection process for a given
airway network.

E. BP Detection Process

The BP detection process involves two sub-steps. The first
sub-step is to minimize the objective functions with respect to
the UE, SE and BE models so as to obtain the corresponding
optimal solutions. The second sub-step is to compare the
corresponding optimal solutions yield by the first sub-step and
identify the links that cause BP. In what follows we present
the details for each sub-step.

1) Minimize the Objective Functions: In order to detect
BP from a traffic network, we need to work out the optimal
traffic flow distribution on the focal network based on a given
principle like UE. In the literature, the UE, SE and BE models
have been formulated as mathematical optimization problems
[33], [34]. Because in this work we investigate the BP problem
on airway networks, we introduce the optimization problem
by first presenting the following pertaining notations and
definitions.

Given an airway network denoted by an undirected network
G = (V,E) with V being the set of waypoints (nodes) and
E the set of links connecting waypoints. Let the nodes of the
network be indexed as i = 1, ..., n and links be index as eij if
the link connects nodes i and j. Let A be the adjacency matrix
of G, with its entry aij = 1 if there is a link eij between nodes
i and j, otherwise, 0. Let EE = {EE1, ..., EEt, ..., EET }
be the set of the T OD pairs on G. The t-th OD pair is
EEt = {Ot, Dt} with Ot and Dt respectively being the origin
and destination waypoints. Let D = {d1, ..., dt, ..., dT } be the
demand vector for the T OD pairs on G, i.e., dt is the demand



on the t-th OD pair EEt. Assume that for the t-th OD pair
there are maximum Rt accessible paths respectively denoted
by P 1

t , P
2
t , ..., P

r
t , ..., P

Rt
t . The flow on path P r

t is represented
by ftr. The set of all paths in airway network G is denoted
by P = {P1, P2, ..., PT }. We say a link e ∈ p when the
link is traversed by the path p. Define a function δ(tr,ij), with
δ(tr,ij) = 1 if link eij ∈ P r

t , otherwise, δ(tr,ij) = 0. Let L be
the latency matrix of G with its entry lij = c0ij + c1ijxij being
the cost function for link eij . xij is the amount of flow on
link eij .

With all the above notations and definitions, under the con-
text of airspace network, we then formulate the optimization
problem with respect to the UE model as follows:

UE : min
xij

FUE(X) =

n∑
i=1

n∑
j=1

∫ xij

0

aij lij(t)dt

s.t. ftr ≥ 0∑Rt

r=1 ftr = dt∑T
t=1 dt = D∑T
t=1

∑Rt

r=1 δ(tr, ij)ftr = xij
lij(xij) = c0ij + c1ijxij

(13)

In the UE optimization problem as presented above, ftr
denotes the flow on path P r

t . Constraint ftr ≥ 0 assures
that flow on every path of an airway network is non-negative.
Constraint

∑Rt

r=1 ftr = dt denotes that the summation of the
flows on all the paths between the t-th OD pair should satisfy
its demand requirement. Constraint

∑T
t=1 dt = D means that

the summation of the demands on all the OD pairs should
equal the demand on the studied airway network at a given
spatial-temporal scale. Constraint

∑T
t=1

∑Rt

r=1 δ(tr, ij)ftr =
xij converts path flows into link flows since the objective
function is involved with links flows. The last constraint
presents the linear cost functions for each link of an airway
network. By minimizing FUE we obtain the optimal flow
distributions which are the outcome of users’ selfish routing.

SE : min
xij

FSE(X) =

n∑
i=1

n∑
j=1

aijxij lij(xij)

s.t. ftr ≥ 0∑Rt

r=1 ftr = dt∑T
t=1 dt = D∑T
t=1

∑Rt

r=1 δ(tr, ij)ftr = xij
lij(xij) = c0ij + c1ijxij

(14)

Analogous to the UE optimization problem, we formulate
the SE optimization problem in Eq. 14 which shares the same
constraints as that in Eq. 13. The SE model is the outcome of
users’ collaborative routing and as a result the minimization of
FSE will generate the optimal solutions for the ATC side. The

BE optimization problem can then be formulated as follows.

BE : min
xij

FBE(X) =

n∑
i=1

n∑
j=1

aijxij lij(xij)

s.t. ftr ≥ 0∑Rt

r=1 ftr = dt∑T
t=1 dt = D∑T
t=1

∑Rt

r=1 δ(tr, ij)ftr = xij
lij(xij) = c0ij + c1ijxij
u∗tr ≥ utr

(15)

It can be clearly seen from Eq. 15 that the BE optimiza-
tion problem is the SE optimization problem plus one more
constraint. In the constraint u∗tr ≥ utr, the variables u∗tr and
utr denote the time costs on path P r

t that are obtained by
respectively optimizing FUE and FBE . Constraint u∗tr ≥ utr
requires that the optimal solution to FBE makes some users
better-off but no user worse-off when compared to the UE
model.

By minimizing each of the three objective functions, we can
obtain the corresponding flow distribution matrix X with its
entry xij being the optimal flow on link eij of the studied
airway network.

2) BP links identification: By optimizing the three objective
functions we get three flow distribution matrices XUE , XSE

and XBE . We than compare the entries of XUE , XSE and
XBE and determine the potential links that may cause BP.
Specifically, if the following conditions are satisfied∣∣xSE

ij − xBE
ij

∣∣→ 0
xUE
ij ≥ δxBE

ij
(16)

then we regard link eij as a potential link that causes BP.
The first condition requires that xSE

ij and xBE
ij are close

to each other. XUE is the outcome of users’ selfish routing
which is in a way similar to the Nash solution in Game Theory
[33], [34]. XSE is the global optimal solution. XBE can be
regarded as a local optimal solution nearby XSE . In the second
condition, the parameter δ determines the difference between
the values of xUE

ij and xBE
ij . According to the BP introduction

presented in Section II we see that, if the difference between
xUE
ij and xBE

ij on link eij is large, it suggests that the flow
on link eij could have detrimental influences on the flight
cost. Thus, link eij will be a potential link that causes BP. In
this study, we assume that if the difference is of one order of
magnitude, then the corresponding link will be regarded as a
potential link. As a consequence, we set δ = 10 in our case
study.

Based on the above condition we figure out all the potential
links that may cause BP. Afterward, we remove those links
from the SAN and re-optimise FUE based on the new airway
network, yielding a new flow distribution matrix XUE′

. If the
following condition is satisfied

FSE(XUE′
) < FSE(XUE) (17)



which implies that after removing those links, from the airway
network, if the total cost on the network is reduced, then the
links identified previously are indeed the links that cause BP
to the focal airway network.

V. CASE STUDY

The above Section describes the proposed method for BP
detection for a given airway network with given trajectory
data. To verify the efficacy of the proposed method, in this
Section we carry out the case study on SAN using six months
ADS-B data.

A. Cost Functions

We first construct the network structure of SAN using ADS-
B data. Fig. 7 displays the airway structure of SAN which
consists of 198 nodes and 273 links.
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Figure 7. Airway structure of SAN.

We select the trajectory data at flight level 330 and do
the trajectory registration thereby obtaining the flow-duration
relations for all the links of SAN. Specifically, for each airway
of an airway network we do registration for a given time period
of one day. The trajectory matching is implemented over 180
days and the averaged results are used to approximate the cost
functions of airways. As a consequence, for some days 30 or
more aircrafts could fly over a particular airway as show in
the top panel of Fig. 8a. Note that the cost function of a link
depicts the resistance of a link. The cost function is a function
of air traffic flow. As long as the flow, e.g., 2-3 aircraft, on
a link is known, we can then obtain the flight duration that
the aircraft will spend on an airway through cost functions. In
this way we can achieve the flow scheduling thereby detecting
BP. The cost function matrix L is determined using the linear
function y = c0 + c1x approximation. The entry lij of L
contains two elements, i.e., c0ij and c1ij , which are used to
calculate the time cost on link eij of SAN.

Fig. 8 displays the cost functions on two representative
links, i.e., link 88 and link 201, of SAN. It can be seen from
Fig. 8(a) that link 88 had been frequently travelled by aircraft,
while link 201 was relatively less travelled by aircraft. During
the calculations of matrix L, we make use of three statistical
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Figure 8. Exhibition of the data-driven based cost functions for two repre-
sentative links of SAN. (a) cost function for link 88. (b) cost function for link
201.

metrics, i.e., MSE (mean square error), RMSE (root mean
square error), and R2 (R-square), to measure the goodness
of the cost functions. The statistical results for the 204 links
of SAN are shown in Fig. 9.
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Figure 9. Quality assessment of the data-driven based cost functions using
statistical metrics. MSE is the mean square error and RMSE is the root mean
square error. R2 is the R-square statistical metric.

Normally the larger the values of R2 are, the higher confi-
dence the linear cost functions. We can see from Fig. 9 that
the values of MSE and RMSE are large only for a few links,
while for the majority of them the values are quite small,
which means that using linear functions as cost functions is
feasible. The values of R2 for all the links except link 201 are
large. The cost function for link 201 is shown in Fig. 8(b).
Although the value of R2 is small, the cost function is still



of high confidence. This is because that the R2 metric makes
some exceptions, i.e., when data samples have a approximately
uniform distribution, the value of R2 will be close to zero.

B. BP Detection
Before BP detection, we work out the demand and OD pair

information. Fig. 10 displays the demand of 180 days in SAN
at flight level 33000ft.
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Figure 10. Air traffic demand of 180 days in SAN at flight level 330.

With the cost functions as well as the daily demand and OD
pair information about SAN, we minimize FUE(X), FSE(X)
and FBE(X), thereby getting three optimal solutions XUE ,
XSE and XBE . Each of the optimal solutions represents the
optimal flow distribution with respect to the corresponding
model and a given demand. By substituting X into FSE(X),
we can obtain the total cost with respect to X.
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Figure 11. Comparisons of total costs with respect to UE, SE and BE over
the studied period of 180 days. The red curve represents the residual costs of
the total costs with respect to UE and SE, while the blue curve denotes the
residual costs of the total costs with respect to UE and BE.

In Fig. 11 we show the differences between the total costs
respectively corresponding to UE and SE and that to UE and

BE. Note that BP could occur if the difference between the
total costs is significant, as a small difference between total
costs indicates that the Nash solution XUE is close to the
global optimal solution XSE or to the Pareto solution XBE .
We can see from Fig. 11 that, for some days the differences
are significant while for some days the differences are small
(less than 10 minutes).

Fig. 11 only presents a holistic view of the total costs with
respect to the three optimization models. In order to identify
the links that cause BP, we need to compare between the op-
timal solutions XUE , XSE and XBE . As each of the optimal
solutions is a matrix, to facilitate comparisons, we then respec-
tively, turn them into three vectors x1 = {x11, x12, , ..., x1204},
x2 = {x21, x22, , ..., x2204} and x3 = {x31, x32, , ..., x3204}, with xi
being the flow on the i-th link of SAN.

Without loss of generality, we here take day 175 as an
example to show the BP detection result. Fig. 12 shows the
three optimal flows x1, x2 and x3 with respect to UE, SE
and BE on day 175. Because for x1, x2 and x3 we have
x1i = x2i = x3i for some i-s, therefore in Fig. 12 those flows
are not shown.
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Figure 12. Exhibition of the optimal flows with respect to UE, SE and BE
on day 175.

In Fig. 12, the length of a bar with unique color signifies
the flow on the corresponding link. It can be seen from Fig. 12
that for most of the links the flows are very close to each other.
Only for links 114 and 163 we have x1114 = x1163 = 0.1656
and x2114 = x3114 = x2163 = x3163 = 0, which satisfies the
condition presented in Eq. 16. Therefore, links 114 and 163
are regarded as the potential links that can cause BP.

The waypoints associated to links 114 and 163 are shown
in Fig. 13. To verify whether links 114 and 163 indeed cause
BP, we remove them from the SAN and re-optimize FUE(X).
Then we recalculate the total cost on the network. We show the
related results in Fig. 13. We can see from Fig. 13 that before
we remove links 114 and 163, the total time duration on the
network was 8661.15 minutes.Removing those two links saves
the travel time on the network by 3.8%. Thus, links 114 and



Table II
STATISTICAL RESULTS FOR BP DETECTION FOR SAN AT FLIGHT LEVEL 330. TC1 AND TC2 ARE RESPECTIVELY THE TOTAL COSTS OBTAINED BY

MINIMIZING FUE(X) BEFORE AND AFTER REMOVING THE BP LINKS FROM SAN. SC = TC1 − TC2 IS THE SAVED COST.

Day Demand BP Link Link Flow TC1 (Min.) TC2 (Min.) SC (Min.) SC/TC1(%)
1 49 67 2.887e-02 2021.312 2014.060 7.251 0.359
8 63 134 1.804e-01 3503.380 3501.663 1.717 0.049

12 60 121 8.956e-02 2765.423 2764.178 1.245 0.045

17 58 27
71

2.160e-02
1.445e-01 3536.038 3516.810 19.228 0.544

28 82 144 1.003e-01 5170.283 5161.725 8.558 0.166
30 30 158 1.891e-01 1131.530 1123.548 7.982 0.705
38 84 78 1.270e-01 7108.310 7107.388 0.922 0.013
44 92 70 8.820e-02 9642.960 9590.713 52.247 0.542
45 94 156 4.856e-02 8848.947 8846.660 2.286 0.026
48 92 45 8.307e-02 7120.268 7101.940 18.328 0.257
54 88 28 2.964e-02 6265.240 6239.498 25.743 0.411
64 115 45 1.009e-01 13823.800 13814.417 9.384 0.068
66 102 78 2.061e-02 9999.972 9999.807 0.166 0.002
67 99 58 8.068e-02 11940.628 11936.217 4.412 0.037
71 87 134 5.167e-02 7670.403 7668.630 1.773 0.023
72 107 74 5.331e-02 11172.695 11169.220 3.475 0.031
78 111 21 8.447e-02 14093.982 14091.357 2.625 0.019
91 119 114 2.279e-02 10629.088 10397.777 231.312 2.18
93 106 186 4.128e-02 10711.080 10709.265 1.815 0.017

96 73 165
177

2.475e-02
1.335e-01 6838.770 6816.277 22.494 0.329

107 85 71 5.762e-02 8335.593 8290.270 45.324 0.544
112 116 122 1.747e-01 10854.922 10853.098 1.823 0.017
115 130 101 1.700e-01 10421.997 10400.513 21.484 0.206

126 112 58
169

1.516e-01
1.516e-01 9354.567 9320.438 34.128 0.365

129 114 74 8.605e-02 10751.427 10725.627 25.800 0.240
143 110 177 7.539e-02 8440.668 8434.132 6.538 0.077
146 122 177 1.074e-01 8585.915 8566.662 19.254 0.224
148 112 122 8.963e-02 5675.065 5665.760 9.305 0.164
150 109 186 3.376e-02 9150.042 9149.582 0.459 0.005
165 122 45 3.111e-02 11706.637 11701.168 5.469 0.047
168 114 28 8.776e-02 9694.607 9661.287 33.320 0.344

175 118 114
163

1.655e-01
1.655e-01 8661.152 8328.643 332.509 3.839

163 are the links that cause BP on day 175. This improvement
in the travel time is only for one OD pair, one day, and one
layer of the airway network, so when it comes to all layers
and all OD pairs in the airway network, the improvement can
be more significant.

To verify the validity of our proposed method and the
primary result, we then apply our proposed method to the
entire data set of 180 days to identify BP links. The statistical
results are reported in Table II. The days in bold are the top
five days that have reduced flow duration after removal of
identified BP links. We can clearly see from Table II that BP
does occur in SAN and after removing the BP links, the flow
duration on the airway network is indeed reduced.

VI. CONCLUDING REMARKS

In this paper, we have investigated the occurrence of BP
phenomenon on airway networks. To achieve this goal, we
first developed a generic method to assist in detecting links
that can cause BP on airway networks. We then carried out a
case study over South-East Asian airspace covering Singapore
airway network using six months ADS-B data from Jun. 1,
2017 to Dec. 30, 2017. The proposed method involves two key

components, i.e., cost function calculations and BP modelling.
Experimental results demonstrate that the BP phenomenon
does occur on airway networks. In the case study, we found
that after removing BP links, for one day of traffic, the total
travel time was reduced from 8661.15 minutes to 8328.64
minutes, a saving of 332.5 minutes. This amounts to a saving
in the travel time for the network by 3.8%. just for one flight
level. The calculations of the cost functions for the links of
an airway network and the traffic demand are totally derived
from real-world data instead of any assumptions. We therefore
believe that the discoveries of the BP on airway networks are
not coincidental. The findings of this work suggest that the
"removals" of some airways could reduce the total travelling
times for the aircraft that fly through the airway network
at a given flight level without cutting down the air traffic
demand. In this regard, the proposed method could assist
ANSPs with dynamic trajectory planning. Moreover, the idea
of this work will contribute to the optimal structure design
of airway networks for better air traffic services. Although,
we were able to identify possible links that can cause BP, the
proposed method cannot identify the conditions under which
BP happens on an airway network. In the future, we will
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Figure 13. BP detection results on day 175 for SAN. Links 114 and 163 are
detected as the links that cause BP. The original time duration on the network
was 8661.15 minutes. After removing the two links from the network, the
time duration is reduced to 8328.64 minutes.

make efforts to mathematically exploit the condition of the
occurrence of BP to airway networks and as well as identifying
the critical demand for BP to occur. Although the goal of
mitigating air traffic congestion is arduous and still requires
interdisciplinary efforts, this study sheds lights on the possible
way towards improving air traffic flow.
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