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Abstract— A number of approaches have been proposed to 

estimate and manage airspace and airport capacity in the presence 

of weather. These tools have the potential to provide the user 

community with improved situational awareness. Yet, there are 

few tools that translate strategic level forecasts into airspace 

capacity and those that do have considerable uncertainty 

associated with their estimates. This modeling inaccuracy can 

compromise the effectiveness of prescriptive models in identifying 

solutions that perform well. In this paper, we assess the use of 

automated decision support in a fast-time Air Traffic Management 

simulation as a means of supplementing strategic weather 

translational models. The concept uses information from weather 

translational models and compares the performance of flow rates 

produced through a stochastic integer programming model with 

random exploration against those generated by an epsilon greedy 

algorithm. The concept is validated against a historical case day in 

which the New York region was affected by convective weather. 

The results suggest that while both methods provide significant 

improvement over a set of randomly generated rates, the solutions 

identified with the epsilon greedy algorithm generally outperform 

those generated with a combination of integer programming and 

random exploration. 

Keywords- Reinforcement Learning, Integer programming, 

epsilon greedy, Weather, Simulation, Airspace Capacity 

I.  INTRODUCTION 

 Managing airspace and airport resources in the presence of 

weather is a challenging endeavor for traffic managers. By 

limiting the available capacity of strategic airspace resources, 

the weather forces airlines and Air Navigation Service 

Providers (ANSPs) to alter the planned schedule, costing 

passengers and carriers billions annually. As weather forecasts 

are often erroneous, these disruptive events are particularly 

challenging for stakeholders due to the uncertainty associated 

with the forecasted intensity, location and direction of 

propagation of the events. To manage these events, traffic 

managers often adjust the strategic flight demand by imposing 

Traffic Management Initiatives (TMIs) such as Ground Delay 

Programs (GDPs), Airspace Flow Programs (AFPs) and the 

new Collaborative Trajectory Options Programs (CTOPs) with 

the goal of limiting, in advance, the flow of traffic into the 

affected resources to a level commensurate with the available 

capacity.  

 Over the past decade, a new set of automated decision 

support tools has enabled traffic managers to implement 

increasingly complex TMIs. In addition to applying strategic 

flow management through TMIs, traffic managers can also 

employ tactical tools, such as time-based metering, to adjust 

flights over a shorter horizon, when weather forecasts are more 

certain. As several studies have shown, the cooperative use of 

speed control and strategic flow management can yield 

considerable benefits for stakeholders, including reduced fuel 

cost and improved predictability [1, 2, 3, 4, 5]. In recent years, 

the NASA Integrated Demand Management (IDM) program 

studied and demonstrated these concepts through a series of 

Human-in-the-Loop experiments [6, 7, 8, 9]. The effort seeks 

to pre-emptively curb the level of mismatch between the 

demand from flights and the capacity at constrained resources 

by pre-conditioning traffic demand at the strategic level through 

the use of the Traffic Flow Management System (TFMS) to 

facilitate a more manageable arrival stream near the terminal. 

In the IDM study, demand was conditioned by using a CTOP to 

control flight arrival times to two boundaries: an inner circle 

Flow Constrained Area (FCA) immediately surrounding the 

airport (making the program in some ways similar to a GDP) as 

well as an outer Flow Evaluation Area at 400 NM, where Time 

Based Flow Management (TBFM) assumes control of the 

flights. Demand was also controlled at the tactical level with 

TBFM via extended metering initiated 400 NM away from the 

airport. The complementary use of traffic flow management tools 

revealed many significant benefits, including a reduction in the 

amount of ground delay assigned by TBFM, a drop in the amount 

of congestion in en route and terminal airspace following TBFM 

assignment, and a more equitable distribution of delay across 

flights. The application of the concept also revealed significant 

improvements in operational performance for airlines even in the 

presence of modest CTOP adoption [10], and is shown to reduce 

the extent of the double-delay penalty imposed by TBFM on 

short-haul flights previously identified in [11].  

 The success of such studies suggests that the 

implementation of coordinated strategic and tactical operations 

can provide effective system-wide benefits. The ability of the 

system to realize these benefits, however, may be compromised 

if the available tools do not provide actionable 

recommendations on how TMIs should be designed to deal with 

disruptions. Neither TFMS nor TBFM provide the user with 

any explicit advice on how resources should be managed over 



a strategic horizon in the presence of convective weather. In this 

paper, we propose a decision support capability designed to 

issue strategic recommendations to help Traffic Managers 

select arrival rates for weather induced TMIs.  

 The subject of resource capacity estimation and 

management has received considerable treatment in the 

literature and this line of research can generally be grouped into 

two areas: (1) descriptive studies that try to predict the capacity 

at resources and (2) prescriptive studies that recommend 

decisions for managing the demand in the face of capacity 

uncertainty. The prescriptive studies commonly use an integer 

program to assign a number of flights to an airport(s) and/or 

airspace resource(s) over a fixed time horizon based on the 

available capacity at the resource(s) [12, 13, 14, 15, 16, 17, 18, 

19]. In these problems, the decision-maker assumes either that 

he/she knows the resource capacity or that he/she has access to 

a set of scenarios to represent the potential evolution of resource 

capacities given the weather. When the proposed methods were 

used, they were shown to yield optimal solutions based on the 

information provided, despite considerable computational 

complexity in some cases. The effectiveness of such methods 

in practice, however, has been compromised to some extent due 

to the inability of numerical and probabilistic weather models 

and the weather translational tools to supply the accurate 

estimates of the resource capacities that these methods require 

in order to define their problem constraints. In recent years, 

however, advances in statistical learning methods and the 

available computational resources have spurred a number of 

developments in descriptive modeling, particularly in the area 

of airport acceptance rate prediction [20, 21, 22, 23, 24, 25]. 

These efforts typically use supervised or unsupervised machine 

learning methods to issue predictions based on a weather 

forecast product coupled with historical data on the airport 

acceptance rate. The success of these efforts has allowed 

researchers to integrate descriptive models of airport capacity 

with stochastic integer programming models for GDP planning 

[24, 25].  

 Concurrent with the developments in airport capacity 

forecasting, similar advances have been made in the area of 

airspace capacity prediction. The Traffic Flow Impact (TFI) 

tool developed by Lincoln Laboratory maps convective weather 

forecasts of up to 8 hours into an estimate of the airspace flow 

rates and provides a set of uncertainty bounds associated with 

this estimate [26]. A similar analysis has examined the airspace 

capacity in the terminal area [27]. The available airspace 

capacity estimates from the tool, however, can sometimes have 

considerable uncertainty. The large uncertainty is a product of 

the high-dimensionality of the problem space, the lack of 

historical weather days to train the model and the fact that TFI 

does not provide the ability to evaluate counterfactuals.  

 Fast-time simulations offer an alternative means of 

evaluating scenarios in which weather impacts air traffic 

management operations. Tools such as FACET [28] and ACES 

[29] provide researchers with a means of studying the effect of 

various decisions under a set of common air traffic scenarios. 

This capability is particularly useful in assessing the 

effectiveness of specific interventions within the National 

Airspace System (NAS) in the presence of capacity/demand 

imbalances. Recently, researchers from MIT Lincoln 

Laboratory developed another simulation tool known as 

NASPlay that integrates a fast-time agent-based simulation 

with strategic en route weather translational models from TFI 

[30]. The tool provides a training capability for traffic managers 

and controllers by allowing the user to define strategies through 

a user interface. Yet, while the model allows the user to evaluate 

the effect of various TMI strategies against historical weather 

scenarios, past versions of the product had no automated 

planning capability. Another approach uses genetic algorithms 

to design TMI strategies based on forecasts of the demand and 

capacity [31]. While that approach has demonstrated an end-to-

end planning and simulation capability, it depends largely on 

aggregating a set of ensemble forecasts at the sector level that 

individually do not perform well over a strategic horizon. While 

such aggregation may improve the overall quality of the 

forecast, simulation-based efforts that leverage newer strategic 

airspace capacity forecasting models may also offer a 

promising alternative means of improving airspace capacity 

estimates.  
In this paper, we propose two different approaches for 

deriving flow rates at airspace resources by drawing ideas from 
both the integer-programing and simulation-based lines of study. 
In one approach we start by incorporating the strategic airspace 
permeability estimates derived with the TFI model into a set of 
constraints on a stochastic integer program. The integer program 
attempts to control the set of planned flow rates to minimize a 
weighted objective of ground and airborne delay. The resulting 
planned flow rates are then used to define the mean value of a 
distribution that will generate a set of flow rate candidates 
through pure exploration of the function space vicinity. These 
selected candidates are then evaluated with a fast-time air traffic 
simulation to gauge the effectiveness of the proposed TMI. The 
second method considers a set of solutions that were identified 
using a reinforcement learning approach that does not use any 
explicit knowledge of weather forecast parameters but 
iteratively refines its estimates based on feedback metrics it 
receives from a fast-time simulation. 

In Section II, we describe our modeling framework and the 
mechanics of the two approaches. In Section III, we discuss our 
computational experiments and evaluate our two approaches 
over a case day with significant convective weather impact in 
the Northeast United States and investigate the extent to which 
these approaches can be used to better estimate the appropriate 
airspace flow rates.  

II. METHODOLOGY 

A. Traffic Flow Impact 

The lack of weather forecast translational tools in use to 

support flight operations represents a significant gap in 

capability within current air traffic management practices. 

Although there has been some effort to develop weather-aided 

decision support tools, the scope of their applicability has been 

limited. Previous efforts to translate weather forecasts into 

airspace capacity estimates have been focused at the sector level 

[21, 32, 33]. The TFI tool addresses this shortfall by mapping 



an ensemble set of weather forecasts to a metric known as 

permeability. This permeability score is a measure between 0%-

100% that describes the availability of passable corridors 

through a given volume of airspace. The score is calculated by 

taking a weighted average of trajectory impacts through a set of 

notional routes that cross the examined airspace. A score of 

100% equates to complete availability while a score of 0% 

describes complete blockage of the airspace. As these volumes 

of airspace typically cover large portions of Air Route Traffic 

Control Centers (ARTCCs) rather than sectors, they are more 

resilient against small-scale movements of weather relative to 

forecasts that commonly occur over strategic horizons (6-8 

hours). Thus, they are generally applicable for strategic use 

rather than tactical applications (1-2 hours out). While 

permeability does not explicitly assess the flow rate within the 

airspace, the metric can be translated to a flow rate by 

correlating permeability against historical flight patterns. 

Although the translation of a weather forecast is a desirable 

property to facilitate decision support, as weather forecasts are 

inherently uncertain, it is also important to consider the role of 

uncertainty in decision making. To that end, TFI also provides 

an estimate of the uncertainty associated with the permeability 

metric. This uncertainty is represented by a prediction interval 

which describes the likelihood of the potential score range over 

time that is bounded between the 20th and 80th percentile. An 

illustration of the tool display is shown in Figure 1. In this 

example, the uncertainty of the metric grows over time. This 

phenomenon expresses the lack of trust in the forecast’s ability 

to predict the location and intensity of the weather as the 

forecast temporal horizon increases. When faced with this 

information, the decision-maker can incorporate the relative 

uncertainty of the weather forecast in his/her choice of 

intervention rather than simply basing a decision on a single 

estimate.  

 

 
Figure 1.  TFI display describing the evolution of airspace permeability over 

time. 

B. Identifying rates with Reinforcement Learning 

TFI provides a significant step towards the automation of 
weather translational air traffic management decision support. 
Yet there are a number of areas that the tool does not directly 
address. While the metric of permeability can be translated into 
a flow rate, the uncertainty associated with such translation can 
be considerably large. As a result, it can, in some cases, be 
difficult to discern the appropriate flow rate for the affected 

resource. This large uncertainty is partially the result of the fact 
that, although TFI represents large areas of airspace, it only 
considers the activity at isolated ARTCC boundaries rather than 
accounting for the activity occurring in the adjacent ARTCCs. 
Fast-time simulations, when paired with methods such as 
reinforcement learning, offer a means of exploring a wider range 
of scenarios than what is covered in the limited set of relevant 
historical days used to train TFI, and potentially evaluating the 
effect of rerouting additional air traffic from weather-impacted 
resources on the flow rates of non-weather impacted resources. 
By combining the two techniques, we may be able to provide a 
supplementary avenue for refining existing airspace capacity 
estimates and generating new capacity estimates for areas of 
airspace that TFI was not trained to predict and identify 
strategies for better managing the airspace as a whole. 

There are a number of algorithms in the reinforcement 
learning community that allow the decision-making agent to 
determine the optimal course of action given the information 
available. For this study, we adapt a reinforcement learning 
approach designed to facilitate decision-making in which the 
system under study exhibits behavior that cannot be explicitly 
described by a mathematical model. Under these conditions, the 
algorithm attempts to learn the behavior of the system through 
direct observation. We consider a system that exhibits states, S, 
where the decision-maker has a set of available actions, A. We 
would like to find a value-function V that maximizes the quality 
of the decision made over n states and all actions. The optimal 
action at step n can be described by the relationship: 

𝑎𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎∈𝐴

𝑉𝑛−1(𝑆𝑛, 𝑎) (1) 

      The task of deriving an optimal policy can be quite 

challenging, particularly as the decision-maker may know very 

little about the relative value of each action. Since the 

performance of the policies is not known a priori, at each action 

the decision-maker is left with the choice of exploring the state 

space to collect more information about the problem or 

selecting the decision with the highest certain pay-off given the 

information available. This dilemma is commonly referred to as 

the exploitation vs. exploration problem. -greedy policies are 

commonly used to deal with this gap in information. Under this 

approach, the decision-maker samples from a random 

distribution. If the value of that sample exceeds a threshold, , 
then the decision-maker selects an action at random, otherwise 

the agent selects the optimal action given the information 

currently available at the time of the decision. If a random 

action is selected, the agent then learns the value of the action 

and can update the set of available information accordingly. As 

more actions are performed the value of acquiring new 

information often diminishes. As a result, the value of epsilon 

is often adjusted after each action to reflect an increase relative 

to the value of exploiting the existing information.  

       A feature vector describing the action space will represent 

a single realization in the set of possible decisions. We would 

like to iteratively use this information to learn the best possible 

decisions at each time step. Under these conditions, we can 

adapt an -greedy policy to our air traffic management use case. 

In this instance, the action space corresponds to an airspace 

flow program implemented at an airport of interest. We would 



like to control the program to rates that permit high throughput 

while reducing holding. We evaluate our performance toward 

these ends by using the NASPlay fast-time simulation [30]. The 

simulation can ingest airspace capacity estimates from TFI 

based on either forecast or actual weather. It also processes 

wind fields from the Rapid Refresh (RAP) numerical model to 

calculate the four-dimensional trajectories of each flight. Sector 

workload constraints are enforced using the analytical workload 

model described in [32] and [34]. By modeling the appropriate 

traffic management initiatives under realistic weather 

conditions, we can project the level of performance for each 

TMI.  

       We initialize the algorithm by generating a few TMI 

sample rates to see how our Air Traffic Management (ATM) 

simulation will respond. After our initialization, we then use a 

selection method (in this case an -greedy algorithm) to set a 

flow rate sequence at each resource of interest over the 

simulation. We observe the performance of this strategy in the 

simulation and score the resulting metrics. We then use results 

from the simulation to fit a value function representing the 

value of choosing the set of programs at the affected resources 

of interest. This value function can be fit using a variety of 

different supervised learning methods (e.g., Random Forests, 

Gradient Tree Boosting Regression, Support Vector Regression 

etc.). As this process iterates, we continue our series of air 

traffic management simulations, choosing a different set of AFP 

parameters each time. When the simulation is re-run, the values 

of each set of previous AFP strategies, along with the 

performance metrics, are stored to enrich the training set 

available for the next iteration. A description of the adapted 

algorithm is shown in Table I, while a visual depiction is shown 

in Figure 2. 

 

TABLE I.  AN -GREEDY APPROACH FOR ASSIGNING FLOW RATES 

Define the set of all possible programs P 

Initialize the probability of selecting an action at random  

to 1 

for n= 1,…N do 

With probability  select a random program an∈ P    

Otherwise, with probability 1-, choose an action 

for such  that: 

𝒂𝒏 = 𝒂𝒓𝒈𝒎𝒂𝒙
𝒂∈𝑷

𝑽𝒏−𝟏(𝑺𝒏, 𝒂) (𝟏𝐚) 

Run simulation and compute metrics 

Use a supervised learning model to score the value 

of the each action after simulation by training the 

model with a set of sample points that have been 

simulated 

Randomly sample points over the action space and 

use the trained supervised learning model to 

generate predictions of the values of each sample 

Update the value of n+1) 

end for 
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Figure 2.  A simulation framework to facilitate exploration of airspace flow 

rates. 

      There are two primary metrics of interest in our experiments: 

(1) the number of arrivals at the airport and (2) the number of 

aircraft that accrue at least 15 minutes of holding. As AFPs are 

inherently designed to reduce holding by trading delay in the air 

for delay on the ground, we chose to focus our objective on 

generating programs that maximize the number of arrivals at 

the airport. Thus, the predicted arrivals were used to generate 

an initial value function for the action space of AFP rates. This 

action space was pruned by issuing predictions on levels of 

holding for each program and limiting the action space to 

programs with predicted holding levels below a user-defined 

threshold. Additionally, a predefined autocorrelation level was 

imposed on the random sequences of AFPs to limit the action 

space further and to avoid unrealistic AFPs that change 

significantly faster than the airspace permeability. 

C. Selectiing Rates with Stochastic Integer Programming 

There are a number of alternative approaches to the -

greedy method that could be used to identify the appropriate 

TMI rates. One common approach is to estimate the demand 

and capacity of a resource or set of resources and solve an 

integer program. If the information used to define our integer 

programming model is reasonably accurate, then we would 

expect the solution to provide a high-quality estimate of the 

achievable flow rate. Since we know that the information used 

in the stochastic integer programming (IP) model, however, 

does not fully describe the complex dynamics within the 

airspace, this approach may not offer the best solution. One 

potential way to address this is to use the IP as a baseline 

solution and perturb the solution with random sampling and 

simulate to determine whether the perturbations offer better-

performing TMI rates.   

As an initial step, we generate sequences using a 1st-order 

Gaussian auto-regressive random process that produces time 

difference values that are parameterized by the required mean, 



standard deviation and auto-correlation. The generator creates 

a time sequence by incrementing each previously created value 

via a generated time difference value. We further enforce a 

lower limit on the auto-correlation by requiring repeated values; 

a positivity constraint on the series is also in place, as AFP 

values cannot be negative. For the study undertaken in this 

paper, we generate 3 such sequences for the defined resources, 

and then normalize the sequences to a predefined total 

maximum throughput via residuals, such that at every hour, the 

AFP values sum to a fixed number of aircraft per hour.   

As the TFI model provides us with some estimate of how the 

weather in the immediate vicinity of the airspace resources of 

interest affects its capacity, one can also use this information to 

arrive at a set of reasonable candidates by solving a stochastic 

integer program. The notion that the planned arrival rate can be 

paired with a weather forecast has been studied with non-

convective weather for GDPs [24, 25]. Recently a model for 

managing CTOP resources has also been proposed [18], though 

not explicitly paired with a weather forecast. Using a similar 

idea, one could envision a model for defining a planned flow 

rate for an AFP consisting of a set of FCAs around an airport 

that explicitly incorporates the relative costs of throughput and 

holding into the resulting candidates. This model is shown 

below: 

 

Parameters: 

T≡The set of all time periods 

Q≡The set of all scenarios 

R≡The set of all resources 

Xt≡The planned airport acceptance rate at time period t 

Gt≡The number of flights held on the ground during time 

period t 

Xjt≡The planned flow rate for resource j at time period t 

Wjtq≡The number of flights held in the air traveling through 

resource j during time period t under scenario q 

Dt≡The demand at time period t 

ca≡The cost of holding in the air  

cg≡The cost of holding on the ground 

pq≡The probability of scenario q 

Vjt≡The capacity of resource j at time period t  

njtq≡The additional flights imposed on resource j at time period 

t in scenario q  

 

Demand-Based Scenario Model 

min

[
 
 
 

∑𝑐𝑔𝐺𝑡 + ∑ ∑𝑝𝑞𝑐𝑎𝑊𝑗𝑡𝑞

𝑡∈𝑇𝑗∈𝑅,
𝑞∈𝑄

𝑡∈𝑇
]
 
 
 

(2)               

𝑠. 𝑡.     𝑋𝑡 + 𝐺𝑡 − 𝐺𝑡−1 = 𝐷𝑡   ∀𝑡 ∈ {1. . [𝑇]} (3)               

𝑋𝑗𝑡 − 𝑊𝑗𝑡𝑞 + 𝑊𝑗𝑡−1𝑞 + 𝑛𝑗𝑡𝑞 ≤ 𝑉𝑗𝑡  ∀𝑗 ∈ 𝑅,               

  𝑡 ∈ {1. . [𝑇]}, ∀𝑞 ∈ 𝑄  (4)               

𝐺𝑜 = 0 (5)               

𝑊𝑗𝑜𝑞 = 0    ∀𝑗 ∈ 𝑅, ∀𝑞 ∈ 𝑄 (6)               

∑𝑋𝑗𝑡 = 𝑋𝑡

𝑗∈𝑅

 ∀𝑡 ∈ 𝑇   (7)                 

𝑋𝑡 , 𝐺𝑡 ∈ 𝑍+, ∀𝑡 ∈ 𝑇, 𝑋𝑗𝑡 ∈ 𝑍+, ∀𝑗 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (8𝑎)               

𝑊𝑗𝑡𝑞 ∈ 𝑍+ ∀𝑗 ∈ 𝑅, ∀𝑡 ∈ 𝑇, ∀𝑞 ∈ 𝑄   (8𝑏)               

Equation (3) is a network flow queueing constraint that states 

that the demand at time t should be satisfied such that flights 

scheduled for take-off during that period either take-off or be 

delayed on the ground. Equation (4) states that flights in the air 

should either be allowed to land or be delayed in the air at the 

assigned resource until the next time period based on the 

available capacity. Equations (5) and (6) state that, initially, 

there are no flights held on the ground or in the air. Equation 

(7) states that the number of flights assigned to each resource at 

each time slot must sum to the total number of flights assigned 

to arrive at the airport for that time slot. Equations (8a) and (8b) 

say that all variables are positive integers. The uncertainty is 

captured in equation (4) by using the parameter njtq to define the 

additional imposed flight schedule drift or pop-up flights in 

each period. Note that njtq is always a non-negative value. The 

objective of the problem is to minimize the expected total cost 

of air and ground delay using the capacity profile of the 

specified quantile, while controlling for the tactical 

perturbations to demand for each FCA. As the TFI forecasts 

produce a range of quantiles, one can vary the type of profile 

that defines the capacity constraints based upon the risk 

tolerance levels of the decision-makers. A more risk-averse 

decision-maker may opt for a profile that assigned more flights 

to the ground in response to a given weather pattern, while more 

risk-tolerant individuals can elect to use profiles that will result 

in candidates that naturally assign more flights to the air. Once 

a solution is generated, we can use random exploration to obtain 

a new alternative rate by perturbing the planned flow rates with 

a set of samples from the 1st-order Gaussian auto-regressive 

sequence and superposing them with the solutions from the 

stochastic integer program. 

III. RESULTS AND DISCUSION 

A set of experiments was performed to assess the relative 

performance of each method described in the previous section. 

These experiments were performed using an 8-hour TFI profile 

from the 50th percentile over one case day to simulate the a 

priori forecasted behavior. The subset of the selected AFP rates 

were then tested with the simulation using the TFI projections 

from the actual weather. In this section, we describe the results 

of these experiments. 

A. Experiement Description 

     A computational experiment was performed using the 

analytical framework described in the previous section. To test 

our approach, we selected a scenario based on the weather 

patterns that occurred on May 15, 2018. The evolving weather 

patterns were quite severe on that day and greatly affected 

traffic behavior in the New York metro region. The convective 

blockage limited the inflow of traffic and forced traffic 



managers to impose a number of AFPs and GDPs throughout 

the Northeast. A snapshot of the weather is shown in Figure 3. 

 

  

Figure 3.  An image of the affecting convective weather at 20:00 GMT. 

     A sample of the NAS-wide traffic was selected by limiting 

traffic to flights arriving at Newark Liberty International 

Airport over a time window of 11:00-00:45 GMT. The resulting 

capacity can be observed when the rate of flight arrivals is high 

enough to force the arriving aircraft to hold within the terminal 

area. The airport was configured to operate with a single 

runway (22L) at all times. At each arrival fix, we created an 

arrival route and established a holding area. The holding 

conditions for each area were triggered, enforcing a set of en 

route (5 NM) and runway separation standards dictated by the 

aircraft wake vortex separation guidelines. Any aircraft that 

violated these conditions was forced into the appropriate 

holding area. Once an aircraft entered a holding area, it was 

allowed to exit when it was no longer in jeopardy of violating 

the separation constraints. As a small amount of aircraft holding 

is generally operationally acceptable, we restricted our aircraft 

holding count to flights that accrued more than 15 minutes of 

holding delay. A plot of the observed holding and arrival values 

in 1-hour intervals under these conditions is shown in Figure 4. 

In this figure, the aircraft arrival rate starts out at a relatively 

modest level and reaches peak levels after 17:00 GMT. We 

attribute this lag to both lower demand levels in the initial stages 

and the fact that all flights start on the ground so there is some 

lag between the start of the simulation and the time the arrivals 

reach their destination airport. Likewise, the initial holding 

levels remain low and increase noticeably after 18:00 GMT. 

This is not surprising, as the traffic demand had increased and 

the convective weather was moving closer to the terminal. 

Based on the conditions observed, during the hours in which the 

arrival rate plateaus, the airport can sustain a rate of around 34-

40 aircraft per hour under saturated conditions. For a simulation 

of the airspace where no TMIs were imposed, a total of 388 

arrivals were observed over the simulation. The throughput 

level resulted in 161 flights accruing at least 15 minutes of 

holding each. 

 

Figure 4.  Arrival throughput and holding in 1-hour intervals at Newark 

Liberty International Airport with no strategic intervention. 

B. Results 

The results of the previous section suggest that Newark 

Liberty International airport is capable of achieving a 

throughput level of approximately 34-40 aircraft per hour when 

we ignore the en route and network effects from other airports. 

In practice, however, forcing flights into such holding 

conditions is operationally undesirable. As such, we would like 

to determine if imposing airspace arrival constraints near the 

airport can be used to limit the accrued holding level without 

significantly sacrificing throughput. To that end, we developed 

an additional simulation configuration in which we set three 

FCAs around the airport. These FCAs corresponded to the 

flows through the North, South and West arrival gates. The map 

of the FCA locations is shown in Figure 5. 

 

 

Figure 5.  The selected FCA locations and holding areas for the scenario 

under test. 

As it was unlikely that we would consistently find the 

appropriate flow rates by chance, we applied the -greedy and 

integer programming with random exploration methodologies 

described in sections II. B. and C. to the problem. For the -

greedy approach, the AFP rates were selected using a normal 

distribution with fixed mean values for each FCA over the 

entire program and a standard deviation of 4 flights at each 



hour. These distributions were normalized at each hourly draw 

such that the total number of aircraft at all three gates summed 

to the targeted hourly rate acceptance rate for the airport.  

The algorithm began by selecting a random sample and 

reducing the value of . As described previously, the value of  

was updated at each iteration based on the expression 

nIn this expression, the value of alpha, commonly 

referred to as the learning rate, dictates the speed at which the 

algorithm moves from favoring exploration to exploitation. The 

-greedy algorithm was tuned to a learning rate of =5, forcing 

the model to learn gradually and favor exploiting the 

information available at later iterations.  

The Gradient Tree Boosting Regression method was 

selected to fit a value function for the -greedy algorithm from 

the available data. The algorithm builds a set of decision trees 

iteratively by fitting the error estimates for the predictions with 

respect to the true values. At each iteration, an error (or 

residual) is computed based upon a set of predictions [35]. In 

the initial stage of the problem, a least-squared error loss 

function is selected to quantify the effectiveness of the 

predictions made. A residual is then computed by taking the 

gradient of the loss function and fitting it to a set of trees. The 

fitted residual trees are then weighted by a multiplier that 

minimizes the new loss function when the residual is added to 

the previous estimate.  

Two gradient tree boosting models were created, one to 

predict the number of arrivals and the other to predict the 

number of flights with greater than 15 minutes of holding. Each 

model was trained with an initial sample set of 5 random 

samples. These trained models were then used to predict the 

performance of an additional 100,000 samples. As described in 

section II. B., the model attempted to select the sample point 

within the pool of 100,000 sample values that maximized the 

number of arrivals while limiting the predicted number of holds 

greater than 15 minutes to less than 100. When a maximum 

value was found, the associated set of AFP rates for the North, 

South and West flows was selected as our next sample point. 

This process iterateed by increasing the size of the sample set 

by one after each iteration by including the newly selected 

sample in the training pool.  

As we did not have direct estimates of the airspace 

permeability at the areas immediately surrounding the airport, 

the integer programing method was implemented by mapping 

the forecasted permeability of the nearest en route resource 

immediately upstream of the FCA of interest, and multiplying 

the permeability score by a targeted FCA rate for the resource. 

The resulting rates formed the capacity constraints on the 

integer program. A set of expressions for the rates are shown 

below in equations (9) and (10): 

 
𝑅𝑗𝑡 = 𝑃𝑒𝑟𝑚 ∗ 𝐶𝑗𝑡  ∀𝑗, 𝑡 (9)                             

𝑠. 𝑡.  ∑𝐶𝑗𝑡

𝑗

= 𝐶  ∀𝑡 (10)                             

 

Where C is the target acceptance rate for the airport, Cjt is 

target rate for FCA j at time t and Rjt is the assumed capacity of 

resource j at time t. 

As we sought to prioritize throughput, the stochastic integer 

programming model was solved using an objective function 

with a ground-to-airborne delay cost ratio of 2:1. The resulting 

rates were then perturbed using a normal distribution 

Y~N(=). Since the predictions for each method were 

made using the forecast and not the actual weather, a subset of 

the samples were evaluated against the actual weather. As we 

wanted to evaluate the samples with the highest throughput that 

had a reasonably low number of flight holdings of at least 15 

minutes, we limited our selected samples to the 10 samples with 

highest throughput and holding levels below the 60-flight 

threshold for the -greedy and IP with random exploration 

(IPRE) approaches. As a point of comparison, we also 

examined the performance of the AFP rate solutions produced 

by the IP model as-is without any random exploration. We also 

generated a set of TMIs with randomly selected rates to gauge 

performance in the absence of any coherent selection strategy. 

Neither the IP without random selection nor the random 

selection strategies were filtered using the 60-flight holding 

threshold. The performance of each method in terms of the 

number of arrivals and flights held for at least 15 minutes is 

shown in Figure 6 for target airport acceptance rates between 

35-37 flights per hour. It should be noted that an attempt was 

made to set the rates beyond the 37 flights per hour for the 

IPRE, IP and -greedy approaches, however, it was not possible 

to generate a substantial percentage of cases with holding 

values below 60 (or any in the case of the IP). A set of summary 

statistics is shown in Table II. 

 

Figure 6.  Arrival throughput and number of flight holdings for each test 

case. 
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TABLE II.  AGGREGATED PERFORMANCE OF EACH SELECTION METHOD  

 

Selection 

Method 

 

Number of Arrivals 

Mean (STD) 

Number of Holds 

Mean (STD) 

Maximum 

Arrivals Case 

Arrivals/Holds 

Random 356.27 (9.50) 62.75 (46.96) 374 / 145 

IPRE 359.14 (6.80) 33.34 (14.74) 371 / 45 

-greedy 367.70 (4.90) 27.10 (16.92) 381 / 39 

 

Under ideal circumstances, we would like each method to 

produce samples with high throughput and low holding levels 

that group in the lower right-hand corner of Figure 6. By that 

standard, both the IPRE and the -greedy approaches 

outperform random selection. The -greedy approach, however, 

significantly outperforms the IPRE, on aggregate achieving 

higher mean throughput and fewer flights held beyond 15 

minutes with less variance in both metrics. This strong mean 

performance and increased consistency with the -greedy 

approach suggests that the method is able to produce strong 

TMI performance despite a potential misalignment of AFP 

target rates. On the other hand, the larger variance of the IPRE 

suggests that the method is somewhat sensitive to the assumed 

capacity constraints used to generate its solutions.     

The information presented in Figure 6 and Table II describe 

the aggregate performance of each approach but it does not 

directly speak to the performance of any particular method 

when the method is tuned to a specific rate. While the results 

show that the -greedy approach outperforms the IPRE on 

aggregate, given the high variance associated with the IPRE 

approach it is conceivable that the IPRE performance 

approaches that of -greedy when tuned to the appropriate 

target level. To understand the performance variation with 

respect to arrival throughput and holding levels, kernel density 

estimation was applied to fit a probability density function for 

the number of arrivals for each method. The estimation used a 

normal distribution with the bandwidth of 2. The resulting 

probability density functions are shown in Figures 7 and 8, 

while a set of summary statistics is shown in Table III.  

 
Figure 7.  Distributions of the number of arrivals for each method. 

 

Figure 8.  Distributions of the number of aircraft holding for at least 15 

minutes for each method. 

TABLE III.  SUMMARY PERFORMANCE OF EACH SELECTION METHOD 

PARTITIONED BY TARGETED DEMAND RATE 

 

Selection 

Method 

 

Number of 

Arrivals 

Mean (STD) 

Number of 

Holds Mean 

(STD) 

Maximum 

Arrivals Case 

Arrivals/Holds 

 

IP 

Solution 

IPRE 35  354.1 (4.99) 35.0 (14.34) 362 / 19 357 / 89 

IPRE 36  357.5 (4.66) 33.0 (15.16) 365 / 52 364 / 77 

IPRE 37  365.2 (6.25) 32.3 (14.64) 371 / 45 372 / 44 

-greedy 35 365.4 (2.37) 20.3 (15.25) 371 / 15 N/A 

-greedy 36 365.8 (1.22) 18.2 (12.59) 368 / 51 N/A 

-greedy 37
371.9 

(14.15) 
42.8 (10.87) 381 / 39 

N/A 

 

The resulting performance suggests that arrival throughput 

generally improves with increasing demand for each method. 

This trend is not particularly surprising as we have increased 

the volume of traffic on the airport. More interestingly, the -

greedy approach outperforms the IPRE method even when the 

AFP rate is set to lower levels. The performance of the IPRE 

approach is not comparable to the lowest rate -greedy method 

until the AFP target rate reaches 37 flights per hour. The IPRE 

method experiences its most significant increase in throughput 

when the AFP targeted rate increases from 36 to 37 flights per 

hour. This trend is also present in the IP model when no 

exploration is present. The -greedy approach also experiences 

substantial improvement when the AFP target rate transitions to 

37 flights per hour. This agreement in rates across the 

approaches suggests that the available airspace capacity is best 

aligned with a target rate of 37 flights per hour.  

As Table III indicates, the IPRE method sometimes 

manages to identify better-performing solutions relative to the 

IP without exploration but only at the lower rates where the IP 

constraints are poorly calibrated with the actual constraints 

imposed by the simulation. When the target rate reached 37 

flights per hour, the method could not identify any solutions that 

both increased throughput and reduced holding levels relative 



to the IP baseline. Thus, the IPRE method may only offer a 

means of hedging against the unknown system dynamic effects 

within the simulation modeling environment. On the other 

hand, the mean performance of the -greedy method is 

essentially comparable to that of the IP without exploration, and 

its better performing solutions provide a relative increase in 

performance. This improvement is likely attributable to the 

ability of the-greedy approach to learn from the data it 

receives. By fitting the observations, it is able to achieve an 

improved understanding of the system response behaviors of 

the simulation relative to the IP, despite not having any direct 

knowledge of the weather through a forecast product.  

As we began these investigations, we sought to understand 

how the proposed methods could be used to provide estimates 

of the sustainable terminal airspace flow rates. Thus far, we 

have looked at the performance improvement when the method 

is applied to an aggregate set of cases. By selecting from among 

the best cases, however, we can see how performance translates 

to hourly holding and airport acceptance levels. This 

corresponds to a case with 381 arrivals and 39 aircraft with 

holding greater than 15 minutes. The associated time series plot 

of the hourly arrivals and holding levels is shown in Figure 9.  

 

Figure 9.  Arrival througput and holding in 1-hour intervals at Newark 

Liberty Internationl Airport with best selected program. 

The plot suggests that over the period of peak demand 

starting at 18:00 GMT that the terminal airspace is capable of 

supporting a throughput of between 33-41 aircraft while 

controlling the demand at a mean level of 37 aircraft per hour. 

These results compare quite favorably relative to the case in 

which no TMI was imposed. When this best-performing TMI is 

imposed, we are able to achieve 98.2% of the throughput with 

a 76% reduction in aircraft holding beyond 15 minutes. Under 

this interpretation, by demonstrating that we can achieve 

comparable throughput to the case in which no TMI was 

implemented, we may view the TMI solution that produced 

these results as an upper bound on the terminal airspace flow 

rate.  

IV. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented two methods for estimating the 
traffic impact of en route convective weather on terminal 
airspace based on integer programming and reinforcement 
learning methods. Both methods leverage a strategic forecast of 
airspace capacity and use simulation as a means of evaluating 
the hourly flow rate at the appropriate terminal airspace 
resources. While they both offer an improvement relative to 

random sampling, the -greedy approach significantly 
outperforms the integer programming with random exploration 

method in each case. The strong relative performance of the -
greedy approach suggests that the method may provide a 
promising means of assessing airspace flow rates given the 
information available to decision makers. 

There are a number of potential areas of exploration that 
could build upon the proposed concepts. Our study only 
considered the effect of convective weather at a single airport. 
Future investigations could examine how the methodology 
translates to a regional scenario with multiple airports. The study 
also focused on deriving airspace flow rates to maximize 
throughput but the proposed models could be applied to a 
broader range of metrics and objectives including identifying 
TMIs that produce fewer airline cancellations, achieve greater 
system predictability, or impact airlines more equitably. Finally, 
once the concept has been validated over a wider set of 
scenarios, the methodology may be formally adapted into a 
decision support tool that provides TMI recommendations and 
airspace capacity forecasts for traffic managers over a range of 
weather-impacted resources. 
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