
Thirteenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2019)

A Machine Learning Approach for Conflict
Resolution in Dense Traffic Scenarios with

Uncertainties
Duc-Thinh Pham, Ngoc Phu Tran, Sameer Alam and Vu Duong

Air Traffic Management Research Institute,
School of Mechanical & Aerospace Engineering,

Nanyang Technological University, Singapore

Daniel Delahaye
OPTIM Research Lab

Ecole Nationale de l’Aviation Civile
Toulouse, France

Abstract—With the continuous growth in the air transportation
demand, air traffic controllers will have to handle increased
traffic and consequently more potential conflicts. That gives rise
to the need for conflict resolution tools that can perform well in
high-density traffic scenarios given a noisy environment. Unlike
model-based approaches, learning-based or machine learning
approaches can take advantage of historical traffic data and
flexibly encapsulate the environmental uncertainty. In this study,
we propose an artificial intelligent agent that is capable of
resolving conflicts, in the presence of traffic and given uncertain-
ties in conflict resolution maneuvers, without the need of prior
knowledge about a set of rules mapping from conflict scenarios
to expected actions. The conflict resolution task is formulated as
a decision-making problem in large and complex action space,
which is applicable for employing the reinforcement learning
algorithm. Our work includes the development of a learning
environment, scenario state representation, reward function, and
learning algorithm. As a result, the proposed method, inspired
from Deep Q-learning and Deep Deterministic Policy Gradient
algorithms, can resolve conflicts, with a success rate of over 81%,
in the presence of traffic and varying degrees of uncertainties.

Index Terms—reinforcement learning, air traffic control, deep
deterministic policy gradient, conflict resolution

I. INTRODUCTION

Air traffic control (ATC) plays a crucial role in the air traffic
management (ATM) system as it is responsible for maintaining
flights safety and efficiency. Air Traffic Controllers (ATCOs)
must maintain a safe separation distance between any two
aircraft at all times. Conflict or loss of separation, between any
two aircraft, occurs when the distance between them is smaller
than the separation standard, for example, 5 nautical miles
laterally and 1000 feet vertically during the en-route phase of
flight. When a potential loss of separation is detected, ATCOs
are responsible for issuing resolution advisory, or vector
instructions, to one or both aircraft to resolve the conflict. A
maneuver may include a heading change or speed change for
lateral conflict resolutions, or a flight level change (climb or
descend) for vertical conflict resolutions. With the continuous
growth in the air transportation demand [1], ATCOs will have
to deal with increased traffic in their respective sectors. In
such a situation, conflict resolution tools to needed to support

ATCOs in high-density traffic scenarios, with uncertainties in
the environment.

Many mathematical models for conflict resolution have been
proposed in the literature. For a comprehensive review see
Yang et al. [2]. Some recent works look into enhancing the
capability of such automated conflict solvers. For instances,
Yang et al. [3] used probability reach sets to represent aircraft
locations, and aircraft deconfliction is performed by separating
these reach sets using second-order cone programming with
aircraft dynamics considered. However, this approach does
not perform well in handling a large number of aircraft with
uncertainty. In the recent research, Hao et al. [4] employed
aircraft reachable space, where conflict resolution scheme
accounts for the intent of the aircraft via aircraft’s space-
time Prism. The execution time for this method scales up
significantly with the number of aircraft involved, especially
when a fine grid is applied. Model predictive control (MPC)
is also a promising approach to conflict resolution. Yokohama
[5] applied MPC to perform trajectory prediction and conflict
resolution simultaneously, in which the aircraft separation
condition is implicitly imposed during trajectory prediction.
However, the mathematical model is highly complex, and
the resolution quality depends on the quality (noise free) of
available historical data. MPC was also employed in the work
of Jikov et al. [6], in which the authors proposed multiple
models for conflict resolution considering the minimization of
the cost due to the maneuver, using the efficient algorithm.
In another approach, advanced surrounding traffic analysis
was proposed as the basis for conflict resolution decision
[7]. The analysis of surrounding traffic includes the concept
of aerial ecosystem and traffic complexity evaluation for the
determination of resolution, in which the domino effect, i.e.,
the number of aircraft causally involved in the separation
service, is considered. Large scale conflict resolution models
were also proposed by Allignol et al. [8] and Liu et al.
[9]. While the work in [9] uses aircraft location network
and limits its resolution’s maneuver to velocity adjustment
only, the model provided in [8] provides a for 3D conflict
resolution with limited uncertainty. From our observation of

1

the literature, mathematical models for conflict resolution have
several common limitations. First, complete knowledge of the
mapping from conflict scenarios to maneuvers is required; this
makes mathematical models highly complex and results in
poor quality resolutions in the presence of high uncertainty,
as the full knowledge about the environmental uncertainty
could never be obtained. Second, the input scenarios must
be well standardized for the mathematical models to work
properly, and the models do not self-evolve when dealing with
unseen and non-standard scenarios. In this work, we attempt
to overcome these drawbacks by considering machine learning
approach for conflict resolution, as learning method does not
require prior knowledge of how to efficiently resolve a conflict,
and learning algorithm can self-evolve when being exposed to
unseen scenarios.

Machine learning methods have emerged as promising
method for solving air traffic management problems such
as Taxi-out time prediction [10], [11], aircraft sequencing
[12], trajectory prediction [13], aircraft performance parameter
predicting [14], air traffic flow extraction [15], flight delay
prediction [16], [17]. Deep learning models, like Long Short-
Term Memory (LSTM), are also investigated in [18] for air
traffic delay prediction tasks.

For decision-making problems like conflict resolution, their
large and continuous state and action spaces are a challenge for
machine learning methods. However, Reinforcement Learning
(RL) can be considered as one of the promising approaches
for their success in building the playing engine for classic
board game with expert levels [19] such as in Backgam-
mon, Checker and Scrabble. Moreover, advanced machine
learning algorithms, like deep learning, have demonstrated
breakthroughs such as Deep Blue [20] for Chess, Poker-CNN
[21] and DeepStack [22] for Poker. Recently, the combination
of deep learning and reinforcement learning which is called
deep reinforcement learning (DRL) has increased the potential
of automation for many decision-making problems that were
previously intractable because of their high-dimensional state
and action spaces. In 2015, Mnih et al. [23] introduced the
Deep Q-Network model which could learn to play a range
of Atari 2600 video games at a superhuman level, directly
from raw image pixels. Secondly, AlphaGo [24], that defeated
a human world champion in Go used neural networks that
were trained using supervised and RL, in combination with
a traditional heuristic search algorithm. Differentiating from
those works dealing with discrete action space, [25], [26] has
tackled the problem of continuous action space by introducing
a general-purpose continuous DRL framework, the actor-critic
Deterministic Policy Gradient Algorithms. The action policy
function is approximated by a neural network while the reward
function estimator is trained with the second one.

In this study, we develop an AI agent that is capable of
resolving conflicts in the presence of surrounding traffic and
uncertainty. The AI agent resolves conflict in lateral dimension
only. A RL algorithm is developed as a learning model which
can handle the large and continuous state and action spaces
of conflict scenario. Like ATCOs, the AI agent can also learn

Figure 1. Interaction between the learning environment and the AI agent

and form its strategy when dealing with conflict scenarios and
have the ability to self-evolve via trial-and-error.

The process of training the AI agent for conflict resolu-
tion is illustrated in Figure 1). Conflict scenarios involving
multiple aircraft are generated and presented to the AI agent
by the learning environment. The agent, which is driven by
RL algorithm, learns to resolve these conflicts by applying
several maneuvers given the environmental uncertainty. The
agent receives a reward for every maneuver it has tried as
performance feedback, and the value of the reward depends on
the quality of the maneuvers: positive rewards for maneuvers
that successfully resolve the conflicts and negative rewards,
or penalties, for maneuvers that are unable to separate the
conflicting aircraft safely. The learning objective is to max-
imize the reward, and the agent is assumed trained when
it consistently gains (converges) high rewards for resolving
unseen conflict scenarios.

Our main contribution is formulation of the conflict resolu-
tion problem as a decision-making problem which is suitable
for the reinforcement learning algorithm. To accomplish this,
we give special considerations to the following sub-tasks.

1) Unlike the time-based continuous control problem re-
ported in [26], our problem is designed as a space-based
searching action where an agent will perform a list of
actions at a given time.

2) Developing a learning environment for flight conflict
detection and resolution that possesses the following
characteristics.
• The reward function is carefully designed to con-

sider not only the conflict status of the scenario
but also the quality (e.g., deviation, maneuverability,
etc.) of the maneuvers.

• Maneuver’s uncertainty is encapsulated in a learning
model with different level.

• A novel scenario representation (state vector) is
proposed which contains information of conflict
scenario such as conflict status, optimal status and

2

uncertainty level. This state vector must be carefully
designed in order to guarantee the convergence of
the training.

3) The learning model is designed to handle multi-
dimensional actions with different physical scales and
units (e.g. time and distance).

II. LEARNING ENVIRONMENT

In the RL for conflict resolution (Figure 1), the main roles
of the learning environment are to (1) present its state to
the agent in a form that provides sufficient information to
support the agent’s decision-making, (2) receive and evaluate
the agent’s action, and (3) give feedback to the agent as a
reward. To provide such environment to the agent for learning
to resolve flight conflict, we develop a scenario generator that
generates conflict scenarios and represents them in a form
perceivable to the agent. Also, the agent’s action is defined and
the mapping from the agent’s actions to the maneuvers taken
by the ownship is established. A reward function is designed
for the assessment of the maneuver suggested by the agent.
We also consider the environmental uncertainty that occurs
during the implementation of the agent’s actions in order to
assess its learning performance.

A. Conflict scenarios

We define a conflict scenario as a traffic scenario that occurs
within a circular area of interest (airspace) of radius r, in which
there is one pair of potential conflict between an ownship
and an intruder aircraft, in the presence of surrounding traffic.
An example of a conflict scenario considered in this study is
shown in Figure 2a, and the conflict pair between the ownship
and the intruder in this scenario is separately plotted in Figure
2b for clear presentation. We assume no conflict among the
surrounding aircraft; in other words, a conflict always occurs
between the ownship and another aircraft in the given airspace.
Here, for convenience and without loss of generality, we
generate conflict scenarios such that the ownships always point
along the horizontal direction and the traveling distance of the
ownship in the given airspace is equal to the diameter of the
airspace’s boundary. Any direction of the ownship could be
achieved by performing a simple rotational transformation of
the interested airspace, and different travelling distances of the
ownship could be considered by simply setting the size of the
interested area.

Let n be the number of aircraft in the given airspace when a
potential conflict is being considered, Ai denote the locations
of the aircraft at the moment the conflict scenario presented to
the agent (t0 = 0), and Bi the locations where the aircraft exit
the given airspace (0 ≤ i < n), see Figure 2a. Consequently,
AiBi represent the aircraft’s trajectories and

−−−→
AiBi are the

initial headings of the aircraft. If the aircraft continue their
journeys with this original flights plan, the ownship (following
route A0B0) and the intruder (following route A1B1) are
converging; they will simultaneously reach P and Q (Figure
2b). Since the scenario is generated such that the distance PQ
is less than dsep, which is the safe separation to maintain, the

Figure 2. a) Example of a conflict scenario involving a two-aircraft conflict
in the presence of four surrounding aircraft. A0B0 is the ownship and A1B1

is the intruder. b) The conflict pair where PQ is the closest distance between
two aircraft.

two aircraft are losing their safe separation if none of them
takes any maneuver. Here, PQ is called the closest point of
approach (CPA) between the ownship and the intruder, also
denoted by the CPA closure vector

−→
d1 from P to Q. Similarly,

the CPAs between the ownship and the surrounding aircraft are
denoted by

−→
di where 2 ≤ i < n. Note that at the beginning,

‖
−→
d1‖ < dsep while ‖

−→
di‖ ≥ dsep, 2 ≤ i < n; this imposes

the single initial conflict condition to the generated scenarios,
which is the interest of this work.

We now briefly describe the computation of CPA between
the ownship and the intruder, and the same procedure is
applied to find CPA between the ownship and the surrounding
aircraft. Assume that all aircraft are cruising at the same
speed of vc. At t0 = 0, the ownship is at A0 and the
intruder A1. The velocities of the ownship and the intruder
are −→u = vc(

−−−→
A0B0/‖

−−−→
A0B0‖) and −→v = vc(

−−−→
A1B1/‖

−−−→
A1B1‖),

respectively. At a time t > 0, the locations of the the
ownship and the intruder are respectively given by

−→
P (t) =−→

A0 + ~ut and
−→
Q(t) =

−→
A1 + ~vt, and distance between

them renders as d1(t) ≡ ‖
−→
d1‖ =

−→
W0 + (~u − ~v)t where−→

W0 =
−−−→
A0A1. Minimizing d1(t) yields the time to CPA as

tCPA = −
−→
W0 · (~u − ~v)/‖~u − ~v‖2, and the closure at CPA as

d1(CPA) = d1(tCPA).

B. Ownship’s Maneuver

Figure 3. a) An example of maneuver. The ownship makes a heading change
α° at point M at t = t1, continues in the new heading MN during t2
seconds, and heading back towards original end point at return point N. A
maneuver is fully defined by a set of three parameters (t1, α, t2). b) The
maneuver implemented in the traffic scenario.

A maneuver, e.g. maneuver A0MNB0 in Figure 3a, is
defined as a series of actions performed by the ownship:

3

deviate from original path at time t1 seconds and at location
M (measuring from t0 = 0 at A0) by changing the heading
by an angle α, and then keep heading along vector

−−→
MN in t2

seconds before heading back towards B0 at return point N.
Thus, a maneuver is fully defined by a set of three parameters
(t1, α, t2). In addition, a valid maneuver is defined as the
maneuver that satisfies t1 < tCPA, ‖α‖ < 90 degrees, and
t2 takes a value such that the return point N located within
the interested area. In this study, we assume that any applied
maneuver modifies the path of the ownship while leaves the
intruder’s path unchanged.

Figure 3b demonstrates an example of a maneuver being
implemented in a scenario. An employed maneuver changes
the scenario from the current state into the next one by
updating the CPA closure vectors

−→
di . The quality of a maneu-

ver, therefore, is essentially determined by these CPA closure
vectors, which reflect the aircraft’s separation status in the
scenario. We shall elaborate the evaluation of the agent’s
actions and the resultant maneuvers in the definition of reward
function later in this section.

C. Environmental uncertainty

The working environment in air traffic control have high
degrees of uncertainties. The controllers have to deal with
unknowns originated from, for example, inaccurate trajec-
tory prediction, equipment’s measurement errors, weather, and
other unexpected events in the airspace. Therefore, any conflict
resolution tool for ATCO must perform effectively in the
presence of uncertainty. In this work, we consider environmen-
tal uncertainty as something that affects the accurate/precise
implementation of the agent’s conflict resolution actions.

Figure 4. Environmental uncertainty and its impact on the agent’s action

Consider a situation in which the agent suggests a maneuver
determined by (t1, α, t2), e.g the green maneuver as shown
in Figure 4, where a is the expected maneuver offset, α
the expected heading change, and b the expected maneuver
distance. The ownship is expected to change its heading at
the expected heading change point M and turn back at the
expected return point N. Due to environmental uncertainties,
however, the actual maneuver is slightly deviated from the ex-
pected one. In particular, the actual heading change point M′ is
determined by the actual maneuver offset a′ = a+N (0, σ∗a),
where N (0, σ ∗ a) is a normal distribution noise with zero
mean and variance σ ∗ a. Similarly, the actual return point
N′ is computed as (x′, y′) = (x, y) + N (0, σ ∗ b), where
(x, y) are the coordinates of N and (x′, y′) of N′. Here,

the variances of the noise distributions affecting the heading
change point and the return point are controlled by σ ∗ a and
σ ∗ b, where σ is the parameter governing the uncertainty
level. This uncertainty model implies that a less deviated
and immediately implemented maneuver suffers less from
the environmental uncertainties, while a maneuver with large
deviation and further in time suffers more.

D. Scenario representation

In RL, it is never too much to emphasize the importance of
the environment’s state representation, as any decision made
by the agent is heavily influenced by the agent’s perceived state
of its environment, and the state representation determines how
the agent apprehends the state. In the given problem, to ensure
that actions taken by the agent always modify the separation
status of the ownship, the scenario representation must encap-
sulate the ownship’s current separation status. Therefore, it is
reasonable, and also important, to include the CPA closure
vectors

−→
di in the state vector, because these vectors carry the

essential information on the separation statuses of the ownship
with other aircraft in the environment. With this in mind,
we design the one-dimensional state vector s to represent a
scenario as follows.
• The first element is σ indicating the current environmental

uncertainty level.
• Separation statuses between the ownship and each other

aircraft are encapsulated by every 5 next elements:
– x- and y- positions of the ownship at CPA (2

elements)
– CPA closure ‖

−→
di‖ (1 element)

– x- and y- directions of the CPA closure vector (2
elements)

• Directional guidance vector (the last 2 elements). This
vector is chosen to be

−−→
NOCPA, where N is the return

point and OCPA the location at CPA of the ownship
against the intruder at the beginning. We shall discuss
this in the definition of reward function below.

Note that the total length of the state vector depends on the
maximum number of aircraft being considered.

E. Maneuver reward

The reward mechanism is designed to give merit to any
maneuver suggested by the agent that successfully separates
the aircraft and to punish one that fails to improve the
separation status. The environment evaluates the reward based
on the resultant state of the scenario upon implementation of
the suggested maneuver. As the ultimate aim is to separate the
aircraft, more positive rewards are given to maneuvers that
improve the separation status, while maneuvers that worsen
the situation are punished by negative reward. Furthermore,
for a valid maneuver that successfully resolves the conflict,
the quality of the maneuver is also evaluated, such as devi-
ation from the original trajectory and maneuverability of the
resolution.

Let R(a, s′) being the reward function that takes an action
a together with its resultant state vector s′ as two input

4

arguments and returns the reward value. Also, we denote
dmin = arg mini ‖

−→
di‖, (1 ≤ i < n), as the minimum value

among all the separation distances of the ownship against other
aircraft. Then, the reward function is defined as

R(a, s′) =

 edmin−1 − 1, if dmin < dsep (1)

(1− ∆D

∆Dmax
) ∗ 100, otherwise (2)

where ∆D denotes the deviation of the maneuver from the
original ownship’s trajectory, and ∆Dmax the maximum devi-
ation that could occurs. In the definition of the reward function,
Eq. 1 punishes invalid maneuvers that cause dmin < dsep
and therefore fail to separate the ownship from other air-
craft. On the other hand, Eq. 2 calculates the rewards for
valid maneuvers, which successfully separate the ownship and
eliminate all potential conflicts, by evaluating the deviations
of the maneuvers from the ownship’s original trajectory. Less
deviated maneuvers receive higher rewards, on a score scale
of maximum 100. The maneuver’s deviation is defined as

∆D = w1 ∗ dist(M,OCPA) + w2 ∗ dist(N,OCPA), (3)

where dist() yields the distance between two points. Here,
Eq. 2 and Eq. 3 imply that less deviated maneuvers shorten
the distances MOCPA and NOCPA. This reflects the design of
the reward mechanism to maintain the positions of the action
points (M and N) within the neighborhood of the initial con-
flict location, which could help preventing the maneuver from
causing secondary conflicts with surrounding aircraft. This
also justifies the inclusion of

−−→
NOCPA in the state representation

as mentioned in section II-D.

III. AI AGENT AND LEARNING MECHANISM

In our problem, the ultimate goal is to train the AI agent
such that given a conflict scenario, it could resolve the conflict
and earn a possibly highest reward after a finite number of
actions, as quickly as possible. Instead of using classical
optimization approaches, here, we adapt the Deep Determin-
istic Policy Gradient (DDPG) algorithm [26] for our learning
model. In this section, we briefly describe our AI agent, show
the characteristics of the proposed DDPG algorithm that make
it appropriate for training the agent, and discuss the training
process as well as some implementation considerations.

A. Agent’s Action for Reinforcement Learning

When resolving a conflict, the agent could suggest a pos-
sible maneuver by computing the set of three parameters
(t1, α, t2) that fully defines the maneuver, as mentioned in
section II-B. We could see from Figure 3 that any value of
(t1, α, t2) is equivalent to a choice of (t, x, y), where t = t1 is
the heading change time, x and y are the coordinates of the
return point N, relatively to the center of the interested area.
Moreover, the possible valid choices of (x, y) highly depend
on t; therefore, it is rational to treat the agent’s action as
a two-stage decision-making process. In the first stage, the
agent determines the heading change time t that results in
the heading change point M. In the second stage, it decides

the coordinates (x, y) of the return point N, being aware of
the updated aircraft’s locations at time t. This treatment of
the agent’s action is beneficial in two ways. First, as t and
(x, y) are different in nature, the two-stage process allows us
to handle them independently. Second, such approach avoids
the computing of the original parameters (t1, α, t2) using the
same model, which could be problematic because they might
be very different in scale.

Thus, reward for a conflict scenario can be defined as:

V (s) = R(t|s) +R((x, y)|t, s) (4)

In which R(t = ti|s) is the immediate reward for selecting
t = ti as time duration and R((x,y)|t = ti, s) is the reward
for selecting the return position (x,y) given previous decision
t = ti and conflict scenario s. Therefore, the optimal reward
for a given scenario is:

V ∗(s) = max
t,(x,y)

(R(t|s) +R((x, y)|t, s))

= max
t

[R(t|s) + max
(x,y)

R((x, y)|t, s)]
(5)

We apply the principle of dynamic programming to obtain
the last equation in Equation 5. The Equation 5 shows how we
convert this problem from finding a 3-dimensional maneuver
into finding the time duration t. For each value of t, we
always compute the maximum reward over a set of possible
return positions (x, y). Then finding optimal value for given
scenario is equivalent to search value of t∗ to maximize the
reward. Additionally, the ultimate goal is to recommend the
best maneuver m∗ = (t∗, (x, y)∗) for a given conflict scenario.
Besides value of t∗, we also need to get the return point (x, y)∗

which provides the optimal value for R∗((x, y)|t, s). An actor-
critic algorithm (1) is a good candidate for modelling the
second part, R((x, y)|t, s), since it can provide both optimal
values (Q∗ value) and optimal maneuver ((x, y)∗) at the
same time. The propose approach is presented in Figure 5
in detail. For a given scenario s′, and a time duration t (
<Time to CPA), a time-shifted scenario s is computed. This
conflict scenario s is the input for an actor-critic model which
provides optimal maneuver m′∗ = v(x, y)∗ and optimal value
Q∗(s,m′) = Q∗(s, (x, y)|s′, t). To simplify the problem, t is
a set of discrete values (t0, t1, ..., tN) which can be looped
over to find the optimal value. Moreover, in air traffic control
domain, the deterministic characteristic (2) of decision is
important for any model i.e. given a conflict scenario, we
always receive the same recommended maneuver (without re-
training the model). Finally, the possible space for return point
is large and continuous in nature (3) which is a challenge for
several RL models. (1),(2) and (3) are the reason on how we
select Deep Deterministic Policy Gradient (DDPG) algorithm
[26] as the actor-critic model.

The next challenge for applying DDPG is to define the
action for AI agent. The action for an AI agent can be
defined in several ways which shape the learning mechanism
and affect agent strategy. For instance, the agent’s action
can be the same as the maneuver a ≡ m′ ≡ (x, y) or
similar to the searching step in which agent searches around

5

Figure 5. Model for learning conflict resolution.

in multi-steps for the good return point position, etc. In this
study, we apply the second method. The agent’s action is
a moving step (dx, dy), and the agent performs a sequence
of actions [(dx0, dy0), (dx1, dy1), ..., (dxk, dyk)] (dx, dy ≤
Radius(rd)) to optimize the location (x, y) of the return point
N. Let (x, y)∗ ≡ (x∗, y∗) denote the optimal location of N,
where x∗ = x0 +

∑k
i=0(dxi) and y∗ = y0 +

∑k
i=0(dyi); in

which the values of the Radius(rd) is provided in part IV and
the value of each action, the number of action are controlled
by the learning algorithm and the learning mechanism for AI
agent is described in detail in III-C.

B. Deep Deterministic Policy Gradient (DDPG)

DDPG is a variant of actor-critic model based on Deter-
ministic Policy Gradient(DPG) algorithm [25]. One of its
main contributions is introduction of a neural network as
actor model to deal with continuous action space. The DDPG
algorithm has two models:

1) Actor Model: This is a neural network for learning the
mapping from state to action, µ(s). Given a state feature
vector, described in II-D, actor model will predict an
optimal action a∗ under current policy. In this case,
given the state vector, actor model will predict the
moving action a∗i = (dxi, dyi)

∗ = µ(si) to update the
current maneuver under current policy.

2) Critic Model: This is neural network to evaluate the
quality of action given conflict scenario. It receives
scenario si and action ai as inputs and estimates the
expected value/reward Q(si, ai).

As mentioned in III-A, the main learning algorithm is
DDPG but we also introduce a searching step like in Deep Q-
Learning to identify the heading change time t. Our proposed

2-stages action DDPG is described in Algorithm 1. Our im-
plementation also consider following enhancements in DDPG
such as:
• Replay Memory: to store pass experiences for batch train-

ing which can solve the problem about dependence of
samples, predicted maneuvers in our cases. The training
process begins only when the Replay Memory has been
filled with a minimum number of samples. The memory’s
capacity (i.e. the maximum number of samples in the
Replay Memory) is fixed, and this helps to eliminate out-
of-date samples in the training process.

• Batch Normalization: to deal with multiple units and
ranges in input scenario.

• Soft target update is used to increase the stability of
learning. Line 16 in Algorithm 1 shows how to apply
soft target. The learning rate or update rate is control by
parameter τ

• Action in RL is considered to balance between explo-
ration and exploitation. DDPG allows to separate explo-
ration from the algorithm by introducing a new noise
policy µN = N +µ as exploring policy where exploring
noise N is a random process. Ornstein-Uhlenbeck Noise
(OU noise) is implemented as our exploring noise as in
[26]. Figure 6 shows examples for exploring search path
with 10 steps with OU noise. The set of parameters for
exploring noise (OU noise) is (µe, θe, σe)

C. Learning Mechanism

The interaction between AI Agent and Learning Environ-
ment is the core mechanism for training and testing for RL
as in Figure 5. Since the conflict resolution is a continuous
control problem, thus the episode should be different from
the classical time-based episode. The episode is designed

6

Figure 6. Visualization of exploratory search path with Ornstein-Uhlenbeck
noise given a constant search path (10 steps with constant step-size is 5 NM).

Algorithm 1: DDPG Algorithm for 2-stages action

1: Randomly initialize weight θQ for Critic Net Q(s, a|θQ)
2: Randomly initialize weight θµ for Actor Net µ(s|θµ)
3: Initialize target networks Q′ and µ′ by θQ

′
← θQ, θµ

′
← θµ.

4: Initialize replay buffer R
5: for episode = 1, M do
6: Initialize a random process N for action exploration.
7: Receive scenario s′ from Environment
8: Computing new scenario s1 by shifting all flights in s′ a duration

heading change Time t0 = random(0,Max T)
9: for t = 1, Max steps do

10: Select action at = µ(st|θµ) +Nt according to current policy.
11: Execute action at, observe reward rt and new state si+1

12: Store transition st, at, rt, st+1 in R
13: Sample a random K experiences si, ai, ri, si+1 from R
14: Set yi = ri + γQ′(si+1, µ

′(si+1|θµ
′
)|θQ

′
)

15: Update critic by minimizing the loss:

L =
1

K

∑
i

(yi −Q(si, ai|θQ))
2

16: Update actor policy using sampled policy gradient:

∇θµ (J) ≈
1

K

∑
i

∇µQ(si, µ(si)|θQ)∇θµµ(si|θµ)

17: Update the target networks:

θ
Q′
← τθ

Q
+ (1− τ)θQ

′

θ
µ′ ← τθ

µ
+ (1− τ)θµ

′

18: end for
19: end for

as a searching process to locate an “acceptable resolution”
(examples can be observed in Figure 7). At each step, the
agent will predict the best action (dx, dy) to modify the current
resolution and send it to environment. Learning environment
will update the current maneuver (x′, y′) = (x+ dx, y + dy),
evaluate it and send feedback back to agent. The process is
repeated until receiving acceptable resolution or the number of
searching steps is reached. Acceptable resolution can be flex-
ibly defined by controlling the threshold for minimum reward
of acceptable resolution. Without satisfying those stopping
conditions, the steps are considered as intermediate steps and
their rewards are constant number x (= -0.1) as a small penalty
(Figure 8).

Figure 7. Examples of a searching episode to suggest resolution

Figure 8. Flowchart to compute reward for each resolution

Algorithm 1 and Figure 5 can be used to describe training
and testing process for AI Agent in detail. The main purposes
of training phase include generating learning samples, training
actor and critic target network using DDPG algorithm. While
in testing phase, given an unseen scenario, only actor target
network is used to predict ”optimal” maneuver. The step by
step algorithm for training is as follows.

1) Learning Environment generates random scenario s′.
2) The conflict scenario s′ is shifted with random heading

change, time t0 to obtain shifted conflict scenario s0.
3) Feature extraction algorithm is applied on Shifted con-

flict scenario st (t is initialized by 0 for each new
scenario) to obtain state vector which is the input for
DDPG algorithm.

4) Given the state vector, current exploration actor policy
(current actor model µ(st|θµ) plus exploration noise Nt)
will provide a candidate action at ≡ (dx, dy).

5) The action is sent to learning environment to compute
the real reward r. If the conditions for stopping episode
are reached, the uncertainty model will create noise-
action by adding random noise to proposed action and
then compute the reward rt for it. Else, environment just
return immediate constant reward rt = 0.1 and updated
scenario st+1 after applying action to modify the current
maneuver.

6) The sample tuples (st, at, rt, st+1) is stored in replay
buffer for later use in training model.

7

7) When the replay buffer has stored enough samples (≥
minimum start size), a batch of samples is sampled
randomly from replay buffer for training.

8) The critic model is updated by minimizing the defined
loss function which is similar to training supervise
learning model.

9) The policy gradient is computed from the gradient of
critic model and applied to update actor model at each
step.

10) Finally, the target networks are updated in soft updating
manner.

11) If end of episode is reached, the searching step will be
stopped and go back to step 1. Else, increase t = t+ 1
and go back to step 3.

The testing phase or predicting phase is relative simple since
we only need to obtained the final recommended maneuver
for given conflict scenario. However, in practical use, the
experiences generated in this phase can also be stored in replay
buffer for tuning the model via batch training. This setting can
help the model tuning to be faster and keep the model up-to-
date with new incoming data. The step-by-step for maneuver
prediction is described as follows.

1) Given unseen scenario s′ (i.e. from learning environ-
ment):

2) The heading change time t is looped over the range
[Tmin, Tmax] with step-value ∆t seconds. The conflict
scenario s′ is shifted with each given heading change
time t to obtain shifted conflict scenario s.

3) Feature extraction algorithm is applied on shifted con-
flict scenario si to obtain state vector which is the input
for actor model.

4) Given state vector, actor target model suggests action
a∗i ≡ (dxi, dyi)

∗.
5) The action is sent to the environment. If end of episode

is reached, go to next step, else compute next state si+1,
i = i+ 1 and return to step 3.

6) Given state vector and ”optimal” action, critic target
model will provide the Q-value Q∗(s, a∗|t).

7) Compute MAX Q = maxtQ
∗(s, a|t) and store corre-

sponding maneuver m = (t, (x, y)∗).
8) Finally, after checking with all values of heading change

time t, the ”optimal” maneuver for given conflict sce-
nario s′ is obtained (t∗, (x, y)∗)

IV. EXPERIMENT SETUP

In our experiments, conflict scenarios are randomly gen-
erated in an interested area of radius r = 50 nm. For the
initial conflict, d1(CPA) < dsep where dsep = 5 nm, and 240 ≤
tCPA ≤ 480 seconds, given that the common speed of aircraft
vc = 400 knots (nm/hr). This configuration implies that the
potential loss of separation between two aircraft is foreseen
4-8 minutes. We consider the maximum number of aircraft in
the airspace nmax = 15; therefore, the state vector has fixed
size of 73 (see section II-D for state representation). In the
event the number of aircraft is less than nmax, the elements
representing the absent aircraft are replaced by that of the

intruder. During maneuvers implementation, we consider four
levels of environmental uncertainty, σ = {0, 2%, 5%, 10%}.

Figure 9 shows examples of 24 groups of initial conflicts
generated in our experiments, consisting of 4 groups of tCPA
(time to CPA) and 6 groups of conflict angle φ (see Figure 2
for the definition of conflict angle). This classification allows
us to assess the model’s performance in different classes of
initial conflicts. Note that surrounding traffic are not shown in
Figure 9.

Parameters used for training the agent are shown in Table 1.
The values of these hyper parameters are chosen from practise.
For example, γ ([0,1]) is the discount factor to weight the
importance for future rewards. If γ ← 0, the agent will focus
only on immediate rewards. Else, if γ ← 1, the future rewards
have greater weight in the model. In our case, final step of
episode is the required maneuvers which is the main source
of reward, thus in this study γ = 1.

TABLE I
PARAMETERS FOR TRAINING THE AI AGENT

Parameter Meaning Value
lractor Control learning rate of actor model 10−4

lrcritic Control learning rate of critic model 10−3

batch size Size of training batch 64
γ Discount factor for future rewards 1
τ Control rate of updating target 10−3

networks for both models
µe, θe, σe Parameter set for exploration noise 0, 0.1, 0.5
thresmaneuver minimum acceptable reward 40
Max steps Maximum number of searching steps 10
Radius(rd) Upper bound of agent’s action 5NM
∆t Time step for heading change time 30 seconds

We train the RL Model by interacting with our environment
and learn from those experiences. At each 500 iterations,
learning environment will generate 4800 random scenarios
(200 scenarios from each group) for evaluating current model.
Each conflicted scenario then is assigned a randomly number
of aircraft (2 to 15) and uncertainty level (4 levels). This
setup tries to limit the computational cost for intermediate
evaluation.

V. RESULTS AND DISCUSSION

We first assess the model’s performance by the average
score (on the scale of 100) that the agent earns for solving 4800
unseen scenarios of a common test set. Figure 10 shows the
test results (or model’s convergence) as the model is evolving
during training at different levels of environmental uncertainty
(subplots (a) for no uncertainty, (b) for 2% , (c) for 5%, and
(d) for 10%). Each data point represents the average score
performed on the common test set after every 500 training
iterations. Each curve reports the result for a different number
of aircraft n (blue curve for n = 2, orange for 5, green for 10
and red for 15).

A common trend is observed from Figure 10 that for all
configurations, the training curves admit three distinguished
phases, approximately: the warming up phase in the first 500
iterations, the evolving phase in the next 1500 interactions, and

8

Figure 9. Generated scenarios are classified into 24 groups, based on their time to CPA (tCPA, across the rows) and conflict angle (φ, across the columns).

the converging phase after 2000 iterations. The observed trend
in the performance curves suggests that our current setting
is able to guarantee the model’s convergence at different
uncertainty conditions and numbers of aircraft.

On the other hand, the different impacts of environmental
uncertainty σ and total number of aircraft n on the learning
performance are also observed. One could observe from Figure
10 that the environmental uncertainty has stronger impact on
the convergent speed than the number of aircraft does. Higher
levels of the environmental uncertainty more delay the model’s
convergence. In particular, at low levels of uncertainty, i.e.
σ = {0, 2%}, convergence occurs after about 1500 iterations,
while at higher levels, i.e. σ = {5%, 10%}, the model only
starts to converge when the training has reached about 2000
iterations.

The environmental uncertainty not only reduces the con-
vergent speed, but it also affects the stability of the conver-
gent score. Figure 11a plots the variances of the achieved
scores at different levels of uncertainty. We can see that
variances increases with the uncertainty level, suggesting that
the model’s performance is less stable at higher uncertainty.
Figure 11a also shows how the convergent stability is reduced
by increasing the number of aircraft. At this point, it is mean-
ingful to plot the variances being normalized with that at no
uncertainty, as shown in Figure 11b; this allows us to observe
the increasing rate of variances when the environment becomes
more uncertain. For instance, at the number of aircraft n = 2,
introducing 2% uncertainty causes the score variance increased
by about 2.8 times, 5% uncertainty increases the variance by

4 times, and 10% uncertainty results in 5 times increase. The
fact that the growth rate of the variances (with increasing
uncertainty) is lower at higher number of aircraft, as seen
from 11, suggests that the model could control the total score
variance caused by the increasing in both uncertainty and the
number of aircraft.

Figure 12 provides a closer look to the performance of
the model after convergence, indicated by the average reward
and the successful rate. We define the successful rate as the
percentage of the conflicts being successfully resolved by the
agent with a reward higher than an acceptable threshold (40
out of 100 in our setting). From Figure 12, we observe linear
relations between the model’s performance indicators (i.e.
score and successful rate) and the number of aircraft involved.
Increasing the number of aircraft cause the performance to
drop, and the environmental uncertainty even worsens this
drop. For instance, by increasing the number of aircraft from 2
to 15, the successful rate drops by 1% (from ≈ 99% to ≈ 98%)
at no uncertainty, and by 10% (from ≈ 91% to ≈ 81%)
at 10% uncertainty. Similar trend is also observed in the
change of reward with the increasing number of aircraft. The
results reported in Figure 12 indicate the significant impact
of the number of aircraft on the performance of the agent;
nevertheless, the successful rate of about 81% achieved by our
agent at high uncertainty (σ = 10%) and dense surrounding
traffic (n = 15) proves the high performance of the learning
model.

Figure 13 presents the maneuvers suggested by the agent
for resolving 3 conflicts (each in a row) at different numbers

9

Figure 10. Convergence of learning model at different configurations of uncertainty level (σ) and number of aircraft (n)

Figure 11. Effects of the uncertainty on the performance stability after
convergence.a) Variances of achieved scores. b) Variances being normalized
with variances at no uncertainty.

Figure 12. Average reward and successful rate achieved by the agent after
convergence.

of surrounding aircraft. The blue gradients in the backgrounds
represent the feasible regions of the maneuvers’ return points
(at pre-determined heading change points). Maneuvers with
return points located in the darker regions receive higher
rewards. As the number of aircraft increases, the feasible
region fragments into more disconnected smaller regions. The
fragmentation of the feasible region causes a drop in model’s
performance (Figure 12), especially under high uncertainty,
because strong environmental disturbance more possibly shifts
the agent’s suggested return point from a feasible region to a

Figure 13. Examples of predicted resolutions in scenarios with different
number of flights

impractical location.
Another interesting observation from Figure 13 is the con-

structed strategy of AI Agent to resolve conflict scenario. The
searching steps is always going down, thus, it is equivalent the
flight will turn right at the heading change point. This strategy
is simple and although it provides high quality solution, from
Figure 13, we notice that it isn’t global optimal but just a local
optimal. This phenomena can be a results of several reasons
but one of the main reason is the equalization of turning left
and turning right as resolutions for conflict scenario as well
as the design of reward itself.

Finally, in Figure 14, we perform the assessment on how
our model can learn and approximate real reward from envi-
ronment given a conflict scenario. The red line is ”the optimal
line” where the approximation (Q value) is exactly the same
as read reward. As showed in the figure, the approximated

10

Figure 14. The approximation of Q value to real Reward when Number of Flights (NoF) from 2 to 14 and Uncertainty (U) from 0% to 5%

values is higher than real rewards in most of the case. We
apply simple linear regression to capture the linear relation
between Q values and Rewards. The green dash line shows the
tendency of over-estimated reward of the proposed model. It
isn’t affected much by the uncertainty but the number of flight
in scenario. It reflects the difficulty of high traffic scenario in
learning approximator because of its diversity. However, the
regression lines also report the linear relation between real
rewards and Q values. This relation is important for training
the actor model because actor model needs the relative scores
between different Q(s,a) pairs for choosing best action rather
than their exact values. This means that given current level of
approximation, the performance of actor won’t be affected.

VI. CONCLUSION

In this work, we have formulated the problem of conflict res-
olution in the presence of surrounding traffic and uncertainty
as a reinforcement learning problem. Important components of
the reinforcement learning algorithm for conflict resolution,
such as learning environment, scenario state representation,
reward function, and learning algorithm, have been discussed
in great details. We have also laid out the evaluation of model’s
performance, which could be considered as a framework for
the assessment of reinforcement learning method applied to
conflict resolution problem. Our findings show that the com-
bination of Deep Q-learning and Deep Deterministic Policy

Gradient algorithms gives the AI agent the great capability
to suggest high quality conflict resolution, with a successful
rate of over 81% in the presence of dense surrounding traffic
and strong environmental disturbance. Here, it should be
highlighted that the agent achieved this high successful rate
without the need of prior knowledge about a set of rules
mapping from conflict scenarios to expected actions. The
successful rate of the algorithm could be further improved
during the interaction between the AI agent and the controllers.
In particular, feedback from the controller, i.e. accepting or
rejecting agent’s resolution, could be collected to train the
agent in order to enhance its experience. Furthermore, the
objective function could dynamically evolve to reflect the
controllers’ preference when the AI agent is exposed to new
feedback data provided by the controllers. Our system could be
applied in training novice controllers, in which the agent can
reproduce and recommend resolutions for trainee controllers
to observe and learn. Possible future considerations to improve
the system include but not limited to (1) the enhancement of
the scenarios state representation to help the agent to better
“perceive” its learning environment and (2) the extension of
the current work to multi-agent system for cooperative conflict
resolutions.

11

VII. ACKNOWLEDGEMENT

This research is partially supported by Air Traffic
Management Research Institute (NTU-CAAS) Grant No.
M4062429.052

REFERENCES

[1] IATA, “20 year passenger forecast,” https://www.iata.org/publications/
store/Pages/20-year-passenger-forecast.aspx, 2018, [Accessed 27-
December-2018].

[2] J. K. Kuchar and L. C. Yang, “A review of conflict detection and
resolution modeling methods,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 1, no. 4, pp. 179–189, 2000.

[3] Y. Yang, J. Zhang, K. Cai, and M. Prandini, “Multi-aircraft conflict
detection and resolution based on probabilistic reach sets,” IEEE Trans-
actions on Control Systems Technology, vol. 25, no. 1, pp. 309–316,
2017.

[4] S. Hao, S. Cheng, and Y. Zhang, “A multi-aircraft conflict detection
and resolution method for 4-dimensional trajectory-based operation,”
Chinese Journal of Aeronautics, vol. 31, no. 7, pp. 1579–1593,
2018. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1000936118301705

[5] N. Yokoyama, Decentralized Conflict Detection and Resolution Using
Intent-Based Probabilistic Trajectory Prediction, ser. AIAA SciTech
Forum. American Institute of Aeronautics and Astronautics, 2018.
[Online]. Available: https://doi.org/10.2514/6.2018-1857

[6] V. P. Jilkov, J. H. Ledet, and X. R. Li, “Multiple model method
for aircraft conflict detection and resolution in intent and weather
uncertainty,” IEEE Transactions on Aerospace and Electronic Systems,
pp. 1–1, 2018.

[7] M. Radanovic, M. A. Piera Eroles, T. Koca, and J. J. Ramos Gonzalez,
“Surrounding traffic complexity analysis for efficient and stable
conflict resolution,” Transportation Research Part C: Emerging
Technologies, vol. 95, pp. 105–124, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0968090X18302353

[8] C. Allignol, N. Barnier, N. Durand, A. Gondran, and R. Wang, “Large
scale 3d en-route conflict resolution,” in ATM Seminar, 12th USA/Europe
Air Traffic Management R&D Seminar, Conference Proceedings.

[9] Z. Liu, K. Cai, X. Zhu, and Y. Tang, “Large scale aircraft conflict
resolution based on location network,” in 2017 IEEE/AIAA 36th Digital
Avionics Systems Conference (DASC), Conference Proceedings, pp. 1–8.

[10] S. Ravizza, J. Chen, J. A. Atkin, P. Stewart, and E. K. Burke, “Aircraft
taxi time prediction: comparisons and insights,” Applied Soft Computing,
vol. 14, pp. 397–406, 2014.

[11] H. Lee, W. Malik, and Y. C. Jung, “Taxi-out time prediction for
departures at charlotte airport using machine learning techniques,” in
16th AIAA Aviation Technology, Integration, and Operations Conference,
2016, p. 3910.

[12] M. Ahmed, S. Alam, and M. Barlow, “A cooperative co-evolutionary
optimisation model for best-fit aircraft sequence and feasible runway
configuration in a multi-runway airport,” Aerospace, vol. 5, no. 3, p. 85,
2018.

[13] S. Ayhan and H. Samet, “Aircraft trajectory prediction made easy
with predictive analytics,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2016, pp. 21–30.

[14] R. Alligier, D. Gianazza, and N. Durand, “Machine learning and mass
estimation methods for ground-based aircraft climb prediction,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 6, pp.
3138–3149, 2015.

[15] M. Conde Rocha Murca, R. DeLaura, R. J. Hansman, R. Jordan,
T. Reynolds, and H. Balakrishnan, “Trajectory clustering and classi-
fication for characterization of air traffic flows,” in 16th AIAA Aviation
Technology, Integration, and Operations Conference, 2016, p. 3760.

[16] N. Takeichi, R. Kaida, A. Shimomura, and T. Yamauchi, “Prediction of
delay due to air traffic control by machine learning,” in AIAA Modeling
and Simulation Technologies Conference, 2017, p. 1323.

[17] S. Choi, Y. J. Kim, S. Briceno, and D. Mavris, “Prediction of weather-
induced airline delays based on machine learning algorithms,” in Digital
Avionics Systems Conference (DASC), 2016 IEEE/AIAA 35th. IEEE,
2016, pp. 1–6.

[18] Y. J. Kim, S. Choi, S. Briceno, and D. Mavris, “A deep learning approach
to flight delay prediction,” in Digital Avionics Systems Conference
(DASC), 2016 IEEE/AIAA 35th. IEEE, 2016, pp. 1–6.

[19] J. Schaeffer, “A gamut of games,” AI Magazine, vol. 22, no. 3, p. 29,
2001.

[20] M. Campbell, A. J. Hoane Jr, and F.-h. Hsu, “Deep blue,” Artificial
intelligence, vol. 134, no. 1-2, pp. 57–83, 2002.

[21] N. Yakovenko, L. Cao, C. Raffel, and J. Fan, “Poker-cnn: A pattern
learning strategy for making draws and bets in poker games using
convolutional networks.” in AAAI, 2016, pp. 360–368.

[22] M. Moravčı́k, M. Schmid, N. Burch, V. Lisỳ, D. Morrill, N. Bard,
T. Davis, K. Waugh, M. Johanson, and M. Bowling, “Deepstack: Expert-
level artificial intelligence in heads-up no-limit poker,” Science, vol. 356,
no. 6337, pp. 508–513, 2017.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[24] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[25] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in ICML, 2014.

[26] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

AUTHOR BIOGRAPHY

Duc-Thinh Pham obtained his M.Sc. degree in Computer
Science from Telecom ParisTech, France, in 2013. He is a
PhD candidate of Paris Science and Letter (PSL) in Complex
system. His research focus on applying machine learning
algorithms for predicting capability in air traffic control.

Ngoc Phu Tran received his PhD in Mechanical Engineer-
ing from Nanyang Technological University (NTU), Singapore
in 2017. He is currently a research fellow in AI & Data
Analytics research group at Air Traffic Management Re-
search Institute (ATMRI), Nanyang Technological University,
Singapore. His research focuses on the design of artificial
intelligence algorithms for air traffic management.

Sameer Alam is the Programme Director of AI & Data An-
alytics at Air Traffic Management Research Institute (ATMRI)
and an Associate Professor at the School of Mechanical and
Aerospace Engineering, Nanyang Technological University,
Singapore. He obtained his PhD in Computer Sc. from Uni-
versity of New South Wales (UNSW), Australia in 2008.

Vu Duong is a Professor and Director of Air Traffic Man-
agement Research Institute (ATMRI), School of Mechanical
& Aerospace Engineering, Nanyang Technological University,
Singapore. Vu had also been Head of Innovative Research then
Senior Scientific Advisor at EUROCONTROL (1995-2012),
and a member of SESAR JU Scientific Committee (2010-
2012). He obtained his PhD in Artificial Intelligence from
Ecole Nationale des Ponts et Chaussees, France in 1990.

Daniel Delahaye is a full Professor and Director of the
OPTIM research laboratory of ENAC, Toulouse, France. He
obtained his Ph.D in automatic control from the Aeronautic
and Space National school, Toulouse in 1995 and did a post-
doc at the Department of Aeronautics and Astronautics at MIT
in 1996.

12

