
1

Thirteenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2019)

Predictive Distribution of the Mass and Speed
Profile to Improve Aircraft Climb Prediction

Richard Alligier
ENAC, Université de Toulouse, France

Abstract—Ground-based aircraft trajectory prediction is a
major concern in air traffic control and management. A safe
and efficient prediction is a prerequisite to the implementation
of new automated tools.

In current operations, trajectory prediction is computed using
a physical model. It models the forces acting on the aircraft to
predict the successive points of the future trajectory. Using such a
model requires knowledge of the aircraft state (mass) and aircraft
intent (thrust law, speed intent). Most of this information is not
available to ground-based systems.

Focusing on the climb phase, we train neural networks to pre-
dict some of the unknown point-mass model parameters. These
unknown parameters are the mass and the speed intent. For each
unknown parameter, our model predicts a Gaussian distribution.
This predicted distribution is a predictive distribution: it is the
distribution of possible unknown parameter values conditional
to the observed past trajectory of the considered aircraft.

Using this distribution, one can extract a predicted value and
the uncertainty related to this specific prediction. Using a physical
model like BADA, this distribution could be used to derive a
probability distribution of possible future trajectory ([1]).

This study relies on ADS-B data coming from The OpenSky
Network. It contains the climbing segments of the year 2017
detected by this sensor network. The 11 most frequent aircraft
types are studied. The obtained data set contains millions of
climbing segments from all over the world.

Using this data, we show that despite having an RMSE slightly
larger than previously tested methods, the predicted uncertainty
allows us to reduce the size of prediction intervals while keeping
the same coverage probability. Furthermore, we show that the
trajectories with a similar predicted uncertainty have an observed
RMSE close to the predicted one.

The data set and the machine learning code are publicly
available.

Keywords: aircraft trajectory prediction, BADA, mass,
speed, machine learning, neural network

INTRODUCTION

Most applications in Air Traffic Control and Management
(ATC/ATM) rely on a ground-based trajectory prediction. It
will be even more true with new operational concepts [2, 3]
envisioning trajectory-based operations. An accurate trajectory
prediction is required for the new automated tools and algo-
rithms implementing these concepts. Some of the most recent
algorithms designed to solve ATM/ATC problems do require to
test a large number of “what-if” alternative trajectories and it
would be impractical to download them all from the aircraft.
As an example, in [4] an iterative quasi-Newton method is
used to find trajectories for departing aircraft, minimizing
the noise annoyance. Another example is [5] where Monte
Carlo simulations are used to estimate the risk of conflict
between trajectories, in a stochastic environment. Some of the

automated tools currently being developed for ATC/ATM can
detect and solve conflicts between trajectories, using Genetic
Algorithms ([6]1), or Differential Evolution or Particle Swarm
Optimization ([8]). In these conflict solving algorithms, each
considered maneuver is associated to the trajectory predicted if
such a maneuver was issued. If the trajectory prediction is bad,
a large safety margin around the predicted trajectories will be
taken. As a result, the only remaining conflict-free maneuvers
might be the one associated to a large cost. With a good
trajectory prediction, the safety margin around the predicted
trajectories will be smaller. The set of conflict-free trajectories
will be larger and might contain maneuvers of smaller cost.

Most trajectory predictors rely on a point-mass model to
describe the aircraft dynamics. The aircraft is simply modeled
as a point with a mass, and the second Newton’s law is
applied to relate the forces acting on the aircraft to the
inertial acceleration of its center of mass. Such a model is
formulated as a set of differential algebraic equations that
must be integrated over a time interval in order to predict the
successive aircraft positions, knowing the aircraft initial state
(mass, current thrust setting, position, velocity, bank angle,
etc.), atmospheric conditions (wind, temperature), and aircraft
intent (thrust profile, speed profile, route). The Eurocontrol
Base of Aircraft Data (BADA) project ([9]) implements such
a physical model and provides default values for the models
parameters.

In current operations, the trajectory is predicted by using the
reference mass massref and the reference (cas1ref , cas2ref ,
Machref ) values from BADA. The latter values describe the
speed profile of a climbing aircraft.

This paper focuses on the climbing phase because the un-
known parameters have a great impact on the trajectory during
this phase. In this paper, we apply machine learning methods
to predict: the mass m and the speed profile parameters
(cas1, cas2,Mach). The predicted parameters will hopefully
provide better trajectory predictions than the default BADA
values. The predictive models are trained on historical data
containing a large number of past flights collected over the first
ten months of the year 2017. For each parameter, a Gaussian
distribution is predicted N (µ(x);σ(x)) where x is a vector
of features embedding all the information available about the
considered climbing aircraft. Knowing x, each parameter is

1These algorithms are at the root of the strategic deconfliction through
speed adjustments developed in the European ERASMUS project ([7]). A
more recent application is the SESAR 4.7.2 (Separation Task in En Route
Trajectory-based Environment) project, where lateral and vertical maneuvers
are also used.
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supposed to follow the predicted Gaussian distribution. One
can interpret µ(x) as the predicted value and σ(x) as the
uncertainty on the predicted value.

The main contribution of this paper is to use machine
learning on a large historical data set to predict distributions
of the unknown parameters from the past points of a climbing
aircraft. To our knowledge, in previous works, the methods
used to predict distributions of the mass did not use historical
data and those using historical data set were not able to scale
to large data set.

The rest of the paper is organized as follows: Section I
presents the context and the approach of this study. Section II
describes the data used in this study. Section III explains
how the sets of examples used in machine learning are built.
Section IV details the machine learning method used, and
the results are shown and discussed in Section V, before the
conclusion.

I. CONTEXT

Some studies ([10, 11, 12]) detail the potential benefits
that would be provided by additional or more accurate input
data. In other works, the aircraft intent is formalized through
the definition of an Aircraft Intent Description Language
([13, 14]) that could be used in air-ground data links to
transmit some useful data to ground-based applications. All
the necessary data required to predict aircraft trajectories might
become available to ground systems someday. In the meantime
different methods have been designed to obtain these input
parameters from the data that is already available today.

Many recent studies ([15, 16, 17, 18, 19, 20]) used past
trajectory points to estimate the aircraft mass using a total
energy model such as BADA. All these methods adjust the
mass to fit observed values of energy variation. In [21], a mass
estimate is extracted from the down-linked Extended Projected
Profile (EPP) with the aim to facilitate air-ground trajectory
synchronization. [22] fits mean thrust setting profiles using
mass estimation methods described in [18] and a set of flights.
In all these studies, the methods provide only an estimate
of the mass, they do not provide any information about the
uncertainty related to this estimate.

[23, 24] propose a Bayesian approach to merge several
mass estimates into a refined posterior probability distribution.
It assumes that the estimates are independent and the error
made on each estimate follows a given Gaussian. Then,
assuming that the true mass follows a Gaussian prior, the
posterior is also a Gaussian and can be obtained through
simple calculation. In [25], the mass and the thrust setting
are estimated altogether. A Gaussian noise is assumed on the
position and velocity observed. An additive Gaussian noise is
also assumed concerning the states evolution equations. Then,
a numerical approximation of the posterior is computed using
particle filter techniques. All these techniques do not take
advantage of historical data as opposed to machine learning
techniques.

Using Flight Data Recorder (FDR) historical data and
machine learning, [26, 27] build a model that predicts the mass
knowing the starting and ending speeds of the takeoff ground

roll. Using Gaussian Process Regression (GPR), it predicts a
Gaussian posterior distribution. However, this technique does
not scale well with large historical data.

Using millions of ADS-B climbing segments, [28] builds
models to predict the mass and the speed profile parameters
(cas1ref , cas2ref , Machref ) from the past trajectory of a
climbing aircraft. Using Gradient Boosting Machines (GBM),
it does not provide any information about the uncertainty
related to the computed prediction.

In this paper, using the same historical data than [28], we
want to build a model that predicts a Gaussian distribution
for each parameter. These distributions will be specific to the
considered climbing aircraft. The method used must be able
to process a large amount of data as opposed to GPR.

II. DATA USED IN THIS STUDY

The trajectory data used in this study are from The OpenSky
Network ([29]). The OpenSky Network is a participatory
sensor network of ADS-B sensors that covers mainly Eu-
rope and North-America. The data used in this study cov-
ers the year 2017. The augmented and sampled climbing
segments used in this study are available at https://opensky-
network.org/datasets/publication-data. This data set contains
the 10 most frequent aircraft types according to [30]. These 10
aircraft types cover 63 % of the European air traffic according
to [30]. Actually, in a recent ICAO 8643 document update,
the E190 aircraft type designator has been split into two types
namely E190 and E195. This leads us to consider 11 aircraft
types. The description of this data set is more comprehensive
in [28].

A. From Raw Trajectory Points to Sampled Climbing Segments
From The OpenSky Network, we have downloaded all

the raw trajectory points of the year 2017 with a vertical
rate superior or equal to 256 feet/min. These raw points are
processed to obtain clean sampled climbing segments.

The points associated to the same aircraft are identified
using the ICAO 24-bit values. As only positions with a positive
vertical rate were downloaded, we only have points in climb
phase. However, the sequence of points associated to one
aircraft can contain several climbing segments. It may even
contain different flights of the considered aircraft. We have to
split this sequence of points into climbing segments. Moreover,
we have decided that each climbing segment must contain at
least one raw point every 30 seconds. The purpose of this
requirement is to ensure the quality of the climbing segments
we handle in this study.

Consequently, we have split the sequence of points into
sub-sequences with no time hole superior to 30 seconds.
These sub-sequences will be our climbing segments. Please
note that two climbing segments can come from the same
continuous climb if somehow no position update has been
received within 30 seconds during this climb. Conversely, two
different continuous climbs will give us two different climbing
segments as the two continuous climbs are most likely like
than 30 seconds apart.

These sub-sequences are then sampled using interpolation
to obtain one point every 15 seconds.

https://opensky-network.org
https://opensky-network.org
https://opensky-network.org/datasets/publication-data
https://opensky-network.org/datasets/publication-data
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B. Adding Relevant Information to our Data
Adding information to our data is a mandatory step as

the climbing segments do not contain the aircraft type nor
the weather for example. These two information are very
important in trajectory prediction.

1) Aircraft Type, Aircraft Variant and Airline Operator:
The aircraft type was identified using the ICAO 24-bit address
in our segments. Using this address, the aircraft type was
retrieved from several databases. For this purpose, an aircraft
database was built using VirtualRadarServer2 and its database
writer plugin. If this database did not contain the ICAO 24-bit
we were looking for, then we searched it in the World Aircraft
Database [31].

In addition to the aircraft type, this database contains the
aircraft variant and airline operator. When available, we have
also added this information to our segments.

2) Weather: The Global Forecast System (GFS) was used
to add the weather to our segments. More precisely, we have
used the forecast files, not the analysis files, with a 1-degree
grid. We have one weather grid every 3 hours.

3) Departure and Arrival airports: Using the callsign in
our segments and the route database from FlightAirMap3, the
departure and arrival airports were identified.

C. Statistics on the Sampled Climbing Segments Used in
Machine Learning

The number of climbing segments obtained for each aircraft
type for the year 2017 are presented in the Table I. It only
includes segments that last more than 750 seconds, as the
others were discarded. All these segments will be used to train
or test our models.

Table I: This table summarizes the number of climbing
segments with a duration superior to 750 seconds. All these
climbing segments will be used to train or test our models.

model B738 A320 A319 A321 E195

count 1,344,709 1,340,691 564,308 596,749 68,965

model E190 DH8D B737 CRJ9 A332 B77W

count 39,534 27,867 149,065 27,370 109,534 123,622

Figure 1 plots the sampled climbing segments on a world
map. In order to produce this figure, 331 millions aircraft
positions were aggregated. With this figure, we can see that
the five continents contains climbing segments. However, most
of them are located in Europe and North-America. Africa
contains the fewest climbing segments.

III. BUILDING THE SETS OF EXAMPLES FOR OUR
PREDICTION PROBLEM

Machine learning techniques use a set of (x, y) examples to
build a model predicting y from x. This section describes how
we obtain such a set of examples from the climbing segments.
In our prediction problem, x is the information available at
the time the prediction is computed and y is the mass and the
speed profile (cas1, cas2,M).

2http://www.virtualradarserver.co.uk/
3https://data.flightairmap.com/
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Figure 1: Climbing segments plotted on a world map. The
mean altitude can be read from the color.

A. Extracting Trajectory Samples from One Climbing Segment

In this study, knowing the current position and p = 9
consecutive past points, we want to predict the future q
points. In this context, a trajectory sample is defined by the
current position, the p past points and the q future points.
The trajectory samples will be used to train and evaluate our
predictive models. These trajectory samples are built from
the climbing segments. Actually, we build several trajectory
samples from one climbing segment.

Considering one climbing segment with n points, a trajec-
tory sample is built from p+ q+ 1 consecutive points chosen
among the n segment points. Hence, from one segment we
build n − p − q trajectory samples. Figure 2 illustrates two
different trajectory samples (with q = 40) extracted from the
same climbing segment.
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Figure 2: With q = 40, two different trajectory samples
extracted from the same climbing segments.

B. Building One Example from One Trajectory Sample

This subsection describes how the mass and the speed
profile (cas1, cas2,Mach) can be extracted from one trajectory
sample. These values will be the “y” of one example.

1) Adding the Mass: For each trajectory sample, the mass is
estimated using the q = 40 future points. The method used to
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extract the mass from these future points is the one described
in [18]. This method assumes a max climb thrust. The mass is
estimated by minimizing the difference between the modeled
power and the observed energy variation.

We can compute the energy variation Ev on the past points
using the derivative of the airspeed dVa

dt and the derivative
of the pressure altitude dHp

dt . Using a model of forces such
as BADA, Power can be computed as a function of Hp, Va,
the temp T and the mass m. According to Newton’s laws,
these two quantities are equal. The mass to be learned will
be the one minimizing the sum defined by equation (1) where
i = 10 is the index of the current point in the trajectory sample
and ff is the BADA function modeling the fuel consumption.
As described in [18], minimizing such a sum can be done
efficiently by finding the roots of a fourth degree polynomial.

m10 =argmin
m10

10+q∑
i=10

(
Poweri(Hpi, Vai, Ti,mi)

mi
− Evi
mi

)2

(1a)
with mi+1 = mi − ff (Va, Hp, T ) (ti+1 − ti)

(1b)

We have also applied this technique to estimate the mass
on the past points. This mass estimated on past the points is
added to the explanatory variable.

2) Adding the Speed Profile: The speed profile is modeled
in BADA with three parameters cas1, cas2 and Mach. This
speed profile specify the TAS Va for a given altitude Hp and
a temperature T . The aircraft climbs at a constant Calibrated
AirSpeed (CAS) equal to cas1 from 3,000 ft to 10,000 ft.
Then, it accelerates till it reaches cas2. It climbs at a constant
CAS cas2 till it reaches the Mach number Mach. Then it
climbs at a constant Mach number.

We want to extract cas1, cas2 and Mach from the points
in the trajectory sample. We can see that extracting a speed
profile requires points from low altitude to high altitude. As
a consequence, to extract the speed profile, we consider all
the points in the climbing segment, not only the points in the
trajectory sample. Hence, all the trajectory samples coming
from the same climbing segment will have the same common
(cas1, cas2,Mach) minimizing the function e given by the
equation (2).

e(cas1, cas2,M) =

n∑
i=1

(
Va(cas1, cas2,M;Hpi, Ti)− Vai

)2
(2)

On Figure 3, a climbing segment and the fitted speed profile
are plotted. This climbing segment was selected among the
climbing segments with at least 3 points above the crossover
altitude and 3 points below 10,000 ft. Among these segments,
the climbing segment selected is the one with the median
error. Thus, the speed profile accuracy in Figure 3 is quite
representative of what can be obtained through this fitting
process.
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Figure 3: A climbing segment and the fitted (cas1, cas2,M)
speed profile.

C. Explanatory Variables

This subsection describes the explanatory variables, the “x”
variables, used to predict the the mass and the speed profile.
We use 68 explanatory variables summarized in Table II.

These variables include information on the aircraft motion.
They also include information on the weather: the temperature
and wind at the current point, and the temperature every
1,000 m starting from the current altitude Hp to the altitude
Hp + 11,000 m. This is useful as the temperature does not
follow a temperature profile corresponding to an ISA atmo-
sphere even when this temperature profile is corrected with a
temperature differential ∆T . The temperature at Hp = 0 was
also added. The temperature can influence the engine perfor-
mance. It also impacts the geopotential altitude H between
two given geopotential pressure altitude Hp (see BADA user
manual). It also impacts the speed profile. As a consequence,
depending on the temperature gradient, different energy share
factor will be used, hence different climbing rate.

For each example, we also have categorical variables like
the airline operator, the aircraft type variant, the departure and
arrival airports and the day of the week. This last variable was
included to make use of a possible seasonality. The month can
also provide some insight on the seasonality however our data
only covers one year so the month was not included.

When the departure and arrival airports were known we
computed the trip distance between these two airports. This
trip distance will provide information on the fuel load and
hence the mass of the aircraft which affects the climb. The
departure airport is used because the constraints that apply to
the climbing aircraft might depend on the airport considered.

IV. MACHINE LEARNING

This section describes some useful machine learning no-
tions and techniques. For a more detailed and comprehensive
description of machine learning techniques, one can refer to
[32, 33].

A. Statistical inference: learning from examples

Let us consider a set of n examples S = (xi, yi)16i6n
coming from independent draws of the same joint distribution



5

Table II: A summary of the features used to predict the
unknown parameters.

feature description count

ca
te

go
ri

ca
l

departure and arrival airports 2
aircraft type variant 1
airline operator 1
day of the week 1
callsign 1
ICAO 24 bit Mode-S address 1

nu
m

er
ic

al

distance between airports 1
temperature at Hp = 0 1
mass estimated on past points and error on past points 2
track angle at the current point 1
ground velocity at the current point 1
north and east wind components 2
longitude and latitude at the current point 2
vertical speed at the current and past points 10
altitude Hp at the current and past points 10
airspeed Va at the current and past points 10
energy variation between the current and past points 9
temperature from current altitude Hp to Hp+11,000 m 12

(X,Y ). We want to deduce properties on the distribution
Y |X = x from the examples. This distribution is useful
to obtain knowledge on y knowing x. Let us consider the
probability density function of this distribution p(y|X = x; θ)
where θ is an unknown parameter. Choosing a value for this
parameter is choosing a model for Y |X = x.

We choose θ maximizing p(S | θ), the probability to
generate the samples S for a given θ. It is the maximum
likelihood estimate. The expression of p(S|θ) is easy to obtain:

p(S|θ) =

n∏
i=1

p(yi|X = xi; θ)p(xi)

As the p(xi) are constants, maximizing p(S|θ) is minimiz-
ing the negative log-likelihood NLL:

NLL(θ;S) = −
n∑
i=1

log(p(yi|X = xi; θ))

Assuming Y |X = x ∼ N (µ(x; θ), σ(x; θ)), this expression
becomes:

NLL(θ;S) =

n∑
i=1

1

2

(
yi − µ(xi; θ)

σ(xi; θ)

)2

+log σ(xi; θ)+log
√

2π

The value µ(x; θ) is the predicted mean for Y and the
value σ(x; θ) is the predicted variance. It provides a precious
information on the uncertainty of the prediction.

As a side note, if we assume that the variance is a constant
value σ(x; θ) = σ0 (homoscedasticity), minimizing the NLL
is equivalent to minimizing the mean squared error.

B. Predictive Uncertainty

Gaussian Process Regression ([34]) is a powerful non-
parametric framework that handles some sort of prior probabil-
ity over functions. Using this prior and the Bayesian formal-
ism, this framework naturally derive a Gaussian distribution
for Y |X = x. The exact computation of such a model requires

O
(
n3
)

operations which might be intractable for large data
set like the one we use.

With the recent successes of the neural networks in several
domains, some works ([35, 36]) introduce simple modifica-
tions to obtain both the predicted value and the predicted
uncertainty. Ideally, the predicted value shall be equal to
E[Y |X = x] whereas the predicted uncertainty shall be equal
to Var[Y |X = x].

In [36], the neural network has two output vectors, the
vector µ (x; θ) that shall predict E[Y |X = x] and the vector
σ2 (x; θ) that shall predict Var[Y |X = x]. This network
is trained by minimizing the negative log-likelihood NLL.
Actually, the final model is not a single neural network but
an ensemble of m networks. These networks are obtained
by using a different random initialization with the same
architecture and training set. As a consequence, with these
m networks, for a given x, we obtain m predicted values
and uncertainties: µi(x) and σi(x) with i ∈ J1;mK. In
order to combine these predictions into one, we consider that
Y |X = x follows a mixture of m Gaussian distributions
N (µi (x) , σi (x)) with similar mixture weights. Then the
predicted value and uncertainty are the mean and variance of
this mixture and they can be computed using a simple formula
combining all the predicted µi(x) and σi(x).

C. Method Used in this Study

In this study we used the method developed in [36]. We use
a fully connected feed forward network with several hidden
layers. The Figure 4 depicts the architecture of this neural
network (NN) where the green blocks are vectors and the red
blocks are functions applied on these vectors. The activation
function is a LeakyReLU function ([37]). The architecture of
this NN is pretty standard except we have added a softplus4

function on some components of the output vector and we
have used embeddings to encode categorical inputs.

The softplus function is used to always obtain positive
values for the predicted standard deviations.

Each categorical variable such as the callsign must be
encoded into a vector of floating point numbers. This is done
by using embeddings. One embedding maps each categorical
value of a categorical variable to one vector of weights. If
we encode n categorical values with vectors of d components
then we have nd weights for the embedding of the considered
categorical variable. These weights are randomly initialized
and then trained by the optimization procedure just like the
other weights of the network. The size of the vectors d
is an hyper-parameter of the NN. This approach has been
successfully used in [38] to predict the destination of a taxi
based on the beginning of its trajectory.

To improve the performance, the training process uses
dropout ([39]) and batch normalization ([40]) blocks. The
batch normalization blocks are inserted after the LeakyReLU
blocks. The dropout blocks are inserted after the embedding
blocks.

4The softplus function is x 7→ log (1 + expx). This function always
returns a strictly positive value.
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The dropout blocks are used to prevent over-fitting. At each
iteration of the training process, only a randomly chosen sub-
network is used to compute the prediction and hence receive
the weights updates. Conceptually, an ensemble of networks is
trained altogether in an efficient way. After the training phase,
the whole network is used to compute the prediction on new
data.

The batch normalization blocks are used as a reparametriza-
tion method improving the optimization process. The gradient
descent technique relies on a first-order approximation of the
loss as a function of the weights. As a first-order approxima-
tion, it hides the interaction between the weights. The batch
normalization block aims to reduce the interaction between
the weights of the different layers. To do so, all the weights
of the layers before one batch normalization block will have
no impact on the mean and variance of the vector returned by
the batch normalization block: the mean and variance of the
returned vector are only controlled by two additional weights
inside the batch normalization block.

The training phase consists in finding the weights minimiz-
ing the negative log-likelihood NLL. It is done using AdamW,
a gradient descent method with adaptive learning rate and
weight decay ([41]).

The initial learning rate is found via the search method
described in [42]. The remaining hyper-parameters are the
learning rate decay, the weight decay, the number of hidden
layers, the number of hidden units for each hidden layers
and the dropout rate. We tested 200 different sets of hyper-
parameters. The tested hyper-parameters are randomly drawn.
For instance, the number of hidden layers is drawn inside
J1; 10K using a discrete uniform distribution. Such a random
search is empirically and theoretically more efficient than
a grid search ([43]). For each hyper-parameter, the neural
network is trained on trajectories from January to August.
Then it is tested on the trajectories from September to October,
and the hyper-parameters having the best result on these
trajectories will be the chosen one. Then using this selected
hyper-parameters, the final model is the one trained on the
trajectories from January to October.

All the code is implemented using the PyTorch library.

V. RESULTS

All the results presented in this section have been computed
on data not used in the model building process. These results
have been computed from all the trajectories in the months
November and December of the year 2017. The ten first
months of 2017 were used to build the predictive models. The
training set uses trajectories recorded from January to August,
the validation set use trajectories recorded in September and
October and finally the test set use trajectories recorded in
November and December. It is a simple hold-out validation.

The k-fold cross-validation usually provides a better as-
sessment of the generalization error than a simple hold-out
validation, nevertheless we chose the second approach here,
for very specific reasons. The distribution of the trajectories
might change through time if for instance new procedures
are applied at a specific airport. Using a cross-validation that

callsign . . . Mode-S address

embedding

. . .

. . .

. . .

embedding

. . .

sum

. . . . . .

Hp . . . Va

concatenate

. . .

Linear

LeakyReLU

. . .

...
. . .

Linear

µmass µcas1 µcas2 µMach softplus

σmass

softplus

σcas1

softplus

σcas2

softplus

σMach

merged input

hidden layer 1

hidden layer n

numerical inputembedded categorical input

Figure 4: Architecture of the neural network we used.
The manipulated vectors are in green whereas the operations
applied to these vectors are in red. The input is at the top, the
output is at the bottom.

randomly places the examples in the folds will produce folds
with the same distribution. It will mask the non-stationarity of
the problem we are studying and the performance evaluation
obtained will be too optimistic. For this reason, we chose a
more practical approach, and decided that the model should
be trained on a given period of time, and then tested on a later
period of time, as would actually happen if the method was
used in operations. If this performance evaluation is biased, it
will be pessimistically biased.

All the statistics in this section have been computed on the
test set, the trajectories recorded in November and December.

A. Prediction of the Mass and Speed Profile

The predicted parameters are the predicted values
(µmass(x), µcas1(x), µcas2(x), µMach(x)). These predicted
values are compared with the “true” parameters extracted
from the future trajectory. We will compare the neural
network (NN) approach to the Gradient Boosting Machines
(GBM) approach method. This latter has been tested in
[28]. Compared with mean values, the GBM method have
typically reduced the RMSE by 56 %, 49 %, 39 % and 15 %

https://pytorch.org
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respectively for the mass, cas1, cas2 and Mach.
The Table III gives the RMSE obtained with the method

NN presented in this paper and GBM. The RMSE relative
difference between NN and GBM do not exceed 12 %. Overall,
NN performs slightly worse than GBM with a larger RMSE.
This was somewhat expected as deep neural networks typically
underperform GBM on many tabular-dataset learning tasks
([44]).

Table III: The statistics computed are the RMSE where the
error is the difference between the predicted parameter and the
parameter extracted from the future trajectory. It is computed
on the test set consisting in trajectory samples from months
November and December.

factor mass [kg] cas1 [kt] cas2 [kt] Mach [-]
method GBM NN GBM NN GBM NN GBM NN

A319 2362 2387 8.31 8.76 9.50 9.58 0.0174 0.0175
A320 1929 1953 10.10 10.58 8.85 8.92 0.0197 0.0199
A321 2212 2234 8.42 8.64 9.48 9.49 0.018 0.0181
A332 8014 8241 9.66 9.92 7.35 7.36 0.0229 0.0228
B737 2511 2558 6.47 6.97 8.20 8.21 0.013 0.013
B738 2508 2532 8.44 9.17 7.84 7.89 0.0148 0.0148
B77W 10742 10621 7.11 7.50 5.47 5.51 0.0153 0.0154
CRJ9 1294 1283 9.10 9.24 7.44 7.42 0.0202 0.0205
DH8D 738 720 6.95 7.04 11.53 11.43 0.0236 0.0233
E190 2539 2604 8.22 8.61 7.09 7.00 0.0199 0.0199
E195 2126 2134 7.59 7.65 7.45 7.37 0.025 0.025

B. Prediction Interval

Alongside the predicted factor µ(x), one might want to have
a value quantifying the uncertainty concerning the predicted
value. In our method, this uncertainty is quantified by the
predicted standard deviation σ(x). The relevance of this pre-
dicted uncertainty is difficult to evaluate. The “ground truth”
uncertainty is not available in our data-set as opposed to the
“ground truth” value to be predicted y.

The predicted uncertainty σ(x) can be used to build a
prediction interval Iγ(x) that should contain the true parameter
with a probability γ:

P (Y ∈ Iγ (x) |X = x) = γ. (3)

Assuming that Y |X = x ∼ N (µ(x), σ(x)), the prediction
interval Iγ(x) can be built as an interval centered on the mean
µ(x) with a size proportional to the standard deviation σ(x).
Hence the interval can be defined as:

Iγ(x) = [µ(x)− rγσ(x);µ(x) + rγσ(x)]

with rγ a value that depends only on the probability γ chosen.
For instance, in order to match the probability γ = 0.95, rγ =
1.96 is chosen.

In order to test that the predicted intervals satisfy the
equation (3), we can compute the Prediction Interval Coverage
Probability (PICP): PICPγ = 1

n

∑
(x,y)∈test set

1Iγ(x)(y), where

1Iγ(x)(y) = 1 if y ∈ Iγ(x) and 0 otherwise.
The obtained PICP are presented in Table IV. For γ = 0.90,

the PICP is superior to γ for the vast majority of the aircraft
and parameters considered. For γ = 0.95, the situation is more
complex. For the mass and cas1, the PICP is superior to γ for

most aircraft whereas for cas2 and Mach, the PICP is inferior
to γ for most aircraft.

For safety purposes, having the PICP superior to γ is more
desirable than the other way around. However, having the
PICP significantly smaller or larger than γ is a problem as
it is not expected from the theory. In our case, this might
be explained by the fact that the prediction intervals are built
using the assumption that the standardized error z = y−µ(x)

σ(x)

follows a normal law N (0, 1). However, this assumption is
not true: the z distribution has a slightly thicker tail than
the normal distribution. This assertion is supported by the
standardized kurtosis of z ranging from 0.2 to 42.6 depending
on the considered aircraft and parameter.

Table IV: The statistics computed are the PICPγ for γ = 0.90
and γ = 0.95.

factor mass [%] cas1 [%] cas2 [%] Mach [%]
γ 0.90 0.95 0.90 0.95 0.90 0.95 0.90 0.95

A319 92.0 95.5 93.3 95.7 91.0 93.6 90.6 94.1
A320 92.1 95.7 93.4 95.8 91.1 93.8 91.5 94.4
A321 91.5 95.5 93.3 95.6 90.5 93.8 91.5 94.4
A332 92.8 95.9 93.5 95.5 91.7 94.6 91.8 94.3
B737 91.0 94.7 93.8 96.1 91.5 94.5 90.9 94.1
B738 91.8 95.3 93.7 96.1 91.7 94.7 92.2 94.9
B77W 91.9 95.5 94.5 96.8 91.6 94.0 90.9 93.9
CRJ9 90.3 94.5 92.1 94.8 90.8 93.8 92.3 95.5
DH8D 88.8 93.6 92.7 95.7 88.7 93.1 88.4 93.8
E190 88.1 92.4 92.3 94.8 91.0 94.1 91.4 94.8
E195 90.9 94.9 92.1 94.5 90.4 93.7 90.2 94.5

Roughly speaking, the PICP is competing with the interval
size, the larger the interval is, the larger the PICP is. We
want PICP large and the interval small. With our method NN,
the size of the interval depends on the considered x. Let us
compare this method to one for which no information are
extracted from x: the interval size will be the same for all
examples (x, y). Let us consider the GBM method, for each
aircraft and parameters, we compute s such that:

P (Y ∈ [yGBM − s; yGBM + s] |X = x) = PICPγ , (4)

where PICPγ is the PICP obtained with NN and yGBM is the
predicted value by GBM. The interval [yGBM − s; yGBM + s]
will be the one predicted by GBM.

With these choices, we can compare the size of intervals
that have the same PICP for NN and GBM. The intervals
computed with NN will vary in size depending on x whereas
the ones computed with GBM will have the same size.

Table V presents the mean size of the intervals. We have
seen in Section V-A that NN have a slightly larger RMSE
than GBM. Interestingly enough, the mean size of the intervals
predicted by NN is smaller than the one predicted by GBM.
Compared with GBM, the interval mean size is reduced by
4 % on average for the mass. This reduction is larger for the
speed profile parameters with an average reduction of 31 %,
16 % and 6 % for cas1, cas2 and Mach respectively.

As opposed to the mass, the airspeed is a quantity directly
transmitted through ADS-B. Thus, if the aircraft is in the
cas1 phase then the airspeed in the input x corresponds to
the airspeed value cas1. When plotted against the altitude, the
σcas1(x) is usually very low when the altitude is inside the
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cas1 phase. The same goes for the cas2 and Mach variables.
For this reason, the mean interval reduction is greater for the
speed profile parameters than for the mass. The cas1 phase
is only delimited by the altitude whereas the delimitation of
the cas2 and Mach phases is less clear. This might explain
why the reduction for cas1 is larger than the one for cas2 and
Mach.

Table V: Mean size of the predicted interval for γ = 0.90.
The intervals built with NN and GBM have same PICP.

factor mass [kg] cas1 [kt] cas2 [kt] Mach [-]
method GBM NN GBM NN GBM NN GBM NN

A319 7435 7176 31.02 21.93 32.13 26.64 0.0554 0.051
A320 6435 6290 40.29 26.61 29.62 25.16 0.0644 0.0588
A321 7424 7258 29.29 20.38 32.79 26.78 0.0582 0.0543
A332 28260 26712 38.65 23.98 25.41 21.33 0.0743 0.0663
B737 7594 7617 23.47 17.11 29.07 23.63 0.0405 0.0385
B738 8202 7837 34.02 21.99 28.03 22.72 0.0468 0.0446
B77W 34892 32667 28.99 16.96 17.66 15.96 0.0452 0.045
CRJ9 4142 4039 32.17 22.13 24.49 20.46 0.072 0.0665
DH8D 2217 2129 26.06 18.11 37.30 32.99 0.074 0.0714
E190 7499 6834 29.33 22.08 24.80 20.01 0.0643 0.0621
E195 7127 6703 26.52 19.42 25.00 20.62 0.0792 0.0764

C. The Observed RMSE is Close to the Predicted σ(x)

In the previous subsection, we have computed statistics
averaged over the whole test set. In this subsection, we want
to compute statistics conditionally on the predicted σ(x).
Specifically, we want to empirically verify that for each σ > 0,
E[(Y − µ(X))

2 | σ(X) = σ] = σ2.
Let us consider S(σ) a subset of the test set containing

examples with σ(x) similar to a given σ for the considered
aircraft and parameter:

S(σ) = {(x, y) | (x, y) ∈ test set, |σ(x)− σ| < εσ}, (5)

where εσ is used to control the size of S(σ). For each σ, the
εσ is chosen in order to have 1 % of the test set inside S (σ).

The RMSE computed on the error made for the examples
in S (σ) should be close to σ. The Figures 5 and 6 are helpful
to investigate this matter. Each figure contains two plots, the
bottom plot is the distribution of σ(x) for x in the test set and
the top plot is the observed RMSE of the examples in S(σ)
as a function of σ. This curve is, in theory, close to the “y=x”
red curve. For both figures, it is the case except for very high5

σ. Nevertheless, for a very high σ, the associated RMSE is
also very high.

Roughly speaking, in order to be informative, the distribu-
tion of the σ(x) must be as spread as possible. If σ(x) is the
same for all the x then it will not provide any information.

Concerning the parameter cas1, with the bottom plot of the
Figure 6, we can see that there is a peak of density for low
σcas1 value. This means that, for a large number of examples,
our neural network is able to identify situation where the
expected RMSE is very low, much lower than the RMSE on
the whole test set. This observation is valid for cas2 and for
Mach to a lesser extent.

5For very high σ, εσ is very large in order to have 1 % of the data inside
S(σ) and the mean of {σ(x) | (x, y) ∈ S(σ)} is close to σ − εσ and far
from σ.

Concerning the mass, with the bottom plot of the Figure 5,
we can see that there is a large peak around the RMSE of
the whole test set. Our neural network is less able to identify
situations where the expected RMSE is low or high. Again, as
said before, the past airspeed and altitude are included in x,
making the prediction of cas1 quite certain if the altitude is in
the range of the cas1 phase. For the mass, it is more difficult
to identify situation where the predicted value will be certain
or uncertain.
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Figure 5: For the A320, the bottom plot is the distribution
of σmass(x) and the top plot is the RMSE of the examples in
S (σmass) as a function of σmass.
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Figure 6: For the A320, the bottom plot is the distribution
of σcas1(x) and the top plot is the RMSE of the examples in
S (σcas1) as a function of σcas1 .

D. Qualitative Analysis of Some Trajectories
In this subsection we investigate situations where a low or

high uncertainty has been predicted and we also investigate
situations where a low uncertainty is wrongfully predicted.
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For all the aircraft types, the situations associated with the
lowest predicted uncertainty for the mass (σmass(x)) are the
ones with an energy variation decreasing smoothly with the
altitude. This is the typical energy variation profile that can
be obtained by using BADA. The situations associated with
the highest predicted uncertainty for the mass are the ones
where the energy variation follows an irregular profile and/or
the energy variation is much lower or much higher than the
typical profile.

We now investigate the situations for which the error made
is high compared with the predicted σ(x). These situations are
the ones where the observed y had a low probability assuming
that this y was drawn from N (µ (x) , σ (x)). Among these
trajectories, for the mass parameter, the trajectories with a
constant low ROCD climb phase are over-represented. For
these trajectories, the NN wrongfuly predict a low uncertainty
at the separation between the two phases: all the past points
in xt

6 are inside the “typical ROCD” phase whereas all the
future points are inside the constant low ROCD phase. As the
time t increases, the constant low ROCD points are included
in xt, resulting in an appropriate increase of the predicted
uncertainty.

The NN does not anticipate the shift from a typical climb to
a constant low ROCD climb and predicts a typical mass with a
good confidence. However, these constant low ROCD phases
are associated with a low energy rate and hence a heavy mass
as we have assumed a max climb thrust. It is not surprising
that the NN is unable to anticipate this type of climb shift. It
is likely that there are no obvious clues inside past points that
a type of climb shift will occur.

CONCLUSION

In this study we have tested machine learning methods
using millions of climbing segments coming from The Open-
Sky Network. These climbing segments were completed with
weather forecasts, aircraft types and variants, departure and
arrival airports, estimated masses and speed profiles. The
filtered and augmented data set is available at https://opensky-
network.org/datasets/publication-data. The machine learning
code is available at https://github.com/richardalligier/atm2019.
Inside the ATM trajectory prediction community, we hope that
sharing the data set and the machine learning code will enable
scientifically sound comparisons based on the exact same data
set.

Using this data set, we used an ensemble of neural networks
to predict distributions for the parameters of a climbing
aircraft: the mass and the (cas1, cas2,Mach) speed profile val-
ues. These predictive distributions are Gaussian distributions
N (µ(x);σ(x)) where x is all the information we have about
the considered aircraft at the time the prediction is computed.

The RMSE associated with the predicted values µ(x) are
slightly larger than the one observed using GBM ([28]).
Interestingly enough, despite a slightly larger RMSE, the mean
size of the prediction interval provided by the neural networks

6At the time t the prediction is computed, the vector x contains the 10 past
points . To make explicit the fact that these past points changes as t changes,
we index x by t.

is slightly smaller than the one built with GBM, for the same
actual coverage probability. For cas1 and cas2, the mean size
is reduced by 31 % and 16 % respectively.

It has been demonstrated that the examples with a similar
predicted σ(x) are associated with an observed RMSE close
to σ(x). This can be useful to decide whether a prediction can
be trusted or not.

These distributions could also be used to feed a method that
convert distributions on aircraft parameters to distributions on
future aircraft trajectory. Such a method is described in [1].

In future works, it could be interesting to build predictive
distributions that do not assume a Gaussian distribution nor
that the unknown parameters are independent from each other.
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