
Thirteenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2019)

Optimizing Successive Airspace Configurations
with a Sequential A∗ Algorithm

David Gianazza
ENAC, Université de Toulouse, France

Abstract—In this paper, we introduce exact tree search algo-
rithms which explore all the possible sequences of airspace par-
titions, taking into account some constraints on the transitions
between two successive airspace configurations. The transitions
should be simple enough to allow air traffic controllers to main-
tain their situation awareness during the airspace configuration
changes. For the same reason, once a sector is opened it should
remain so for a minimum duration.

The proposed method is a sequential A∗ algorithm with a
rolling horizon. It finds a sequence of airspace configurations
minimizing a cost related to the workload and the usage of
manpower resources, while satisfying the transition constraints.
This approach shows good results on 9 months of data from
the french ATCC Aix (East), when compared with two baseline
methods, one with a greedy approach and the other with no
transition constraints.

Keywords—Air traffic management; workload; airspace con-
figuration; hotspot prediction; tree search; branch & bound; A∗
algorithm; A star algorithm

INTRODUCTION

A dynamic and flexible use of the airspace resources is
a key element for improving the efficiency of Air Traffic
Management (ATM), as expressed in many operational con-
cepts such as [1]–[3]. Currently the airspace is divided in
managerial units – Air Traffic Control Centers (ATCCs). The
airspace of each ATCC is divided into elementary airspace
sectors. These basic airspace modules can be combined
together so as to form control sectors operated each by a small
team of 2-3 controllers. Depending on the ATCC, the Air
Traffic Controllers (ATCos) are qualified to operate any ATC
sector of their center, or only those belonging to a specific
qualification zone.

The partitionning of an ATCC’s airspace – or a qual-
ification zone – into ATC sectors is called an airspace
configuration. It changes across the day, depending on the
workload experienced by the ATCos. Sectors can be split1

when the workload increases, or merged (or collapsed) when
the workload decreases. More complex recombinations may
sometimes be decided by the control room manager, when
necessary.

Although it could be made even more flexible by multiply-
ing the number of airspace modules and combining them in
different ways [4], or by optimizing flexible sector boundaries
so as to minimize the controller taskload [5], the current

1Splitting a control sector requires that it is made of at least two elementary
sectors.

system is already very flexible and adaptive when facing
traffic variations. It does lack predictability, though.

Several issues arise when trying to predict future airspace
congestions (or hotspots). One of them is that the prediction
must rely on a realistic workload model. Another one is to
identify which control sectors might be open in the future,
in order to detect which of them might become overloaded.
The first issue has been adressed in a number of works, using
linear models [6], neural networks [7], [8] or other machine
learning techniques [9] to predict the controller workload
from a set of relevant ATC (Air Traffic Control) complexity
metrics. This is not the focus of this paper, however. The
second issue – knowing which control sectors might be open
at a given time in the future – is the problem being addressed
here.

Our objective is to compute an optimal sequence of
airspace configurations in a given time interval in the fu-
ture, taking various constraints into account. The successive
airspace configurations should minimize the overloads and
also the number of working positions that are necessary to
cope with the traffic. In addition, the workload should be
as close as possible to a nominal value in each sector. The
constraints include that the transitions between successive
configurations should be simple enough to allow controllers to
maintain their situation awareness. For the same reason, once
an ATC sector is opened, it should remain so for a minimum
duration.

Given an input traffic prediction and assuming we have
a realistic workload model, one could use such an optimal
sequence of predicted airspace configurations to anticipate
future overloads that could not be solved simply by recon-
figuring the sectors. This “hotspot” detection is crucial to the
elaboration of traffic management measures such as rerouting
or delaying flights well in advance.

The paper is organized as follows. Section I provides a very
brief overview of previous research on airspace sectorization
and configuration. The problem being addressed in this paper
is described in section II. The branch & bound and A∗

algorithms are presented in section III. Section IV shows how
we apply these tree search algorithms to optimize sequences
of airspace configurations. The datasets and experiment setup
are described in section V, and the results are presented in
section VI. Section VII concludes the paper and gives some
perspectives of further research.

I. BACKGROUND

Many research has been done on airspace sectorisation and
airspace configuration (see surveys in [10], [11]). Few works
explicitely consider the transitions between configurations
and try to optimize sequences of configurations, exploring
all reachable configurations. In [12], dynamic programming
methods are compared with greedy heuristics, considering
a transition cost and exploring a limited subset of pre-
defined configurations from a small ATCC with few sectors.
Other works [13] use a distance between configurations to
smooth sector configuration plans built using a combination
of deterministic search and simulated annealing, considering
a relatively small problem instance (Reims ATCC, France).
In [14], a softmax regression provides a rough estimate
of the number of controller working positions necessary to
handle a given input traffic in Bordeaux ATCC (a bigger
problem instance). A finer prediction is then obtained using
a tree search method exploring a catalogue of operational
configurations, considering higher-level clusters of control
sectors that are used in operations (East, North, or South
clusters).

This hierarchical partitionning – where one first decides to
split the airspace into clusters, and then balances the workload
by combining sectors within each cluster – highly reduces the
number of combinations to consider.

Another aspect on which Flow Management Position
(FMP) operators largely rely on is that typical traffic patterns
are handled with typical airspace configurations. In european
ATCCs, the FMP operators only consider a small number of
these typical configurations, manually stored into databases,
to build sector opening schemes.

Over the past decades, ATCCs have been multiplying the
number of elementary airspace sectors and reducing their
size, thus increasing dramatically the number of possible
airspace configurations. In addition, there is a natural trend
in ATM towards more flexibility in 4D-trajectory handling
and airspace sectorisation and configuration, which might
lead to the emergence of less predictable traffic patterns.
Consequently, it seems interesting to explore all the possible
partitions of airspace that can be built from controllable
sectors, without limiting ourselves to a short list of typical
configurations.

In our previous works [15]–[18] we introduced a branch
& bound algorithm that explores all the possible partitions
of the airspace into valid sector configurations. However, this
approach did not take into account the transition constraints
between successive airspace configurations. In the following,
we propose another approach where an A∗ algorithm is used
to optimize sequences of airspace configurations satisfying
transition constraints. The next section states the problem
being addressed with more details.

II. PROBLEM DESCRIPTION

Ultimately, our aim is to find optimal sequences of airspace
configurations satisfying a number of constraints including a
maximum number of available working positions at any time
of the day, a minimum duration length for any sector opening,
and compliance to various constraints including transition

rules which allow the controllers to maintain their situation
awareness while reconfiguring the airspace.

A. Airspace Configurations

The airspace is divided into a number of elementary
airspace sectors (modules). These airspace sectors are as-
signed to controllers’ working positions (CWPs). The radar
and planning controllers working on a CWP operate an Air
Traffic Control sector (ATC sector) made of one or several
elementary airspace sectors.

At any moment, all airspace sectors should be controlled
(i.e. assigned to a CWP) and no airspace sector should be
assigned to more than one CWP2. Consequently the assigne-
ment of airspace sectors to controllers’ working positions
form a partition of the airspace into ATC sectors, as illustrated
on Figure 1 on a toy example involving 5 airspace sectors in
a fictitious airspace.

1
5

2

4

3

Airspace sectors
Controllers' working positions

in the control room

Figure 1: Airspace partitionning into ATC sectors

Not all airspace partitions are valid airspace configurations,
though. Considering Figure 1, merging the airspace sectors 1
and 3 for example would not form a valid ATC sector, as these
airspace sectors are not geographically connex. In practice, a
list of valid ATC sectors is available from the ATC center
databases.

Using this data, one can enumerate all the possible airspace
configurations that can be obtained using controllable sectors
– i.e. valid groups of sectors or elementary sectors that appear
in the center’s database. This enumeration is illustrated on
Figure 2. In order to build valid airspace configurations,
airspace sectors are considered sequentially, starting with
sector 1 at the root of the tree. The ATC sectors compatible
with each node are traced. When assigning airspace sector 1
to a CWP at the root of the tree, the compatible ATC sectors
are s = {1}, d = {1, 5} and e = {1, 2, 3, 4, 5}. Considering
airspace sector 2, one can either assign it to the same CWP as
1 (left branch) , or assign it to a separate CWP (right branch).
In the right branch, we see that group e = {1, 2, 3, 4, 5}
is no longer compatible with airspace sector 1 when 2 is
assigned to a separate CWP. In the left branch, the only ATC
sector compatible with 1 and 2 assigned to the same CWP is
e = {1, 2, 3, 4, 5}. The process goes on with the other airspace
sectors. The nodes having an empty list of compatible ATC

2Except maybe very briefly when transferring a sector from one CWP to
another

sectors are no longer developped. The leaves of the tree give
us all the valid airspace configurations.

({1,2},{e})

and so on...

({1},{s,d}) ({2},{s,a})

({1},{s,d,e})

({1,3},{}) ({2},{s}) ({1},{s,d} ({2,3},{a})({1,2,3},{e})

({1,2,3,4},{e}) ({1,2,3},{}) ({4},{s,c})

({1,2},{}) ({3},{s,b})

({1},{s,d}) ({2,3,4},{}) ({1},{s,d}) ({2,3},{a}) ({4},{s,c})

({1,5},{d}) ({2,3},{a}) ({4},{s})

({1,4},{}) ({2,3},{a})

({1,2,3,4},{}) ({5},{s})({1,2,3,4,5},{e})

c: {4,5} d: {1,5}
e: {1,2,3,4,5}
s: generic term for a singleton

 {1},{2},{3},{4} or {5}

Valid groups of sectors :
a: {2,3} b: {3,4}

Figure 2: Building valid airspace configurations

Table I shows on the rightmost column the number of
valid airspace configurations for each French ATC center (or
qualification zone), in 2018. The computation time just to
count these configurations ranges from a few milliseconds
for the smallest centers to more than 2 hours and 20 minutes
for Brest ATCC (using an Intel(R) Xeon(R) CPU E31270
3.40GHz octo-core desktop).

Airspace sectors Valid groups Airspace config.
Aix (West) 20 45 47,377
Aix (East) 26 79 12,161,652
Bordeaux 36 69 99,522,406
Brest 32 92 233,281,435
Paris (West) 12 20 583
Paris (East) 15 23 833
Reims 22 51 224,691

TABLE I. Number of valid airspace configurations (rightmost
column) in the French ATC centers, in January 2018

B. Sequences of airspace configurations

Let us denote Ct0 an initial configuration at time t0, and
let us consider a time interval [t0, t0 + Kδt], where δt is
a chosen time step (typically one minute). Our objective is
to predict an optimal sequence of airspace configurations
Ct0 , Ct0+δt, . . . , Ct0+Kδt, minimizing the cost of the succes-
sive configurations. This cost should depend on the workload
of each ATC sector, as well as the number of working
positions. Various constraints can be taken into account, such
as the maximum number of working positions that can be
opened (depending on how many controllers are available),
the minimum length of the time interval during which a
sector should remain open, and the transition rules from one
configuration to the next.

Several modeling choices can be envisionned when opti-
mizing the sequences of successive airspace configurations.
One can consider the successive configurations as indepen-
dent one from the other, in the sense that any configuration
can be the successor of a given configuration and the tran-
sition from the current configuration to the next is costless.
In that case, the optimal sequence can be obtained by finding
the optimal configuration at each time step, separately.

A more realistic model is to consider that a configuration in
the sequence depends on its predecessor, i.e. not all transitions

are allowed, or the transitions have a cost. In operations, tran-
sitions from one airspace configuration to another must allow
controllers to maintain their situation awareness. Transitions
such as the ones shown on Figure 3 are too complex and
should be avoided, or at least considered only when there are
very few flights in the sectors involved.

Figure 3: Complex airspace reconfigurations

In this article, we propose to introduce simple transition
rules restricting the set of configurations that can be reached
from the current configuration. When doing so, one cannot
find the optimal sequence of configurations by optimizing
each configuration independently anymore. We must con-
sider all the possible sequences of configurations that can
be reached, starting from the initial one, as illustrated on
Figure 4.

etc

etc

etc

etc

Figure 4: Possible sequences of successives airspace config-
urations

Denoting b the average branching factor of the tree of all
possible sequences, the approximate number of sequences to
explore in order to find the optimal sequence is bK , when
considering sequences of K steps. Taking for example a time
horizon of 2 hours (i.e. 120 minutes) and a branching factor
of 20, there are 20120 possible sequences of configurations,
which is huge. Considering the number of possible configu-
rations in table I, the actual branching factor might be much

higher than 20, depending on whether the chosen transition
rules are restrictive of not.

C. Constraints

1) Transition rules: Any two successive airspace configu-
rations C and C+ in a sequence S should satisfy the following
constraint :

C+ ∈ AT (C) (1)

where AT (C) is the set of configurations that can be reached
from C complying with a chosen set of transition rules T

In this paper we shall consider two sets of transition
rules, comprising only three kinds of actions: split, merge,
or transfer sectors. A transition shall consist in one or several
such actions. The two sets of transition rules used in this
paper are described below:

T1 :
Split ab→ a, b
Merge a, b→ ab
Transfer ab, c→ a, bc

(2)

One action per transition (3)

T2 :
Split one sector into up to nsplit sectors
Merge up to nmerge sectors into one
Transfer ab, c→ a, bc

nact actions per transition at most

An action can be seen as an operation (split, merge,
or transfer) taking a list of arguments (ATC sectors), and
returning a list of new ATC sectors that replace the former
ones in the new configuration. A ’split’ operation applies to
one ATC sector, resulting in up to nsplit new ATC sectors.
A ’merge’ operation applies up to nmerge sectors, resulting in
one ATC sector, and a ’transfer’ operation applies to two ATC
sectors, resulting in the same number of ATC sectors.

Considering T2 and taking for example nact = 2 actions
at most per transition, there are 9 possibilities in the choice
of operations: [Split; Split]; [Split; Merge]; [Split; Trans-
fer]; [Split]; [Merge; Merge]; [Merge; Transfer]; [Merge];
[Transfer; Transfer]; [Transfer]. For a partition containing 6
ATC sectors, there are 722 ways to choose up to nact = 2
operations and to choose the arguments of these operations
– i.e the ATC sectors being split, merged (with at most 3
sectors being merged, here), or implied in a transfer. With
nact = 3 this number goes up to 2062.

The actual number of airspace configurations that can be
built applying these possible actions is even higher, as there
can be many ways to split a given ATC sector into several
smaller sectors, or to transfer some airspace sectors from one
ATC sector to another.

2) Duration of sector openings: The time intervals during
which any ATC sector is opened during a sequence S =
{C1, . . . , Cn} should have a minimum width of M minutes.

This constraint avoids multiple split, merge, or transfer
operations involving a same sector in a short period of
time, and allows controllers to maintain a better situation
awareness.

3) Other constraints: Some other constraints can be de-
fined, such as a maximum number of working positions that
may vary across the day depending on the number of con-
trollers on the duty roster. This constraint is easy to implement
and has been taken into account in our previous works [15],
[18]. However, we will not consider this constraint in the
current paper, and focus on the difficulty to apply tree search
methods to the problem of computing optimal sequences of
airspace configurations.

Another constraint, already mentioned in section II-A, is
the fact that one can use only some predefined groups of
airspace sectors to form an ATC sector. This constraint is
taken into account in the rest of the paper, where we use the
list of valid ATC sectors provided by each ATC center to
build valid airspace configurations.

Note that we do not restrict ourselves to a list of typical
configurations, as currently done in operations. We consider
all the possible configurations that can be obtained by parti-
tionning the set of airspace sectors into valid ATC sectors.

D. Problem statement

To summarize our description of the problem, let us for-
malize it as a minimization problem. Denoting S a sequence
of airspace configurations, S the set of all possible sequences,
and given a cost function cost and a set of chosen transition
rules T , the problem can be formalized as follows :

min
S∈S

cost(S) subject to (4)

C+ ∈ AT (C) for any successive configurations C,C+ (5)
min open(atc sect) ≥M , ∀atc sect ∈ O(S) (6)

(7)

where AT (C) is the set of configurations that can be
reached from C complying with the chosen transition rules
T , and O(S) is the set of ATC sectors opened during the
sequence S.

The last constraint expresses the fact that an ATC sector,
once opened, should remain open for at least M minutes.
Note that this constraint does not apply to the duration of the
configurations, which can be changed at any time, but to the
ATC sector openings.

III. TREE SEARCH METHODS

A. Branch & bound

The branch & bound algorithm performs a depth-first
search in a tree or a graph until it reaches a solution. It then
backtracks in the tree to check for other solutions. At each
node, a cost estimate is computed, that is a lower bound of
the costs of all the solutions that can be reached in the subtree
of the considered node. If this lower bound is worse than the
best cost found so far, there is no need to continue exploring
the subtree and the branch is cut. Otherwise the depth-first
search continues, updating the best solution when necessary.
The search stops when there are no more nodes to explore.

This algorithm can be implemented with a priority queue
where the deepest nodes get the highest priority (i.e. a “last
in first out” stack). The pseudocode is given in Algorithm 1.

Algorithm 1 branch and bound algorithm
Require: u0 . Initial state

1: (best, costbest ← (None,+∞)
2: p0 ← PRIORITY(u0)
3: Q← INSERT(u0, p0, ∅) . Init priority queue (Last In First

Out)
4: D ← ∅ . Empty set of expanded nodes
5: loop
6: if Q = ∅ and best = None then
7: return FAILURE . No solution
8: else if Q = ∅ and best 6= None then
9: return (best, costbest) . Return best solution

10: else
11: (u,Q)← EXTRACT(Q) . Extract node of highest

priority (i.e. the most recently inserted node)
12: if ISSOLUTION(u) then . u is a terminal state
13: costu ← COST(u) . Store the cost of u
14: if costu < costbest then
15: (best, costbest)← (u, costu) . Update best

solution
16: end if
17: else . u is not a terminal state:
18: D ← D ∪ {u} . Add u to expanded nodes
19: S ←EXPAND(u) . Expand u (i.e. compute its

successors)
20: for all v ∈ S, v /∈ D do
21: evalv ← COSTESTIMATE(v) . Lower bound of

reachable solutions
22: if evalv < costbest then
23: pv ← PRIORITY(v)
24: Q← INSERT(v, pv, Q)
25: end if . Cut if lower bound above costbest
26: end for
27: end if
28: end if
29: end loop

B. The A∗ algorithm

The A∗ algorithm performs a best-first search in a tree or
a graph. It extracts the node u of highest priority from the
frontier F , that is the set of nodes that have been generated
but not expanded yet, and expands this node by producing a
list of successor nodes. If a successor node v has never been
encountered before, or if the cost of going from the initial
state u0 to v is lower when passing through u than through
any previous parent node of v, the successor v is inserted (or
reinserted) in the frontier F with a priority f(v). This process
is repeated until a terminal state is reached.

The cost of node v is simply the cost of the parent node u
plus the cost k(u, v) of going from u to v: costv = costu +
k(u, v). The priority f(v) is the estimated cost for going from
the initial state to the final state while passing through v.
The priority f(v) is the sum of costv and a heuristic h(v)
estimating the cost between v and the destination: f(v) =
costv + h(v).

A typical example is trying to find the shortest route when
driving from one city to another. For this application, one
can take k(u, v) equal to the driving distance between u and
v, two connected nodes in the network, and the heuristic
function h(v) equal to the distance as the crow flies from
v to the destination.

The notations are summarized below, and the algorithm is

fully described in Algorithm 2.
u0 : initial state
T : set of terminal nodes (solutions)
D : set of expanded nodes
F : frontier, i.e. the set of nodes that have been

generated but not expanded yet
h(u) : heuristic function estimating the cost of the path

from the current node u to a final state belonging
to T

cost(u) : the best cost stored for the path from the initial
state u0 to the current node u

f(u) : estimate of the total cost for the path from u0 to
a terminal state, via the node u. f(u) = cost(u) +
h(u) aggregates the cost of the path already traveled
from u0 to u and the cost estimated for the path
remaining to be travelled to a destination in T

k(u, v) : cost of the transition between two successive states
u and v

parent(v) : the parent of v for which the path from u0 to
v is of lowest cost

In addition, the exploration of the state space requires to
specify the following functions:
• EXPAND : function applying a set of production rules
{p1, p2, ..., pk} to a state u, returning a set of successors
S = {v1, v2, ..., vk}. For example, when finding a path
in a road network, it will simply return the cities (nodes
in the network) connected to the current city u.

• BESTINFRONTIER : function returning the best node u
in the frontier F , that is the one for which f(u) =
cost(u) + h(u) is the lowest.

• ADDORREPLACE : adds a node v with priority f(v) to
the frontier F , or replaces it if it was already in it.

Algorithm 2 The A∗ algorithm.
Require: Initial state u0

1: F ← {u0}
2: cost(u0)← 0
3: while F 6= ∅ do
4: u← BESTINFRONTIER(F) . Find u with best priority

f(u) in frontier F
5: F ← F \ {u} . Remove u from the frontier
6: if u ∈ T then . u is a terminal state, return path
7: return PATH(u0, u)= u :: parent(u) :: . . . :: u0

8: else
9: D ← D ∪ {u} . Add u in set of expanded nodes

10: S ← EXPAND(u) . Expand u (i.e. compute its
successors)

11: for all v ∈ S do . For all successors
12: if v /∈ D ∪ F or cost(v) > cost(u) + k(u, v) then
13: cost(v)← cost(u) + k(u, v) . Store cost of

path u0, . . . , u, v
14: f(v)← cost(v) + h(v) . Compute f(v) the

priority of v
15: parent(v)← u . Memorize u as parent of v
16: F ← ADDORREPLACE(v, f(v), F) . Insert v

in frontier F
17: end if
18: end for
19: end if
20: end while
21: return FAILURE . No solution when the frontier is empty

IV. APPLICATION TO OUR PROBLEM

A. Air traffic controller workload

The cost we will try to minimize when computing optimal
sequences of airspace configurations is related to the workload
experienced by the air traffic controllers operating the ATC
sectors of the successive configurations. There are many ways
to model the air traffic controller workload. The notion of
incoming flow – i.e. the number of incoming flights entering
a sector in given time interval – has been widely used in
Europe, together with the notion of capacity, defined as
a threshold value for the incoming flow, above which the
sector is considered as overloaded. These notions of flow
and capacity are well suited to flow management and traffic
regulation, but they are a poor estimate of the actual workload
experienced by controllers.

A more realistic workload estimation is to count the number
of aircraft within the sector boundaries at a given time, or
within a given time period. These occupancy measures are
usually employed together with peak and sustain monitoring
alert parameters to determine potential overloads. Although
better than the simple incoming flows and capacities, the
number of aircraft and occupancy counts do not take into
account the air traffic control complexity.

A lot of research has been done on understanding and
expliciting the relationship between ATC complexity and
controller workload [6], [19]–[23]. In previous works [8],
[16], [24], [25], we proposed to predict the workload from
a set of 6 indicators (sector volume, aircraft count, incoming
flows with 15 or 60 mn time horizon, average absolute vertical
speed, and trajectory crossing count), using a neural network,
or other machine learning techniques [9], [26]. In these works,
the model was trained on historical data made of measures
of ATC complexity and records of past sector operations.

The focus of the current paper is not on the workload
model, but on finding optimal sequences using tree search
methods. In order to make the results easier to reproduce, a
very simple workload model, based on the aircraft count, is
chosen in this study.

For each control sector, we define a lower bound lb and
an upper bound ub for the aircraft count. Sectors with an
aircraft count below lb will be considered as underloaded,
and those with an aircraft count above ub will be considered
as overloaded.

In addition to the upper bound ub and lower bound lb, we
also define for each ATC sector s a nominal workload value
nw, with lb < nw < ub.

With these three parameters, we quantify the workload
in a given ATC sector s using the aircraft count na(s) by
measuring the excessive overload ols, the normal workload
above or below nominal (nl+s and nl−s respectively), and the
excessive underload uls. These quantities are expressed as
follows, where 1[x;y](z) is equal to 1 when x ≤ z ≤ y, and
0 otherwise:

ols = max(na(s)− ubs, 0) (8)

nl+s = 1[nws;ubs](na(s))× |na(s)− nws| (9)

nl−s = 1[lbs;nws](na(s))× |na(s)− nws| (10)
uls = max(lbs − na(s), 0) (11)

Given a set of values for na(s), ubs, nws and lbs, at most
one of the above cost measures ols, nl+s , nl−s and uls will
have a non-zero value.

B. Cost of an airspace configuration

An airspace configuration C is made of several ATC sec-
tors. The cost of a configuration C depends on the workload
in each of its sectors and also of the number of working
positions required to operate the sectors.

In the following, we have chosen to quantify the cost of an
airspace configuration as a multidimensional vector whose
components are the following costs, enumerated below in
their order of importance:

ol(C) =
∑
s∈C

ols (12)

ncwp(C) = cardinal(C) (13)

ul(C) =
∑
s∈C

uls (14)

nl(C) =
∑
s∈C

(nl+s + nl−s) (15)

When comparing two configurations, these quantities are
compared in the order of priority of their enumeration.

C. Cost of a sequence of configurations

The cost of a sequence is an aggregation of the costs of the
successive configurations and the costs of the transitions. For
the current study, we have chosen a transition cost of zero,
and the cost of the sequence is simply the sum of the costs
of the configurations.

D. Baseline 1: optimizing without transitions

The first baseline method simply consists in optimizing the
successive airspace configurations independently, by applying
Algorithm 1 (branch & bound) at each time step. When re-
moving the constraints on the transitions, we can compute an
optimal airspace partition for each time step of the sequence,
searching over all the possible partitions. A similar approach
was used in our previous works [15]–[18], [27], with the
difference that in this paper the workload model is a simple
aircraft count.

Figure 5 shows how the branch & bound algorithm is used
to compute an optimal airspace partition at a given time step.
Taking the same example as in section II-A, the algorithm
explores the same tree as in Figure 1, where the nodes are
incomplete partitions, and the leaves are full partitions of the
airspace (i.e. airspace configurations).

The function COST of Algorithm 1 that evaluates the
leaves (e.g. at step 6 on Figure 5) is the cost described in
section IV-B. It is a vector of components ol(C), ncwp(C),

1

6

?

?

5

4

2

3

({1,2,3,4},{e}) ({1,2,3},{}) ({4},{s,c}) ({1},{s,d}) ({2,3},{a}) ({4},{s,c})({1},{s,d}) ({2,3,4},{})

({1,2,3},{e}) ({1,2},{}) ({3},{s,b})

({1},{s,d}) ({2},{s,a})({1,2},{e})

({1},{s,d,e})

({1,2,3,4,5},{e}) ({1,2,3,4},{}) ({5},{s})

({1,3},{}) ({2},{s}) ({1},{s,d} ({2,3},{a})

({1,4},{}) ({2,3},{a})

({1,5},{d}) ({2,3},{a}) ({4},{s})

Valid groups of sectors :

a: {2,3}
b: {3,4}
c: {4,5}
d: {1,5}
e: {1,2,3,4,5}
s: singleton

Best_conf= ({e})

Best_val= Eval_conf({e})

Best_val= Eval_conf({d},{a},{4})

Best_conf= ({d},{a},{4})

if Eval_conf({d},{a},{4})>Best_val then

then cut this branch
if Eval(node) < Best_val

otherwise continue the search

and so on...

Figure 5: Computing an optimal partition with a branch &
bound algorithm.

ul(C), nl(C) (assuming C is the airspace configuration at the
evaluated leaf).

The function COSTESTIMATE in Algorithm 1 uses a similar
cost structure when evaluating nodes. In order to obtain a
lower bound of the costs of all leaves that can be reached
from the evaluated node, we simply take – for each group
of airspace sectors of the node – the minimum values of the
workload costs over the compatible ATC sectors. A lower
bound of the number of working position is given by the
number of groups in the node. The order of priority of the
different costs is taken into account when computing the
minimum values over several possible ATC sectors.

Looking at the node visited at step 6 on Figure 5, we have
two groups of sectors ({1}, {s1, d}), and ({2}, {s2, a}) so the
lower bound for ncwp is 2. For the first group, we will obtain a
lower bound of the overload by taking the minimum over the
overload values of the compatible ATC sectors s1 = {1} and
d = {1, 5}. The same goes for the other workload quantities
(normal workload above or below nominal, and underload).
Doing the same with the other group ({2}, {s2, a}), and
aggregating these quantities we can compute a lower bound
for the cost of the configurations that can be reached from
the node.

E. Baseline 2: the greedy strategy

Taking into account the transition constraints, a greedy
strategy is to compute the sequence of successive configu-
rations by taking the best configuration that can be reached
from the current configuration, at each time step.

In this approach, we explore the tree of all possible se-
quences of successive configurations (see Figure 4). However,
this tree is explored without backtracking, following the best
branch at each node until the sequence is complete.

This greedy method is a realistic baseline method with
which we can compare our proposed method presented in
the next section.

F. Sequential A∗ with a rolling horizon

Ideally, we would like to find the best sequence among all
the possible sequences. This is a difficult problem, though,
considering the branching factor and the depth of the tree
(see comments at the end of section II-B).

An intermediate strategy between the greedy strategy and
the full search of the tree is to search the tree up to a limited
depth, pick up the best next configuration and add it to the
sequence, and reiterate the process from this configuration.

The Algorithm 2 (A∗) is used at each iteration to explore
the tree up to a limited depth. This process is illustrated on
Figure 6.

Figure 6: Sequential A∗ with a rolling horizon.

For the A∗ algorithm, the cost of the initial configuration
C0 is the same, whatever the explored sequence starting at
C0, and we can take 0 without changing the result.

The cost of any other configuration C is expressed as
follows, where ol, ncwp, ul, and nl are defined in section IV-B :

astar cost(C) = α ola + β ncwp + γ ulb + δ nlb (16)

In the following, the parameter settings are a = 1.3, b = 0.7,
α = 1e6, β = 1e2, γ = 1e− 2, and δ = 1e− 6.

If u is the current configuration and v one of its successors,
the cost k(u, v) for going from u to v (see algorithm 2) is
simply k(u, v) = astar cost(v). The heuristic function h(v)
is chosen as the sum of the costs of the best configurations
with no transition constraints in the time interval between the
current time and the rolling horizon. These costs are lower
bounds of the costs obtained when enforcing the transition
rules. They are computed using the baseline 1 method (No-
Trans).

V. DATA AND EXPERIMENT SETUP

A. Datasets

In the current study, we compare our methods using real
data from the Aix ATC Center, using the East qualification
zone. We have used 279 days of recorded radar tracks from
2017 (January to December) to assess the workload thresholds
(upper bounds) of each ATC sector.

The methods are then tried and compared on 254 days
from 2018 (January to September). The radar tracks have been
sampled in order to get 1 point per minute.

B. Workload thresholds

A rough estimate of the workload’s upper bound – in terms
of aircraft counts – can be obtained by boxplotting the number
of aircraft in each sector for the 2017 traffic. Considering only
sectors with at least 1200 data points, we have computed for
each sector an upper bound for the number of aircraft using
the following formula, where q is a quantile:

ub = q(75%) + 1.5× (q(75%)− (q(25%)) (17)

This formula is the one used in the R boxplot function to
compute the upper limit of the whiskers.

●

●

●●●

●

●●

●

●

●

●

●●

●

●●

●●●●●●

●

●

●●●●

●●

●

●●●

●●

●●●

●

●

●●●

●

●

●●

●●

●

●●●

●

●●

●

●

●

●●●●●●●

●

●●●

●●

●●

●●

●

●●●●●●

●●

●●●●●●●●●●●●●●

●

●●

●●●●●●●●

●

●

●

●●●

●

●●●●

●

●

●●●●

●

●●

●●●

●

●●●●

●

●●●

●

●●●

●●

●

●

●

●●

●

●

●●

●●●

●

●●●●

●●●

●●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●●

●●●

●●

●●●●●

●

●

●

●●●

●●

●

●●●●●●

●●

●●●●

●

●●

●●

●●●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●●●

●

●

●

●●

●

●

●●

●●●

●●

●●

●

●●●●●●●●

●

●●●●

●●●

●

●●●●●●●●●●

●

●

●●●

●

●

●●●●●●●●●●●

●

●

●

●

●●●

●

●●

●

●●

●

●●●●

●●●●

●●

●●

●

●●

●

●

●●●●

●●

●

●

●●●●●●●

●

●●

●●

●

●

●●

●●●●●●●●

●

●●●●

●

●●●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●●

●●

●

●●●●●●●

●

●●●●

●●

●●

●●●●

●●●●●●

●

●●

●

●

●●

●●

●●●●

●

●

●●

●

●●

●

●

●●●●●

●●

●

●

●

●

●

●

●●●●

●●●●●

●

●●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●●

●●

●●

●

●●●●

●

●●●

●

●

●●

●●●

●

●●●●●●●●●

●

●●●

●

●●

●●●●●

●

●●

●●

●

●●●●

●

●

●●●

●

●

●

●●●●●●●●

●●

●

●

●●●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●

●

●●

●●

●

●●●

●

●

●

●●●

●

●

●

●

●●

●

●

●●●

●

●●●●●

●

●

●●●●●●●●●●●●●●●

●

●●

●●●

●●●

●●

●

●●

●●

●

●●

●●

●●

●

●

●

●

●

●●●

●

●●●

●●

●●

●●

●

●●

●●●●

●●●

●

●

●●

●

●

●●●

●

●

●

●●●●●●

●

●●

●

●

●

●●●●●●●

●●

●●

●●

●

●

●

●

●●

●

●●●●●●●●●●●●●

●●●

●●●●

●

●

●

●●●

●

●

●

●●

●●●

●●●●●●

●●

●●

●●●

●

●

●●●●●●

●

●●●●

●●●●●●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●●●●●

●

●●●●●

●●●●●●

●●●●●●

●●

●

●●●●

●

●

●●●●●

●●●

●

●●●●●●

●●

●

●●

●●

●

●●

●

●●●

●

●

●

●●

●●●●

●●●●●●

●●●

●●

●●

●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●

●

●●●●●●●

●

●●●

●●

●●●

●

●

●●

●

●

●

●

●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●

●●

●

●●

●

●●

●●

●

●

●

●

●

●●

●●●

●

●●

●●●●●●●●

●●

●●●●●●●●●

●

●●●●●●

●

●

●

●●

●

●●●

●

●●●●

●

●

●

●

●

●●

●●

●●

●

●

●●●

●●●

●

●

●

●

●

●●

●●

●●

●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●

●●●●

●

●

●

●●●●●

●

●

●●

●●

●●

●●●●●●

●

●●●●

●●●

●●●●

●

●●●●●

●●

●●●●●●●

●

●●

●

●●●

●●●

●●

●

●●●●●●●●

●

●

●●●●●●●

●

●●

●

●●

●

●●

●●

●●●●

●●

●●●

●●●

●●

●●●●

●

●●

●●●●●●●

●

●●●●●●●●

●●

●●●●

●●

●●●●●●●●●●

●●

●●

●●

●

●●●

●

●●●●●●●●

●●

●●

●●●●

●●

●

●●

●

●

●●●●●●●●

●

●

●●

●●●●●●●●●●●●

●

●●●●●●

●●●

●●●●●●●

●

●

●

●●

●

●●●

●●

●●●

●

●●●

●

●●

●

●●

●

●●●●●●●

●

●●●●

●

●●●

●

●

●

●●

●●

●

●●

●●

●●

●

●

●

●●

●

●●

●●●●●

●

●

●●●

●●●●

●●

●

●

●●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●●●

●

●

●●

●●●●●●●●●●

●●●

●●●

●●●●

●●

●

●

●

●●●

●

●●●

●

●

●

●●

●

●

●

●●●●

●

●●

●●●●●●

●●

●

●

●

●●

●●●●●●

●

●●

●

●

●●●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●●●

●●●●●●●

●

●

●●●

●

●

●●

●●●●●

●

●●●●

●●

●●

●

●

●

●

●

●●●

●

●●●

●●●●●●●

●

●●●●

●

●●

●●●●

●

●

●●●●●●●●●●

●

●

●●●●

●

●

●●

●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●●

●●●

●

●

●●

●

●

●●●

●

●●●●●

●

●●●●●●●●

●

●●●●

●

●●●●●●●●

●

●●●

●

●●

●

●

●

●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●●

●

●●●●●

●

●●●●●●●●●●

●

●

●●●

●

●●●

●●●●●●

●

●

●●●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●●●●

●●

●●

●●

●●●

●

●●

●

●●●●

●●●

●●

●

●●●

●

●

●●

●●

●●

●

●

●

●

●

●●●●●

●●

●

●

●●

●●●●●●

●

●●●●●●●●●●●●

●

●

●●

●

●●●

●●●●

●●

●

●●

●●

●

●

●

●

●●

●●

●●

●

●●

●

●●●●●

●●

●●

●

●●

●

●●●●

●●●●●●●●

●

●●

●

●

●●

●

●●●

●

●

●

●

●●●●●●●●●

●

●●●●

●

●●●●

●●

●●●●●●●●●

●

●●●●●●

●

●●●

●

●

●●●●●●●●●

●

●●●●

●●●●●●

●

●●●●●●●●●●

●

●●●●●

●●

●●

●

●●●●

●●

●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●●●

●

●

●

●

●

●●●●

●

●●●●●●

●

●

●

●

●

●●●

●

●●●●●●●

●

●

●●●

●●

●

●●●

●

●

●●

●

●

●

●

●●

●●●●●●●●

●

●

●

●●●●

●●

●●

●●●

●●●

●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●●●●●●

●

●

●

●●●●●●

●

●

●

●●●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●

●●●●●●●●

●●●

●●●●●

●

●

●●●●●

●●

●

●

●●●●●●●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●●

●●●●

●●●●●●●●●●

●●●

●●

●

●●●●

●

●

●●

●

●

●●●

●●●

●

●

●

●

●●●

●●●●●●

●

●●

●●●

●●●●●

●

●●●●

●

●

●●

●●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●●●

●●

●●

●●●●●●●●●●●

●

●●●●

●●

●●

●●

●

●

●

●●●●●●●●

●

●

●

●●●●●

●

●

●●●

●

●●●●

●

●●●●●

●

●

●

●●●●●●

●

●●●●●●●

●

●●●●

●

●●●

●●

●●●●●●●●●●

●●

●●

●●

●

●●●

●●

●●●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●●●

●

●

●

●

●●●●●

●●

●●●●●●●

●●●

●

●●●

●

●

●

●

●●●●●●

●

●●●●●

●

●●

●

●●●●●●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●●●●●●●●

●

●●●●

●●

●

●●●●●●●●●●

●

●●●●

●●

●●

●

●●●●

●

●

●

●●

●

●●●

●●●

●

●●●

●●

●●

●

●●●●

●

●●●●●●●●●

●●

●

●●

●●●●●●●

●

●●

●

●

●

●

●●

●●●●●●●

●

●●●●●●●

●

●

●

●●

●

●●

●●

●●●●●●●

●●

●

●●●●●●●●

●●●

●●●●●●●

●●●

●

●●●

●

●●●●

●

●●

●

●

●●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●●

●

●

●●

●●●

●

●

●

●

●

●●●

●●●●

●

●●●●

●

●●●●●

●

●●

●●●

●

●

●●●

●

●

●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●●●●●●●●●

●

●●

●

●●●

●

●●●●

●●

●●

●

●●

●●

●●

●●●●●●●●

●

●●●

●

●

●●●●●●●●●●●●●

●

●●●●●●●

●

●

●

●●

●

●

●

●●

●●●●●

●●

●

●●

●●●●

●●●

●●

●●

●●

●

●●●●●●●●●●●●

●

●●●●●

●●

●

●●

●

●

●●●●●

●●

●

●●●●

●

●●●

●

●

●●●

●

●●

●●●●●

●

●

●

●●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●●●●●●●●●●●

●●●●

●

●

●

●●●●●●●

●

●

●

●●

●

●●●●

●

●

●

●

●●●●●●

●

●●

●●

●●●●●●●●

●

●

●

●●●●●

●

●

●

●

●●

●

●●

●●●●

●

●●●

●

●

●●

●●

●●

●

●

●

●

●●

●

●

●●

●●●●●

●

●

●●●●●●●●

●

●

●

●

●●

●

●●●

●●●●●●●●●

●

●●

●●●

●●

●●●●

●

●●

●

●●●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●●

●

●●●●●●●●●

●

●●

●

●

●

●●●

●

●

●

●●●●●●●●●

●●●

●

●

●●●●●

●●

●●●●●●

●

●●

●

●●●●●●●●●●●

●

●●

●●

●●●

●

●●●●

●

●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●

●

●●●

●

●●●

●

●●●

●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●

●●●

●●●

●

●●●

●●

●

●●●●●

●

●●

●

●●●

●●●●●●●●●

●●●

●●●●●●

●

●●●

●

●●

●

●●●●●●

●

●●●●●●●●●

●

●

●●●●

●

●●●

●

●●●

●

●

●

●●●●

●●

●●●

●

●●●

●●

●●

●

●●●

●

●

●●●●●

●

●●●●●●●●

●

●●●●●●

●

●

●●

●

●●

●

●●●●●●●●●●●

●

●●●●

●●●

●

●

●

●

●

●

●●●

●

●●●●

●●

●●●●●●●●●

●

●●

●●●●

●

●●●●

●

●

●●●●

●●

●●●●●●●●

●●

●

●●

●●

●

●●

●●●●

●

●●●●●●

●●

●●

●

●

●

●

●

●●●

●

●

●●

●●

●

●

●●●●●●

●

●●●●●●

●●

●

●●

●●●●

●●

●●

●

●

●

●●

●●●●●

●

●●●●

●

●

●

●

●

●●

●

●

●●

●●●●●●

●●

●●

●

●

●

●●●

●

●●●●●●

●●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

●●

●●

●●

●●●●●

●

●

●

●●

●

●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●●●●●●●●●

●

●●●●●

●

●●●

●●●●●●●●

●●●

●

●

●●●●●●●

●●●

●●●●●●●●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●●

●●●

●

●

●

●

●

●

●●

●

●

●●

●

●●●●●●●●●

●●●●

●

●●

●

●

●

●

●●●●

●

●●

●

●●●●●●●

●

●

●●

●●

●●●

●●

●

●

●●●

●●●●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●●●●●●●●

●

●

●

●

●

●●●●

●

●●●

●

●

●●●●

●●

●

●

●

●

●

●●

●

●●●●

●●

●

●●●

●●

●●

●●●●●●

●

●●●●●●

●●●●

●

●

●●

●

●

●

●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●●●●

●

●●●

●●●●

●

●

●●

●●

●●

●

●●●●●●●

●

●●

●

●

●

●

●●

●

●

●

●●

●●●●●●

●●●

●

●●

●●●

●

●

●

●●●●●●

●

●●●

●

●

●

●●●●●●●●●

●●●●●●●●●

●

●●

●●●●

●●

●●●●●●●

●●

●●●

●

●●●●

●●

●●

●

●●●●●●

●

●●●●●

●●

●

●●●

●●

●

●

●●

●●●●

●

●

●

●●●●●●●●

●

●●●●●●

●●

●●●

●

●●

●●

●

●●●●●●●

●

●●●

●●

●●●●●●●●●●

●●●

●●

●

●

●●

●

●●●●

●

●●

●

●●●

●●

●●●●●

●

●●

●

●●

●●

●

●

●●

●

●●●

●●

●

●●●●

●●

●●●●

●

●●●●●●●

●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●

●●●

●●

●

●

●●

●

●●●●●●●

●

●●●

●●●

●

●

●●

●

●

●●●●

●●●●●

●

●

●

●

●●

●●●●

●●●

●

●●

●

●

●

●●●

●

●

●●

●●●

●

●●●●●●

●●

●●

●●●

●

●●

●

●

●●

●

●●●●●●●●

●

●

●●●●●

●

●●●●●●●

●

●

●

●

●●●

●

●●●●●●●●●●●

●●

●

●

●

●●

●

●

●●

●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●

●●

●●●●●●●

●

●●●●●●●●●●●●

●●

●●●●●●●●●

●

●●●●

●

●

●

●

●●●●●●●

●●

●

●

●●

●●

●●●●●

●

●●●●●

●●

●●●

●

●●●●

●

●●●

●

●●●●

●

●●

●

●

●

●●●

●●

●●

●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●

●

●●●●

●●

●●●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●

●

●

●●●●●●

●●

●●●●

●

●●●

●

●●●●

●

●●

●●●●

●●●●●●●●

●

●●

●

●●

●

●●●●

●●

●●

●●●●●●

●●

●●●●

●●

●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●●

●●

●●

●

●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●●●●

●

●●

●

●●●

●

●●●●●●●●

●

●●●●●●

●

●●●

●●●

●●●●●

●

●●

●

●●●●

●

●●●●●●●●●●●

●

●

●

●●●●

●

●●●

●

●●●●●●

●

●●

●●●

●

●●●●●

●

●

●●●●●●

●●

●●●

●●

●●

●●

●

●●●●●●●

●

●

●●●

●

●

●

●

●

●●●

●●

●●●

●●●

●●●●●●

●

●●●

●●

●●●●

●

●

●

●

●

●●●●

●●●

●●●●

●

●●●●

●

●●

●●

●●

●●●

●●●●●●●●●●●●●●

●●

●●●●●●●

●●

●

●

●●

●

●●

●

●

●●

●

●

●●●●

●

●

●●

●●●●●●●

●

●

●●

●

●●

●

●●

●

●●●●●●●●●●

●

●●

●●

●●●●●●

●

●

●

●●●●●●●●●●

●

●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●●●

●●

●

●●

●

●●●●●

●●●●●

●●

●●

●

●

●●●●

●

●●

●

●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●

●

●

●

●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●

●

●●●

●

●●●●●

●

●●●●●

●

●

●●●

●

●●●●●●

●

●

●●●

●

●●●●●●●●●●●●●●●●

●●●

●●●●●

●

●●

●

●●

●●●

●●●

●

●●

●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●

●

●

●●

●●

●

●

●

●

●●●●●●●

●●

●●●●●●●●●●●●

●●

●

●●●●●

●●●●●●

●

●

●●

●

●●

●●●●

●

●

●

●●

●

●●●●

●

●●

●

●●●●●

●●

●●●●●

●●

●

●

●●

●

●●●●

●●

●

●●●●●●

●

●

●●

●●

●

●

●●●●●

●

●

●

●

●●

●●●●●●●●●

●

●

●

●●●

●

●

●

●●●

●●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●●●●

●

●●●

●

●

●

●●●

●

●

●●

●●●●●●●

●

●

●

●●

●

●

●

●●

●

●

●●

●●●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●●

●●

●

●●●●

●

●●

●●●

●

●●●

●●

●●●●

●

●●●

●●

●

●●●

●●●●

●

●

●

●●●

●

●●●●●●

●

●●

●

●

●●

●

●●●●●●●

●

●

●

●●

●

●

●

●●●●

●●

●

●●

●●

●

●●●

●●

●

●●●

●

●

●

●●●●●●●

●●

●

●

●●●●●

●

●●

●

●●

●●●●●●●●

●

●●●●●

●

●●●●

●●●

●●●

●

●

●●●●

●

●

●

●●●●

●

●

●●

●

●

●●

●

●●

●

●●●●●●●

●●●

●●●●●●●●

●●

●●●●

●

●●●●●

●

●

●

●●●

●

●●●

●●

●●●●●●●●●

●

●●●●●

●

●

●

●

●

●

●●

●●●●●●

●

●●●●

●

●●

●

●

●●

●●

●

●

●

●

●●●

●

●●

●

●●

●

●●●●

●●●

●

●●

●

●

●●

●

●●●●●

●

●

●●

●●●●●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●●

●

●

●●

●

●●

●

●●●●●

●●●

●●●●

●●

●●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●●●

●●●

●●

●●●●●●●●●●●●●●●

●

●●●●

●

●

●

●

●●●●

●●●

●●●

●●

●●●●●

●

●●●

●●

●●

●

●

●●

●

●

●

●●

●●

●●

●

●

●●●●

●

●●●

●

●

●●

●

●●

●●●●●●●

●●

●

●●

●●

●

●●

●

●

●

●●●●●

●●

●●

●●●●●

●●

●●●●

●

●●●

●

●

●

●

●

●

●●●●●●●

●

●●

●●●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●●●●●●●●●●

●

●●●●

●

●●

●

●

●●

●

●

●●●

●

●●

●

●

●

●●

●●●●

●●

●●●

●●

●

●

●●●

●●

●

●●●●●

●

●

●

●

●

●●●

●●●

●●

●●●

●

●

●●●

●●

●

●

●

●●

●

●●●●●

●

●●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●●

●●●●●●

●●

●

●

●

●●

●

●

●

●●●

●

●

●●

●●

●●●●●

●

●●●

●

●●●●●●

●

●

●

●

●

●●●

●

●●●

●●

●●

●●

●●●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●●●

●●●

●●●

●●●●●●●

●●

●●

●

●

●●●●●●●●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●●

●●

●●●●●●

●

●●●●●

●●●

●●

●

●●

●

●

●

●●●●●●●

●

●●●

●

●●●●●

●●

●●●●●●●●●●

●

●

●

●●●

●●●●●●●

●

●●●●●

●

●

●

●

●

●●●●●●●

●●

●

●

●●

●

●●

●

●

●●

●

●●●

●●

●

●●

●●

●

●●●●

●●

●●●●●●●●

●

●

●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●●●

●

●●●●●●

●●

●

●●●●

●

●●

●●●

●●

●

●

●

●

●●●●

●●

●

●

●

●●●●●●●

●

●●●

●

●●

●

●

●●●

●

●

●

●

●●

●●

●●●●

●

●●

●

●

●

●●●●●●●●

●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●

●●

●●●●●●●

●

●●●

●

●●●●

●●

●●

●

●●●

●

●●●●●●●●●

●●●

●

●

●

●●

●

●●

●●

●●

●●

●

●

●●●●●●

●

●●

●●●●

●●

●●

●●

●

●

●

●●●●●●●

●

●●●●●●●

●●

●●

●●●

●●

●

●

●●●

●

●●

●●●●

●

●●●●

●●

●●●●●

●

●●

●

●●●

●●

●

●

●●●●

●●

●●●

●

●●●●

●

●●●●●●

●

●●●●●●

●

●

●●●

●

●●●●

●

●●●●●●●

●

●

●●

●●●

●

●

●●

●

●

●●●●●●●●●●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●●

●

●●●●

●●

●●

●●●

●●●

●

●●

●

●●●●●●●

●

●

●

●●●●

●

●

●

●●●●●●●●●●

●

●●●●●

●

●●

●●

●

●●

●●

●●

●

●●●●

●●●

●

●

●●●●●●●●●

●

●●

●●

●

●●●●●●●●●

●●●

●

●●

●

●●●●●●

●

●

●

●

●

●

●●●●

●

●●

●

●●●●

●

●●

●●

●

●

●

●●●

●

●●●●●●●●●●●●

●●●

●

●

●●●

●

●●●

●

●●●

●

●●

●

●●●●●●

●●

●

●

●●

●

●

●

●

●

●●

●●●●●●●●●●

●

●

●

●

●

●●●●●●●●

●

●

●●●

●

●●

●●

●●●

●●

●●●

●●

●●

●

●● ●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●

●●

●

●

●●●●

●

●●

●

●

●●

●●

●

●●

●

●

●

●●●

●●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●●

●●

●●●●●●

●

●

●

●

●

●●

●●●●●●●●●

●

●●

●

●●●

●

●●●●

●

●

●

●

●●●●

●

●●●●●●●●

●

●

●●●●●●●●

●

●●●

●

●●

●●

●●

●●

●●●●●●●●●

●

●

●

●●●●●●●

●

●●●

●

●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●

●●●

●

●●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●●●●●

●

●

●

●●●●

●

●

●

●●●●●●●

●

●●

●

●

●

●●●●●●

●

●●

●

●●●

●

●●●●

●

●●

●●

●●●

●●●

●

●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●●●●●●

●

●●●

●●

●●

●

●●

●

●

●●

●●●●●●●

●

●●●●

●●

●●

●

●

●

●●●●

●

●●●●

●●

●●●●●

●●

●●

●

●●●●

●

●●●●

●

●●●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●●●●

●●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●●●●●

●

●●

●

●

●

●

●●

●

●●●

●●

●●

●

●

●

●

●

●●●

●

●

●

●●●●●●●●

●

●

●

●●●

●●●

●●●

●●●

●

●●

●

●●●●●●●

●

●

●

●●●

●

●

●●

●

●

●●

●●●

●●

●

●●

●

●●

●

●

●●●●●●●

●●

●●

●

●●●

●

●

●

●●

●

●●

●

●

●

●●

●

●●●●●●

●

●

●●

●●●●●●●

●●

●

●

●

●

●

●●●

●●

●●●

●

●●●●●●●

●

●●

●●

●●●

●●

●●●

●

●●

●●

●●

●

●

●●●●●●●●●●●●●●

●

●

●●●

●●

●

●

●

●●

●

●

●●●●●

●

●

●

●●●

●●

●

●

●●●●

●

●●●

●●●

●●●●●

●●●

●

●

●

●

●

●●●●●

●●

●

●●●

●

●

●

●●

●

●

●

●

●●●●●●●

●

●●

●

●●

●

●●

●●

●

●

●●

●

●●

●●

●

●●

●

●●

●

●●●●●

●

●●●●●

●

●

●●

●●

●●●

●

●

●●●●●●●●●●

●

●

●

●●

●

●

●

●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●

●

●●●●●●

●

●

●●●●

●●

●●

●

●

●●

●

●

●●

●●

●●●●

●●

●

●

●●●

●

●

●●

●

●●

●●●

●

●

●●●

●●

●

●●●

●

●

●

●●

●●

●●

●●

●

●

●●

●●

●

●

●

●

●●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●

●●

●●●●

●

●●

●

●●

●

●●

●●●●●●

●

●●

●●

●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●●●●●●●●

●

●●●●

●●

●

●

●●

●

●●

●●

●

●●●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●●

●●

●●●

●

●●

●

●●●●●●●●●

●●

●

●●●●●●●

●

●●

●●●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●●

●●

●

●●

●●

●

●●●●●●●●●●

●●

●

●

●●●●

●●●

●

●●

●

●

●

●●

●●

●

●●●●●●●●●

●

●●●

●

●●●●●

●●●●●

●●●

●

●

●●●●●●●

●

●

●

●●●●●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●

●●●

●

●

●●

●

●●●●●●●

●●

●

●

●

●●●●●

●

●

●●

●●●●

●

●

●●●●

●

●●

●

●

●●●●●●●●

●●●●●

●●●

●

●

●●

●●

●●●●●●●●●●●●●●

●

●

●

●

●●

●●●

●

●●●●

●

●●●

●

●●●●●

●

●●

●●●

●●

●●●●●

●●

●

●●

●

●●●●●●●

●

●

●

●●●●

●●●●

●

●●●

●

●●

●●

●

●

●●●●●●●●●●●●●

●

●●●

●

●

●

●

●●

●

●

●●

●●

●●●●●●●●●

●

●●

●

●

●●●●

●●●●

●●●

●

●●●

●

●

●●●

●

●

●●●

●●●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●●

●

●●●

●●

●

●

●●●

●

●●

●

●●

●●●

●●●

●●

●

●

●●●

●●

●

●

●

●●●

●●●●

●

●●

●

●●

●

●

●

●●

●

●●●●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●●●●●●

●●

●●

●●●●●●

●

●●●●●●●●

●

●

●

●●

●●●●●●●●●●

●

●●●●●●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●●

●

●

●●●●●●●

●●

●●

●●●●●●●

●●

●●●●●

●

●

●

●

●

●●

●

●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●●

●

●●●

●

●

●

●

●●●●●

●

●●●●

●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●●●●●

●●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●●●

●●●

●

●

●

●

●●●

●●

●

●●●●●●●

●

●

●●

●

●●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●●

●

●

●●

●

●●●●

●●●●

●●

●

●●●●

●●●

●

●●●

●

●

●

●●●

●

●●●●

●

●●●

●●

●●●●

●

●

●

●●

●

●●

●●●●●●●

●

●

●

●

●●●●●●●●

●

●

●●●●

●●

●

●

●

●

●

●●

●

●●

●●

●●●●●●●

●

●●

●

●●●

●

●

●

●

●

●

●●●●

●

●

●●●

●●

●

●●●

●●

●

●●

●

●

●

●●●●

●

●

●●

●●●●

●●

●●●●

●

●●

●●

●●●

●●

●●●

●

●

●●

●

●

●

●●●

●●

●

●

●●●

●

●●●●

●

●

●

●

●

●●●●●

●

●

●

●

●●●

●

●

●●

●●●●

●

●●

●

●

●●●

●●

●

●●●

●

●●

●●●●●●●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●●

●●●

●●

●●

●

●●

●

●●●●

●

●

●●●

●●●

●

●●●●●●●

●

●●

●●

●

●

●

●●

●●

●●

●●●

●●

●

●●●●●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●●●●

●

●

●●●●●

●

●●

●

●●

●

●●

●●

●

●●

●●

●

●

●●

●●

●

●●

●

●●

●●●●●●

●

●

●

●●

●

●●●●

●

●●●

●

●

●

●

●

●●●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●●

●

●●

●

●

●

●

●●

●

●

●●●●●●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●

●●

●

●●

●●●●

●

●

●●●

●

●

●

●●

●

●●

●

●●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●●●●

●●

●

●●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●●●●

●

●

●●

●●

●●

●

●

●

●●

●●●●●

●

●●

●

●

●

●

●

●●●

●

●●●●●●●

●●

●●

●

●

●

●

●

●

●

●

●●

●●●●

●●

●

●●

●●

●

●

●

●

●●

●

●●

●●●●● ●

●

●●●

●

●

●●

●●●●

●

●●

●

●●●●●●●

●

●●●●●

●

●●●●●

●●

●

●●

●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●●●

●●●

●

●

●●

●

●

●●●

●●●●●

●

●

●●

●●●

●

●

●●

●

●●

●

●

●●●●

●

●

●●

●●●●●●

●

●●●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●●●●

●

●●●●●●●

●

●

●

●

●●●●●

●

●●●

●●

●

●●

●

●●●

●

●

●

●

●●

●●●

●●●

●●●●●●●●

●

●●●

●

●

●●

●

●

●

●●●

●

●

●●●

●

●●

●●

●●

●●

●

●

●●

●

●

●

●●●

●●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●

●●

●●

●●●

●

●●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●●●●●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●●

●●

●

●

●●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●●

●

●

●●

●

●

●

●●●

●

●●

●

●

●●●

●●

●

●●●

●

●

●●

●

●●●

●

●

●●●●●●●

●

●●●

●

●

●

●

●●●

●

●

●

●

●●●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●●●●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●●●

●●

●

●

●●●●●

●

●●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●●●

●●

●●●

●●

●

●

●

●●●●

●●

●

●

●●

●

●●●

●

●

●

●●●

●

●

●●●

●

●●●

●

●●

●

●

●

●●

●●●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●●

●●

●●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●●●●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●●

●

●●

●

●●

●

●●

●

●

●●

●

●●●

●●

●

●

●

●●

●

●

●●●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●●

●

●●●●●

●●

●●●

●●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●●●●

●

●

●

●

●●

●

●●

●

●

●

●

●●●

●

●●

●

●●

●●

●●●●●

●

●

●

●

●●

●

●

●

●●

●

●●

●●●

●●

●●●●

●●

●●

●●●

●

●

●

●●●

●

●●●●

●●●

●

●●

●

●

●

●●●●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●●

●●

●●

●●●

●●●

●

●

●

●

●

●

●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●●●

●●

●●

●

●

●

●

●●

●●●●

●●

●●●●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●●●●●

●●●

●

●

●

●●●

●

●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●●●●

●

●

●

●

●●●●●

●●●●●

●

●

●●●●

●

●●

●

●

●

●●

●

●●●●

●●

●●

●●

●●

●

●

●

●

●●●

●●

●●●●

●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●●

●●●●●●●●●

●

●●●●●●

●●

●

●●●●

●

●

●●●

●●

●

●●●●

●

●

●

●●●●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●●●●

●●

●

●

●●

●●

●●●

●

●

●●●●●●●●●

●

●●●●●

●

●

●

●●●●●●

●

●●●●●

●●

●●●●●●●●●●

●

●●●

●●●

●

●

●

●

●

●

●

●●●●●

●

●

●●●

●●

●●●●●

●

●●●●●

●

●

●

●●●

●

●

●●●●

●

●

●●●

●

●

●●●●●

●●

●●●●●●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●●●●●

●

●●

●

●●●●

●

●●●●●●●●

●

●

●

●●●

●●●●●

●

●●

●●●

●

●●●●●

●●●●●●

●

●●●●●●●

●

●●●●●

●

●●●●●●

●

●

●●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

●●●

●

●

●●●

●

●●

●●

●●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●●●

●●●

●●

●

●

●

●●●

●●●

●

●

●●

●

●

●●●●●●●

●

●●●●●●

●●

●

●●

●●

●

●●●●●

●●●●●

●●

●

●●●

●

●●

●●●

●●●

●

●

●

●●●●●●●●●

●●

●●●

●●

●●●●●●●

●●

●

●●

●●

●●

●●●

●

●●●●●

●

●

●

●●

●

●●●●●●●●

●

●

●

●

●

●

●

●●●●●

●

●●●●●●●

●

●

●●●

●●●●●

●

●●

●●●●●●

●

●●●●●●●●●●●

●●●

●●●

●

●●

●

●●

●

●

●

●

●●

●●

●●●●

●●●

●

●●

●

●

●

●

●

●●

●●●●●

●●

●

●

●

●●

●●●●

●

●●●●

●

●

●

●

●

●●●●●●●

●●●●●●●●●●●●●

●

●●●●●

●●●

●

●●

●●●

●●●

●

●●

●●●

●●●

●●

●●●●●

●

●

●

●●

●

●●●

●●

●●●●●●

●

●

●●●●●●●●

●

●●●

●

●

●●●●●

●

●

●●●●●

●

●●●

●

●

●●

●●

●

●●●●●●●

●

●●●●

●

●●●

●●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●●

●

●●●●●

●●

●

●

●

●●●●●

●

●

●●

●●

●

●

●●●●●

●●

●●●

●●

●●

●

●●●●

●

●

●●

●

●

●

●●●

●

●

●●

●●●●

●●●●●●

●●

●

●

●

●

●●

●●

●●

●●

●

●●●●

●●●

●

●

●●●

●●

●

●●●

●●

●

●●

●●

●●

●●

●●●

●

●●●●●●●

●

●

●●●●●●●●●●●●●

●

●

●●●●●●

●

●

●●●●●

●●

●●

●

●●

●

●●●●●●

●●●●●●●●●●●●●●●●●●

●

●●

●

●

●●●●

●

●●

●●●●●

●●

●

●●

●●

●

●●●●●●●●●

●●

●●

●●●●●●

●

●●●

●

●

●●●

●

●

●

●

●●

●

●●●●

●●

●

●

●●

●

●●●

●

●

●●

●●●

●

●●●●

●

●●

●●●●●

●●●●

●●

●●●●●

●

●

●

●●

●

●

●

●

●●●●●●●

●

●●●

●

●●●

●●●

●

●

●

●

●●●●●●●

●●

●●

●

●

●●●●●●●●

●●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●●

●●

●●●

●●

●●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●●●●

●●●●●●●

●

●

●

●

●●●●●●●●●●

●

●

●

●●

●●●●

●●

●●

●

●

●●●●●●

●

●

●

●

●●●

●●●●●●

●

●●●●

●

●●●●●●●●

●●●●

●●●●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●●●

●

●●

●

●●

●●

●

●●

●●

●

●

●

●●

●

●●

●●

●

●●

●●●●●

●

●●●●

●

●●

●●●●

●

●

●

●●

●●

●

●

●●●●

●

●●

●

●

●

●

●●●●●

●●

●●

●●

●●

●

●●

●

●●●●

●●

●●●

●

●●●

●

●●

●●

●

●●●

●

●●●●●●

A12 AB12 B12 BB E12 EK EK2 GG GYA MNST RAES YY

0
5

10
15

20
25

30

Figure 7: Boxplots of the aircraft counts, from Jan 2018 to
Sep 2018, and workload upper bounds computed on 2017 data
(broken line). The x-axis shows the sectors and the y-axis the
number of aircraft.

In order to assess the relevance of these upper bounds
estimated on 2017 traffic, we have compared them to the ones
obtained using 2018 data. Figure 7 shows the boxplots of the
number of aircraft in 2018, and the broken line representing
the upper bounds obtained using equation 17 on the 2017 data.
We see that the whiskers of the 2018 boxplots are globally
close to the upper bound computed with data from 2017.

For sectors where we did not have enough data points to
estimate an upper bound ub, we chose a default value of
14. For the lower bound lb, the chosen value is 6 for all
sectors. The nominal workload nw is chosen as follows: nw =
max(ub− 3, lb).

VI. RESULTS

In the following, we compare the two baseline methods –
one without transition rules (NoTrans), and the other using a
greedy strategy (Greedy) – with a Sequential A∗ with several
values for the time horizon ∆. The 254 days of results for the
Aix East qualification zone in 2018 are presented as boxplots
of various quantities (costs, branching factor, visited nodes,
and processing time).

A. Results with transition rules T1
We first consider a set very simple transition rules T1 where

one can split a sector into two sectors, collapse two sectors
into one, or transfer one or several airspace sectors from
one controller working position to another. Only one such
operation per minute is allowed. No minimum duration for
the sector openings is imposed here.

The left side of Figure 8 shows boxplots of the overload
cost (our primary objective) for each of the tested methods.
The Greedy baseline method on the left presents the highest
cost. This was to be expected because it chooses the best

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●

●
●

●●

●

●●●●●●●●●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●●
●
●

●
●

●

●

●●●●●●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●
●

●

●

●●●●●●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●
●

●
●
●●

●

●●●●●
●●
●
●
●

●

●
●

●

●

●

●
●
●

●

●

●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●
●
●

●

●

●
●

● ●
●
●●

●

●●●●●
●●
●
●
●

●

●
●

●

●

●

●
●
●

●

●

●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●
●
●

●

●

●
●

● ●
●
●●

●

●●●●●
●●●●

●

●
●

●

●

●

●
●
●

●

●

●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●
●
●

●

●

●
●

●

G
re

ed
y

A
*2

m
n

A
*3

m
n

A
*4

m
n

A
*5

m
n

A
*6

m
n

A
*7

m
n

N
oT

ra
ns

0

20

40

60

80

100

120

140

O
ve

rlo
ad

s

G
re

ed
y

A
*2

m
n

A
*3

m
n

A
*4

m
n

A
*5

m
n

A
*6

m
n

A
*7

m
n

N
oT

ra
ns

2000

3000

4000

5000

M
in

ut
es

 o
f c

on
tr

ol

Figure 8: Overloads (left) and ATC sector openings (in
minutes, right) for each method, with transition rules T1.

attainable configuration at each step without ever recon-
sidering this choice. The lowest overload cost is obtained
with the NoTrans baseline method (on the right), i.e. when
relaxing the transition constraints. The NoTrans reference
is actually a lower bound of what can be obtained when
optimizing sequences of airspace configurations : it computes
an optimal configuration at each step without taking the
transition constraints into account. The other boxplots show
the decrease of the overload cost when using the sequential
A∗ with increasing values of the rolling horizon. We see that
on this problem instance, there is no need to increase the
search depth beyond 5 minutes or 6 minutes, as there is no
more improvement of the overload costs.

The right part of Figure 8 shows the ATC sector openings
(in minutes) for the different methods. This is the second
cost (number of working positions at every minute of the
day), in order of importance, that is being minimized by
our algorithms. We observe that, in addition to being slightly
more costly in terms of overloads than the greedy method, the
sequential A∗ solutions also require slighthly less resources
in manpower.

The boxplots of the underload and normal load costs, not
presented here, show similar trends.

R
ol

lo
ut

A
*2

m
n

A
*3

m
n

A
*4

m
n

A
*5

m
n

A
*6

m
n

A
*7

m
n

5

10

15

20

25

B
ra

nc
hi

ng
 fa

ct
or

 (
av

er
ag

ed
 p

er
 d

ay
)

●●
●●

●
● ●●

● ●

●

●
●

●

●

●

●
●

●

●

R
ol

lo
ut

A
*2

m
n

A
*3

m
n

A
*4

m
n

A
*5

m
n

A
*6

m
n

A
*7

m
n

0

50000

100000

150000

N
um

be
r

of
 v

is
ite

d
no

de
s

Figure 9: Branching factor (left) and number of visited nodes
(right) for the sequential methods, with transition rules T1.

Increasing the search depth does increase the computational
resources being used, though. Figure 9 shows the average

branching factor per day (left) and the number of nodes visited
during the sequential search (right). We see that these two
quantities increase rapidly with the search depth.

●●●●●●●●●●●●●● ●
●●●●

●

●

●

●

●

●●

●

●
●●●

●
●

●

●
●

●

●

●

●

●●

●
●

●●●
●

●

●

●

●●

●

●
●●

●

●

●

●
●

●

●

●

●

●●

●●

●●
●

●●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●
●

●●

●●●

●

●
●

●
●
●

●

●

●

●

●
●●

●

●
●

●

●
●●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●●●●

●

●

●

●

●

●●

●

●
●●●

●
●

●

●
●

●

●

●

●

●

●●

●●

G
re

ed
y

A
*2

m
n

A
*3

m
n

A
*4

m
n

A
*5

m
n

A
*6

m
n

A
*7

m
n

N
oT

ra
ns

0

200

400

600

800

1000

1200
P

ro
ce

ss
in

g
tim

e
(s

)

Figure 10: Processing time for each method, with transition
rules T1.

Figure 10 shows the processing times on an AMD Ryzen
Threadripper 1920X 12-Core Processor 3.3GHz with 32Gb
of memory for all the methods3. As expected the processing
time increases with the search depth of the sequential A∗.
We also see that computation time of the NoTrans method is
relatively important. We use this method in the computation
of the heuristic of the A∗ method, so a relatively large amount
of the processing time of the sequential A∗ can be imputed to
the heuristic pre-computation. However, the processing time
does increase very rapidly with the search depth, and we can
observe a computation time above 1000 seconds for one day,
when using a rolling horizon of 7 minutes.

B. Results with transition rules T1 and M = 5 minutes

Here, we consider the same set of transition rules T1, with
the additional constraint that ATC sectors should be opened
for a minimum duration of M = 5 minutes.

●●
●
●●

●

●
●
●●

●

●

●

●

●

●●●
●●●
●●
●

●

●
●

●

●
●

●●

●●●●●●●●●●●●●●●●●

●

●

●

●●●

●
●●●

●

●●

●

●

●

●●

●

●●
●
●

●

●
●●
●
●●
●

●

●●●●●●●●●
●●
●

Greedy A*6mn A*7mn NoTrans

0

200

400

600

800

O
ve

rlo
ad

s

G
re

ed
y

A
*6

m
n

A
*7

m
n

N
oT

ra
ns

2000

3000

4000

5000

6000

M
in

ut
es

 o
f c

on
tr

ol

Figure 11: Overloads (left) and ATC sector openings (in
minutes, right) for each method, with transition rules T1 and
minimum sector opening time M = 5 minutes.

Figures 11, 12 and 13 show the same types of results
as in the previous section. We observe on 11 (left) that

3Note that our code was not optimized for multi-core computation and
used only one core.

the overloads are comparatively much higher for the greedy
method when enforcing a minimum sector opening time of 5
minutes than with no minimum duration (Figure 8). This was
to be expected because a bad choice of sector opening cannot
be reconsidered by the greedy method for the next time steps
when a minimum duration is imposed. To be effective, the
time horizon of the sequential A∗ must be chosen greater
than the minimum duration M . With time horizons of 6 or
7 minutes, this method shows much less overloads than the
greedy strategy. The performances are close the lower bound
NoTrans.

Comparing Figures 12(left) and 9(left), we see that in-
troducing the minimum sector opening duration constraint
divides the average branching factor by 2 to 3. The number
of visited nodes (right sides of the same figure) is higher with
the additional constraint, certainly because the solutions satis-
fying the constraint are more difficult to find. The processing
times (Fig. 13) are of the same order and increase rapidly
with the time horizon.

G
re

ed
y

A
*6

m
n

A
*7

m
n

4

6

8

10
B

ra
nc

hi
ng

 fa
ct

or
 (

av
er

ag
ed

 p
er

 d
ay

)

●●

●

●

●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

G
re

ed
y

A
*6

m
n

A
*7

m
n

0

500000

1000000

1500000

2000000

N
um

be
r

of
 v

is
ite

d
no

de
s

Figure 12: Branching factor (left) and number of visited
nodes (right) for the sequential methods, with transition rules
T1 and minimum sector opening time M = 5 minutes.

●●●● ●●●●

●

●●

●

●●●●●●●●●●
●●●●●●

●
●

●

●

●●

●

●

●

●

●

●●●

●

●
●●
●
●

●
●●●●
●
●●
●

●

●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

G
re

ed
y

A
*6

m
n

A
*7

m
n

N
oT

ra
ns

0

10000

20000

30000

P
ro

ce
ss

in
g

tim
e

(s
)

●●●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●
●
●

●

●

●

●●

●

●
●●●

●
●
●
●
●

●

●
●

●

●●
●●

G
re

ed
y

A
*6

m
n

A
*7

m
n

N
oT

ra
ns

0

500

1000

1500

P
ro

ce
ss

in
g

tim
e

(s
)

Figure 13: Processing time for each method, with transition
rules T1 and minimum sector opening time M = 5 minutes.
The left part shows all the points, and the right part zooms
on the majority of the data points, discarding outliers with
high computation times.

C. Results with transition rules T2
When using the transition rules T2 with up to nact = 2

actions of sector reconfigurations (split, merge or transfer) at
each time step, nsplit = 2, nmerge = 2 and minimum sector

opening time M = 5 minutes, we obtain results very similar
to the ones of Figure 11, but with a computation time and
a number of visited nodes more than 10 times higher (for a
rolling horizon of 6 minutes).

With nact = 1, nsplit = 3, nmerge = 2 and M = 5, the results
are very similar to the ones of section VI-B in all aspects,
which would seem to indicate that situations where splitting
a sector into 3 sectors are actually fairly rare.

VII. CONCLUSION

In conclusion, the greedy approach where a sequence of
successive airspace configurations is obtained by picking up
the best reachable configuration at each time step is clearly
not optimal. The sequential A∗ algorithm – which explores
all possible sequences up to a chosen depth before making a
decision at each time step – is much more efficient because
it backtracks on the wrong choices in order to find better
solutions. However, the computational cost of the A∗ tree
search is higher, and there is a trade-off between the quality
of the solutions and the computation time. Allowing for more
flexibility in the transition rules does not significantly improve
the results, and induces higher computational costs when
allowing more reconfiguration operations per time step.

The focus of this paper was to study how standard tree
search methods perform on our problem of finding optimized
sequences of airspace configurations. In order to make the
problem challenging, we have voluntarily chosen a very
flexible context in which the airspace configuration is re-
considered every minute. In current operations, the airspace
is usually reconfigured only when an overload or a severe
underload or imbalance is detected. Introducing this “lazy
reconfiguration” rule – and other operational constraints and
rules such as reconfiguring separately some sub-regions of
the ATCC airspace – would certainly alleviate the difficulty
of the problem and highly reduce the computational cost. This
is left for further work.

The practical applicability of the proposed approach de-
pends on its ability to provide responses in a short time.
In the current operational context, standard determistic tree
search algorithms such as the ones proposed in this paper
might suffice to address the problem. However, they might not
perform that well in a future context, with a greater number
of airspace modules and a greater flexibility in the way to
assemble them.

In future works, we might also try approximate or stochas-
tic methods to address difficult problem instances with a
limited budget of computation time.

REFERENCES

[1] Global air traffic management operational concept. Technical report,
International Civil Aviation Organization, 2005.

[2] H. Swenson, R. Barhydt, and M. Landis. Next Generation Air
Transportation System (NGATS) Air Traffic Management (ATM)-
Airspace Project. Technical report, National Aeronautics and Space
Administration, 2006.

[3] SESAR Consortium. Milestone Deliverable D3: The ATM Target
Concept. Technical report, 2007.

[4] A. Klein, P. Kopardekar, M. D. Rodgers, and H. Kaing. Airspace
playbook: Dynamic airspace reallocation coordinated with the national
severe weather playbook. In Proceedings of the 7th AIAA Aviation
Technology, Integration and Operations Conference, 2007.

[5] Ingrid Gerdes, Annette Temme, and Michael Schultz. Dynamic airspace
sectorisation for flight-centric operations. Transportation Research Part
C: Emerging Technologies, 95:460 – 480, 2018.

[6] P. Kopardekar and S. Magyarits. Measurement and prediction of
dynamic density. In Proceedings of the 5th USA/Europe Air Traffic
Management R & D Seminar, 2003.

[7] Gano B Chatterji and Banavar Sridhar. Neural network based air traffic
controller workload prediction. In American Control Conference, 1999.
Proceedings of the 1999, volume 4, pages 2620–2624. IEEE, 1999.

[8] D. Gianazza and K. Guittet. Evaluation of air traffic complexity metrics
using neural networks and sector status. In Proceedings of the 2nd
International Conference on Research in Air Transportation. ICRAT,
2006.

[9] D. Gianazza. Learning air traffic controller workload from past
sector operations. In Proceedings of the 12th USA/Europe Air Traffic
Management R & D Seminar, 2017.

[10] Pierre Flener and Justin Pearson. Automatic airspace sectorisation: A
survey. arXiv preprint arXiv:1311.0653, 2013.

[11] Shannon Zelinski and Chok Fung Lai. Comparing methods for dynamic
airspace configuration. In Digital Avionics Systems Conference (DASC),
2011 IEEE/AIAA 30th, pages 3A1–1. IEEE, 2011.

[12] Michael Bloem and P Gupta. Configuring airspace sectors with
approximate dynamic programming. In International Congress of the
Aeronautical Sciences 2010, number ARC-E-DAA-TN1935, 2010.

[13] Judicaël Bedouet, Thomas Dubot, and Luis Basora. Towards an oper-
ational sectorisation based on deterministic and stochastic partitioning
algorithms. In The Sixth SESAR Innovation Days, 2016.

[14] Judicaël Bedouet and Thomas Dubot. Tactical prediction of the number
of control positions with softmax regression and tree search. In The
Eighth SESAR Innovation Days, 2018.

[15] D. Gianazza and J. M. Alliot. Optimization of air traffic control sector
configurations using tree search methods and genetic algorithms. In
Proceedings of the 21st Digital Avionics Systems Conference, 2002.

[16] D. Gianazza. Airspace configuration using air traffic complexity
metrics. In Proceedings of the 7th USA/Europe Seminar on Air Traffic
Management Research and Development, 2007. best paper of ”Dynamic
Airspace Configuration” track.

[17] D. Gianazza, C. Allignol, and N. Saporito. An efficient airspace
configuration forecast. In Proceedings of the 8th USA/Europe Air Traffic
Management R & D Seminar, 2009.

[18] D. Gianazza. Forecasting workload and airspace configuration with
neural networks and tree search methods. Artificial Intelligence Journal,
Elsevier, 174(7-8):530–549, may 2010.

[19] ACT-540 NAS Advanced Concepts Branch. An evaluation of dynamic
density metrics using RAMS. Technical report (draft) DOT/FAA/CT-
TN, Federal Aviation Administration, April 2001.

[20] A. Yousefi, G. L. Donohue, and K. M. Qureshi. Investigation of en route
metrics for model validation and airspace design using the total airport
and airspace modeler (TAAM). In Proceedings of the fifth USA/Europe
Air Traffic Management R&D Seminar, 2003.

[21] A. J. Masalonis, M. B. Callaham, and C. R. Wanke. Dynamic density
and complexity metrics for realtime traffic flow management. In
Proceedings of the 5th USA/Europe Air Traffic Management R & D
Seminar, 2003.

[22] A. Majumdar, W. Y. Ochieng, G. McAuley, J.M. Lenzi, and C. Lep-
adetu. The factors affecting airspace capacity in europe: A framework
methodology based on cross sectional time-series analysis using simu-
lated controller workload data. In Proceedings of the 6th USA/Europe
Air Traffic Management R & D Seminar, 2005.

[23] G.B. Chatterji and B. Sridhar. Measures for air traffic controller work-
load prediction. In Proceedings of the First AIAA Aircraft Technology,
Integration, and Operations Forum, 2001.

[24] D. Gianazza and K. Guittet. Selection and evaluation of air traffic
complexity metrics. In Proceedings of the 25th Digital Avionics Systems
Conference. DASC, 2006.

[25] D. Gianazza. Smoothed traffic complexity metrics for airspace config-
uration schedules. In Proceedings of the 3nd International Conference
on Research in Air Transportation. ICRAT, 2008.

[26] David Gianazza. Analysis of a workload model learned from past sector
operations. In SID 2017, 7th SESAR Innovation Days, 2017.

[27] D. Gianazza, J. M. Alliot, and G. Granger. Optimal combinations
of air traffic control sectors using classical and stochastic methods.
In Proceedings of the 2002 International Conference on Artificial
Intelligence, 2002.

