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Abstract—We study separating urban unmanned aerial ve-
hicles (UAV) traffic into altitude levels, using a PBN-inspired
approach in which low-density airspace has few layers while
congested areas in the city center are split into a larger number
of layers. Navigating in the many-layers environment may require
better vehicle equipage to support higher performance in terms
of altimetry precision; our work thus follows the stakeholders
encouragements to use performance-based navigation (PBN) in
UAV traffic management (UTM). We present results for several
traffic volume scenarios over Norrköping municipality in Sweden,
demonstrating applicability of our solutions in a city setting.

Keywords—Airspace design; Levels structure; Unmanned
traffic management; Performance-based navigation; Very
low level urban airspace

I. INTRODUCTION AND RELATED WORK

The use of levels for aircraft separation prevails in ATM, with
practices ranging from quadrantal table of cruising levels to
semi-circular (alternating altitudes) rule [17] to reduced vertical
separation minima (RVSM) [18]. A thorough investigation of
several air traffic structuring concepts by the Metropolis project
[23], [24], [39]–[42] revealed that layered airspace is the most
successful design. The general assumption in Metropolis was
that the aircraft are distributed uniformly, so it was natural to
use the same layers throughout the whole geographical spread
of the airspace. Contrary to this, in UTM, the distribution of
drone traffic over a city will likely be highly non-uniform [14],
[25], [31], [35], with congested city center and lower-density
outskirts. Thus, using the same layers over the whole city could
be overly conservative, as it may suffice to establish more layers
for traffic in high-density areas where large conflicts happen,
and have the number of layers go down towards the suburbs.
In this paper, we study the design of such an airspace with the
number of layers in different areas adapted to the area-specific
traffic conflict size.

A. Connection to policy makers views

a) Follow the Mantras and Key Principles with PBN!: The
adaptive airspace design, investigated in this paper, follows
Mantra 1 “Flexibility where possible, structure only where
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necessary” of NASA UTM ConOps [32] by establishing more
layers only where traffic deconfliction requires it. It also
adheres to Mantra 2 “Risk-based approach where geographical
needs and use cases determine the airspace performance
requirements”, as it relies on PBN to separate traffic classes
based on their performance (which is also reflected in one of
the key principles in SESAR’s U-space Blueprint, encouraging
“To follow a risk-based and performance-driven approach when
setting up appropriate requirements...” [37]). Indeed, the altitude
band for very low level (VLL) urban airspace operations may
be quite thin, due to noise considerations, upper ceiling of 400-
500ft, and other factors. This means that the distance between
the layers will be small, implying, in its turn, that only well
equipped drones, with good vertical precision performance
(and, possibly lower noise, if the levels will have to go closer
to the ground) will be allowed into the areas with many layers
– a PBN requirement.

b) Software-Defined Airspace Anyone?: Technologically,
airspace structure in UTM may be enabled via geofencing:
EUROCONTROL’s ConOps [30] assumes that for VLL opera-
tions geofencing is in place, SESAR’s U-space Blueprint [37]
lists geofencing as one of the 3 foundation services due for
deployment already in U1, and CORUS ConOps [11] speaks
about loading geofence directly into drones. Clearly, legacy
ATM practices, like maintaining Aeronautical Information
Publication (AIP) on Aeronautical Information Regulation And
Control (AIRAC) cycles, are too slow for defining airspace
boundaries for the much more versatile drone traffic: updates
to the UTM layers structure can arrive on the hourly basis
(keeping, say, an extra layer for leftover traffic from the previous
hour) or even more frequently. The frequent updates can be
supported by the higher level of automation, envisioned in UTM
both on the users and the service provider side. In particular,
airspace layer definitions can be regularly recomputed, with
little or no human oversight – something which may be dubbed
Software-Defined Airspace (SDA). Algorithms in this paper
cater to the SDA by providing automated procedures for
generation of the restricted multi-level areas, based on the
actual or near-term projected traffic pattern. As a couple of
concrete examples for application of our methods we mention
that (1) the higher-density, higher-performance requirement
areas in the city center, computed by our algorithms, may serve
as the Amber airspaces of CORUS ConOps [11], and (2) our



algorithms can be used to segment the airspace “into cells of
similar requirements”, as per DLR Concept for Urban Airspace
Integration [19] (which develops concepts to “form a basis
for further research in the area of separation and performance-
based operations for UAS”).

c) PBN for UTM: The need for PBN in UTM has been
long promoted by Dr. Parimal Kopardekar [27] who encouraged
to adopt different regulations in different airspaces (including
restrictions for drones with weaker capabilities from flying
through congested urban spaces) and to establish restrictions
(cruising, lanes, corridors, altitude separation) only when
and where necessary. These views are, naturally, reflected
in Mantras of NASA UTM ConOps [32] and key principles
of SESAR U-space Blueprint [37], which we follow in this
paper. Dr. Kopardekar also highlighted the need to “match
the geography to the required performance to operate in the
airspace” [28], which is exactly what our algorithms do.

Importance of performance-based regulatory regime and
risk-based analysis for urban airspaces is stressed also by the
FAA [16]; AirMap requires U-space to be “performance-based
to encourage innovation” [2]. One of the ideas in PBN is
to acknowledge the diversity of the users and airspaces, and
provide air navigation services based, in particular, on the
equipage level and airspace specifications. Note that in ATM,
PBN has to fit into the existing well evolved system, which
is a sometimes painful process. To avoid the same type of
retrofitting complications in UTM, it may be beneficial to be
proactive and establish PBN for UTM as early as possible,
especially given the diversity of UTM users (drones and drone
operators).

d) Layers and PBN: Eurocontrol’s RPAS ConOps [30]
mentions the need to define classification of drones capabilities;
a categorization of the drone PBN capabilities, including the
vertical performance, was done in [33]. It follows from the
findings in [33] (and is widely acknowledged in general) that
layers may be a scarce resource in UTM. For instance, all three
airspace issues identified at CORUS Exploratory Workshop
[3] were related to the height; in particular, the overall view
on the specific question of airspace division into bands was
that many layers should be an exception, for drone-busy areas,
rather than the rule. This is exactly the approach we take in
this paper.

B. Overview of the approach and Roadmap

The results in this paper contribute to creation of decision
support tools which help in transforming generic mandates from
policy makers (like “only better equipped drones should be
permitted in a city center”) into concrete operational numbers
and locations (which area exactly is the “city center” in which
drones with low performance are forbidden, what are those
performance characteristics, etc.). Our methods are inspired by
algorithms for perfect graphs [21] and push off earlier literature
on UTM capacity thresholds [6], [35]. The novelty of this paper
in comparison with earlier work on the thresholds is that we
focus on spatial distribution of the conflicts. Specifically, the

main finding in [6], [35] was that the probability of observing a
large conflict over a city is essentially either 0 or 1 (depending
on the traffic density and the conflict radius r). It should be
emphasized that these results are oblivious to the locations of
the conflicts, i.e., they assert that the conflict either will not
be observed anywhere in the city or, on the contrary, there
will be a conflict somewhere in the city – without looking
into the conflicts “geography” in the latter case. In this paper,
we extend the studies in [34], [35] by examining where the
conflicts happen. Our geofences then separate areas of large-,
medium- and small-size conflicts from each other.

In the next section we give the details of our solutions.
Section III presents a sample of the algorithms output for
Norrköping municipality in Sweden. Section IV discusses
extensions of our methods. Section V concludes the paper.

II. ALGORITHMS

We first describe notions from graph algorithms relevant for
our study, and then recapitulate and slightly extend the results
on UTM capacity thresholds. We then use the thresholds to
determine the number of airspace layers needed in different
parts of the city and to delineate the boundaries of different-
layers parts.

A. Graph-theoretic preliminaries

We model drones as disks of a given radius r representing the
safety zones around the drones; two UAVs are in conflict if their
disks overlap. Deconflicting the drones by distributing them
to different airspace layers can be viewed as graph coloring
– assignment of colors to the vertices of the graph so that no
pair of adjacent vertices gets the same color. Specifically, let
V be a set of drones and E be the set of drones pairwise
conflicts ((d1, d2) ∈ E iff d1 and d2 conflict with each other
at some point during their flights), and let G = (V,E) be
the drones conflict graph in which two vertices are connected
iff the corresponding drones conflict. Then, the colors in G
represent the airspace layers, i.e., an assignment of UAVs to
layers, such that no two conflicting drones are assigned to the
same layer. The chromatic number χ of G is the minimum
number of colors needed to color the graph.

A clique in G is a subset Q ⊆ V of pairwise-connected
vertices ((d1, d2) ∈ E ∀d1, d2 ∈ Q); Q is called maximal if it
is not possible to add vertices to it while keeping it a clique
(Q ∪ v is not a clique ∀v ∈ V ). A maximum clique is a clique
of largest size; let ω denote this size (Fig. 1, left).

Finding both χ and ω are computationally hard (NP-
complete) problems, but many heuristics exist. For experiments
in this paper we used JGraphT’s implementation [38] of Dsatur
greedy coloring algorithm [4], and Bron–Kerbosch clique
enumeration algorithm [5] for listing all maximal cliques
(which computes ω as a by-product, since a maximum clique
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Fig. 1. Left: G with χ = ω = 4. {1,2,3,4} (navy) is a maximum clique;
{5,6} (cyan) is a maximal clique – no vertex can be added to the set while
keeping it a clique. Right: If, during the motion, 5 disks formed a cycle,
then it is likely that some disk overlapped (or will overlap) also with a
disk which is not its neighbor in the cycle (we put an interactive applet at
https://www.geogebra.org/graphing/t3dw75ja to give a feeling of how finely
the trajectories must be adjusted in order to have a chordless cycle in G.)

is, of course, maximal).1 In almost every drone conflict graph
G that we encountered, the greedy coloring found a coloring
either with exactly ω or ω + 1 colors. Since the vertices of
a clique must be colored with different colors, ω is a lower
bound on χ (χ ≥ ω), which implies that in our case the greedy
coloring performed very well – either finding the true χ or
making an error of at most 1 color.2 We will therefore slightly
abuse the terminology and identify ω with the number of colors
found by the greedy – this way we may be off by at most 1
(at most 1 extra layer).

B. Thresholds for monotone properties of random graphs

UAV traffic will be highly non-deterministic, as many drones
may fly without any pre-defined schedule. In this paper, we
account for the probabilistic component using the Cal model
(the name ”Cal” was chosen in [7] because the model was
introduced at ICRAT 2016 [8] by researchers representing
University of California Berkeley, going by Cal), in which
traffic demand is proportional to the population density and
the flights are direct. Because of the stochastic traffic, the
conflict graph G is a random graph. Consequently, it makes
sense to estimate probabilities of having certain structures
(subgraphs) in G as functions of the number of expected drone
operations N and the safety radius r. In particular, [6] studied
the probability P3(N, r) of G having a connected component
of size at least 3. Clearly, the probability grows both as a
function of N and as a function of r; the interesting finding of
[6] was that the functions exhibit thresholds: P3(N, r) jumps

1As a side remark, these approaches have complementary properties: the
greedy coloring runs in polynomial time but does not guarantee to find χ; the
clique enumeration algorithm finds ω (and not only the maximum clique, but
also all maximal cliques), but has no running time guarantee.

2We speculate that the algorithms perform so well because any 5-cycle (or
more generally, any odd cycle) in G is likely to have a chord, i.e., an edge
that connects non-neighboring vertices of the cycle (Fig. 1, right), implying
that G may be perfect [21]. In a perfect graph ω = χ and both can be found
in polynomial time, That is, even though the greedy coloring is not guaranteed
to be optimal, in perfect graphs, the coloring and the clique problems are
“easy”.

Fig. 2. Fig. 9 from [6], showing how P3(N, r) sharply grows at certain N
and r.

from essentially 0 to essentially 1 as (N, r) passes over quite
a thin threshold curve in the (N, r)-plane (Fig. 2).

As explained in [6], the threshold behavior of P3(N, r) is not
entirely surprising: a fundamental result in random graph theory
[20] states that random geometric graphs exhibit thresholds for
any monotone property (a graph property is called monotone
if it continues to hold when edges are added to the graph; e.g.,
“having a connected component of size at least 3” is a monotone
property – if a graph had such a connected component and
an edge is added, the graph still has it). However, this theory
result is established only for the case when the graph vertices
are distributed uniformly at random, and the experiments in
[6] were needed to verify existence of the thresholds in G,
given that the drones distribution over an urban area is highly
non-uniform.

The next step in studying the thresholds was taken in [35],
which computed the distribution of drones over a city and
stored it in the Likely UTM (LiU) map. The map allows one
to obtain samples of the conflict graph G much faster than
with the simulation-based approach from [6]; in particular,
[35] computed the probability functions Pk(N, r) (having a
component of size at least k in G) for several values of k >
3. The probabilities again exhibited the thresholds (perhaps
unsurprisingly, since having a component of size at least k is
a monotone property), with the threshold curves shifting into
larger N and r, as k was growing (Fig. 3).

C. From thresholds to layers via sampling

We repeated the calculations from [35] for another monotone
property of G – “having a clique of size at least q”. The
resulting probability functions P q(N, r) are shown in Fig. 4;
it can be seen that the property also has a threshold for any q.
For the sake of brevity we will abuse the numbers, and instead
of “The probability of observing a clique of size at least q

https://www.geogebra.org/graphing/t3dw75ja


Fig. 3. Top view of graphs of Pk(N, r) (darkblue is 0, yellow is 1). From left to right: k = 3, 4, 5.

is close to 0” will say simply “There is no clique of size q”;
otherwise, we will say that “There is a clique of size q”.

In this paper, we view the probability graphs slightly
differently from the previous work: (instead of looking at
the probabilities as a functions of N and r for a fixed q,)
we watch when the threshold curves pass over a fixed point
of interest (N.r) when q increases (refer to Fig. 4). This
value q∗ = max{q : there is a clique of size q} gives us the
maximum number of layers needed in the city.

Next, using LiU map [35], we produce 10000 sample
snapshots of drone traffic and build 10000 conflict graphs
G for a given pair (N, r). In each conflict graph, we find all
maximal cliques with the JGraphT’s implementation [38]. We
record the set of points Sq∗ where the cliques of size at least
q∗ were observed.3 The area, in which our airspace will have
q∗ layers is the convex hull of Sq∗ .4 Borrowing from ATM
terminology, we call our areas with the different number of
layers the sectors (we are not aware of any existing name
for such a concept): an area with q layers will be called a
q-sector.5

The q-sectors for q < q∗ are build recursively, similarly to
the q∗-sector: we record the locations Sq of (maximal) cliques
with size at least q, output by JGgraphT on our 10000 samples
of G, and define the q-sector as the convex hull of points in Sq .
Note that the q-sector contains points where at least q layers
are needed, not only where exactly q layers are needed. This
way our sectors form nested, isolines-like structure, with q-

3Strictly speaking, a clique is not a single point (it consists of q∗ radius-r
disks); still, at the geographical scale of the urban area, we viewed the disks
as points (if one is concerned with the clique falling into two neighboring
sectors, one may enlarge each of our sectors by r, i.e., take the Minkowski
sum of the sector and radius-r disk).

4Of course, very rarely our conflict graphs G had ω > q∗ (i.e., featured
cliques of size larger than q∗): according to the computed probability functions
(refer to Fig. 4)), P q(N, r) is close to 0 but is not exactly 0, even for q > q∗.
Indeed, given the stochasticity of drone traffic, it is impossible to fully exclude
the possibility that a 100 drones would want to fly through the same point.
Still, the thresholds suggest that this would be a very rare event, in which case
other UTM measures (ground delay, etc.) will have to be invoked to handle
the large conflict – these are outside this paper’s scope.

5We emphasize that our sectors are merely subsets of the city and are not
meant for human oversight – otherwise, it could be a little provocative to
suggest that a controller for q-sector controls a superset of what a controller
for q′-sector controls for q′ > q.

sector being a subset of the q’-sector for q > q′ (refer to Fig. 5
in Section III). This is reasonable in terms of PBN: drones with
higher performance are allowed to fly also in sectors requiring
lower performance.

The pseudocode for our algorithm is given below.

Algorithm 1: Sectorization algorithm
Input : A set Q of traffic snapshots from LiU map

(each sample P ∈ Q is a set of points).
Output : A list of sectors’ boundaries B.

1 q∗ ← max{q : there is a clique of size q} ;
// determined from the graphs P q(N, r)

2 S ← an empty list;
3 foreach sample P ∈ Q do
4 G← conflict graph of drones in P ;
5 C ← set of all maximal cliques in G;
6 foreach q ∈ {1 . . . q∗} do
7 Sq ← Sq ∪ {c ∈ C : size(c) ≥ q};
8 end
9 end

10 B ← an empty list;
11 foreach q ∈ {1 . . . q∗} do
12 Bq ← convex hull(Sq);
13 end
14 return B;

III. RESULTS

We computed the sectors for a range N = 10000 . . . 200000
of expected daily operations and a range r = 50 . . . 300m of
safety radii, for the urban area of Norrköping Municipality,
Sweden. Figure 5 shows maps with sectors for different values
of parameters N and r 6. Using our maps, the amber airspace
class of CORUS ConOps [11] may be defined, e.g., as the
airspace where the number of layers exceeds some limit qa; the
rest of the airspace is green. The parameter qa can be decided
based on the drones’ operators capability to solve complex
conflicts (cliques in our model), which, in its turn, can be

6Pictures for other values of N and r are available at https://tiny.cc/atm
sem pics

https://tiny.cc/atm_sem_pics
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Fig. 4. Top view of the graphs of Pq(N, r) for some q (darkblue is 0, yellow is 1). From left to right: q = 3, 4, 5. For the pair (N, r) = (40000, 100) (red
dot), there is a clique of size 3, but no clique of size 4.

estimated by taking into account, e.g., the rules of air, human
factor, or other characteristics. Figure 6 shows an example
of possible airspace division into green and amber zones for
qa = 4.

IV. EXTENSIONS

In this section we use generalizations of the convex hull
(CH) to define the sectors.

A. k-hulls

The k-depth contour aka k-hull [10] of Sq is the kth level
set of the location depth – one of the many depth functions
developed in the rich field of statistical data depth [1]; the idea
of k-hull is to identify areas of statistically meaningful points
that lie “deep inside” Sq:

Definition 1. Let k ≥ 0 be an integer. The k-hull of Sq consists
from all points p such that for any line ` through p there is
more than k points of Sq on each side of ` (Fig. 7).

CH is the 0-hull (i.e., k-hull is a generalization of CH);
for larger values of k the k-hull goes “deeper” into the set.
Figure 8 shows how k-hulls, for k > 0, more tightly enclose
areas of “denser” conflicts.

B. α-shapes

The α-shape [15] is a formal way of capturing the intuitive
notion of the “shape” of the point set:

Definition 2. Let α ≥ 0 be a number (not necessarily integer).
An α-disk is a disk of radius α. The α-shape of Sq connects
two points u, v ∈ Sq whenever there exists an α-disk that has
u, v on its boundary and contains no points of Sq in its interior
(Fig. 9).

CH is the ∞-shape (i.e., α-shape is a generalization of
CH); for smaller values of α the α-shape provides a “finer”
reconstruction of the shape of Sq . α-shapes were recently used
in UTM [9] for airspace capacity evaluation.

Figure 10 shows how an α-shape, for α < ∞ encloses
only the areas where the conflicts actually happen, leaving out

the areas in between. This implies that only a smaller area is
occupied by the more restrictive airspace. Note however that
the α-shape is not convex, meaning that a straight segment of
a drone flight may enter and leave the shape more than once
– this may be undesirable (in conventional ATM, significant
effort is put into keeping the sectors convex [12], [13], [22],
[26], [36], [43]).

C. k-order α-shape

Last but not least, we used a recent generalization of both
k-hull and α-shape—k-order α-shape—which combines the
advantages of both k-hull and α-shape (Fig. 11). k-order α-
shape is defined analogously to α-shape but allowing the α-
disks to contain up to k points of Sd in the interior (see [29]
for the formal definition). k-order α-shape combines features
of both k-hull (which identifies statistically meaningful points
inside Sq) and α-shape (which allows the shape to have several
connected components – clusters).

Figure 12 shows a sectorization using k-order α-shapes
on the same sample data as in Figure 5 (top-left). It can be
observed that k-order α-shapes both removed outliers and used
less space than CH. Such parsimonious reservation of the
airspace for the sectors widens the geographical area where
the less equipped drones are permitted to operate.

V. CONCLUSION AND FUTURE WORK

We presented a way to guide the design of layered UTM
airspace structure over higher-density environment in the city
center, while keeping lower number of layers in less dense
areas. Our ideas closely follow UTM ConOpses and Blueprints
in paving the way towards using PBN for UTM in (what we
called) a Software-Defined Airspace. In such a flexible airspace,
modifications to the layered structure may be supported on
demand when the traffic pattern changes due, e.g., to some
event like police activity, search-and-rescue operations etc.: the
new projected flightplans may be taken as the input to our
algorithms and the new layers recomputed.

While our algorithms ensure that there is enough layers for
deconflicting the drones in any sector, they do not suggest
how to redistribute the drones among the layers when going



Fig. 5. From top to bottom: N = 60000, 100000. From left to right: r = 200, 300. Only boundaries of the sectors are drawn. The legends show the color
coding of the number of layers in the sectors.

between the sectors so as to minimize the level changes. One
possible way to attack this problem is by formulating it as an
integer program. Also, it can be of interest to see what impact
the presence of geovectoring [23] or no-fly zones in the city
will have on the sectors.
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Fig. 6. A possible division of the airspace into green and amber zones for
(N, r) = (60000, 200) and qa = 4.

p

Fig. 7. Any line through p contains more than 1 point of Sq on each side;
hence p belongs to the 1-hull (green). The 2-hull is blue and the 0-hull (i.e.
the convex hull) is red.

Fig. 8. S7 (for (N, r) = (60000, 200)) and its CH (i.e., 0-hull), 10-hull and
30-hull.



Fig. 9. Left: An α-shape (some empty α-disks are shown); points come in two clusters. Right: α-shape for a smaller α.

Fig. 10. Left: S7 (for (N, r) = (60000, 200)) and its CH (i.e., ∞-shape). Right: S7 (for (N, r) = (60000, 200)) and its α-shape for α <∞; some empty
circles are shown. If α-shape is used for 7-sector instead of the CH of S7, then, for example, the black path can be taken by a less-equipped drone while
staying inside S6 sector.



Fig. 11. Points come in two clusters. Left: The 2-hull uses too much empty space. Right: order-2 α-shape identifies shapes of both clusters and removes
outliers.

Fig. 12. Left: S7 (for (N, r) = (60000, 200)) and its order-5 α-shape for α < ∞. Right: order-5 α-shapes of Sq for q = 2 . . . 7, N = 60000, r = 200,
and α <∞.
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Sweden. He works on airspace design and Unmanned Traffic
Management, in particular on airspace capacity estimation and
route optimization.

http://www.cs.tufts.edu/research/geometry/depth/
http://www.cs.tufts.edu/research/geometry/depth/
http://www.eurocontrol.int/sites/default/files/events/presentation/ICNS2017%20P3%20Barret.pdf
http://www.eurocontrol.int/sites/default/files/events/presentation/ICNS2017%20P3%20Barret.pdf
http://www.jgrapht.org
http://www.jgrapht.org

	Introduction and Related work
	Connection to policy makers views
	Overview of the approach and Roadmap

	Algorithms
	Graph-theoretic preliminaries
	Thresholds for monotone properties of random graphs
	From thresholds to layers via sampling

	Results
	Extensions
	k-hulls
	-shapes
	k-order -shape

	Conclusion and future work
	References

