
Thirteenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2019)

Conformal Automation for Air Traffic Control using
Convolutional Neural Networks

S. J. van Rooijen, J. Ellerbroek, C. Borst, E. van Kampen
Control and Simulation, Faculty of Aerospace Engineering

Delft University of Technology (TU Delft)
Delft, The Netherlands

Abstract—Lack of trust has been identified as an obstacle in
the introduction of workload-alleviating automation in air traffic
control. The work presented in this paper describes a concept to
generate individual-sensitive resolution advisories for air traffic
conflicts, with the aim of increasing acceptance by adapting
advisories to different controller strategies. These personalized
advisories are achieved using a tailored convolutional neural net-
work model that is trained on individual controller data. In this
study, a human-in-the-loop experiment was performed to generate
datasets of conflict geometries and controller resolutions, with
a velocity obstacle representation as a learning feature. Results
show that the trained models can reasonably predict command
type, direction and magnitude. Furthermore, a correlation is
found between controller consistency and achieved prediction
performance. A comparison between individual-sensitive and
general models showed a benefit of individually trained models,
confirming the strategy heterogeneity of the population, which is
a critical assumption for personalized automation.

Keywords—Strategic conformance, machine learning, solution
space diagram, velocity obstacles, consistency, decision-support

I. INTRODUCTION

The introduction of automated decision support tools for Air
Traffic Control (ATC) is widely seen as unavoidable to keep
up with air traffic growth [1], [2]. However, in the past, the
introduction of support tools for separation management has
shown that such tools are frequently left unused [3]–[5]. Westin
argues that automation conformance can be one of the reasons
for low acceptance of automated advisories [6]. For instance
in the separation task, often multiple resolution options are
available for a given conflict, and resolutions proposed by
automation do not always coincide with human strategy [7].

Recent work has argued that making advisories strategically
conformal can be an effective way to increase trust and
acceptance of automation [6], [8]. If a decision support tool has
the ability to adapt to individual strategies, acceptance should
increase. A promising method to create automation that is able
to predict human strategies is machine learning [9]. A decision
support tool for ATC based on machine learning would be
able to adapt to different controller preferences without full
knowledge of the underlying decision-making dynamics.

A proof-of-concept of this by Regtuit et al. has shown that
machine learning techniques are able to identify and replicate
conflict resolution strategies from simple, synthetic traffic
situations [10]. While the results from this study are promising,
its method is not easily extended to capture realistic, multi-
aircraft situations. The work presented in this paper proposes
and tests a machine learning model that should be able to
predict Air Traffic Controller (ATCo) commands based on a
realistic traffic situation.

To capture relevant aspects of realistic traffic situations in
a usable form, the Solution Space Diagram (SSD) [11], also

known as velocity obstacle diagram [12], will be used as
visual input to the learning algorithm. The SSD is a visual
representation of a velocity space of conflicting and conflict-
free velocities. Numerous previous studies have shown that
an SSD image contains sufficient information concerning an
air traffic situation to make an informed decision regarding
conflict resolution [11], [13]–[15]. Learning from an image
is advantageous because it eliminates the need for manually
designing features based on heuristics and assumptions. The
proposed model will use convolutional neural networks, a
machine learning technique that is especially well-suited for
visual learning [16].

To provide training data, and to test controller consistency
and the SSD as a machine learning feature, a human-in-the-
loop experiment is carried out. The experimentally generated
datasets are used to train individual-sensitive predictive models
using a supervised learning algorithm. Individual model per-
formance is compared to controller consistency and an inter-
participant comparison and a comparison with general group-
based models are performed to test the effect of individual-
sensitive automation.

The remainder of this paper is structured as follows: The
proposed concept is introduced in section II. Experiment
design is discussed in section III, and results are provided
in section IV, followed by a discussion in section V and
conclusions & recommendations in section VI.

II. CONCEPT

Achieving conformal automation has similarities to a ma-
chine learning field called Imitation Learning, where machine
learning is used to learn to perform tasks based on expert
demonstrations. The aim is to generalize these observations to
unseen situations, usually using supervised learning [17].

Artificial neural networks with a deep architecture are a
powerful method for supervised learning as they automatically
devise learning features, without reliance on pre-engineered
parameters [18]. This research follows a similar approach,
where the input images are provided in the form of rasterized
SSDs. In particular, Convolutional Neural Networks (CNNs)
[19] have shown their potential of training on image data, for
example in learning to play computer games [20], self-driving
cars [21], [22] and competing with world-class board game
champions [23].

Similar to a regular neural network, a CNN consists of
multiple stacked neurons. In the case of a CNN, every input
is connected to a pixel-value of the original image, as shown
in Figure 1. On each layer of the network, individual neurons
are connected to the weighted combination of the outputs of
the previous layer, which is passed through a convolution
filter. These filters slide over the entire image to create a



INPUT
Channels: 3

OUTPUT
Classes: 2 or 3

SIZE: 64x32x3 63x31x32 31x15x32 30x14x64 15x7x64 14x6x32 2688 1024 1024 2 or 3

Convolution
Filters: 32

Downsampling Convolution
Filters: 64

Convolution
Filters: 32

Downsampling Flattening Dense Dropout Dense

Fig. 1: The Convolutional Neural Network structure used in this research. All weights in one plane are
identical. Size values are given in pixels. Adapted from LeCun (1998) [16].

new output map. By using different filters, specific visual
features can be extracted from the input image, such as small
corners or edges. In this study, filter size is always 2 × 2
pixels, and filters progress over the image with a stride of
1 pixel. The visual features are subsequently combined to
form compositions while progressing through the net, using
successive layers of filters. To avoid overfitting and reduce
computational cost, the data is also downsampled in between
filter steps [24]. In the final steps, the data is flattened, and
reduced in steps to the expected number of output classes
(e.g., when a conflict resolution maneuver can be either using
heading, speed, or a direct-to, output classes are heading,
speed, and direct-to, resulting in an output size of three). To
reduce overfitting, a dropout layer is added here that sets the
weights of a fraction of the neurons to zero at each epoch
during training [25].

The neurons in each layer are specified by an activation
function. In this study, all layers but the final layer use a
Rectified Linear Unit (ReLU) activation function, because of
its computational efficiency [26]. The final layer uses a softmax
function [27], which transforms the layer of real values into
a vector of probabilities per output class σ(z). The softmax
function is defined by Equation 1, where all entries of σ are
real, within [0, 1], and add up to 1. K is the dimension of input
vector z.

σ(z)j =
ezj∑K
k=1 e

zk
for j = 1, ...,K (1)

A cross-entropy function is used to take these probabilities
into account in the loss function [28]. The cross entropy H is
calculated for M output classes by comparing the probability
vector σ resulting from the softmax function to the one-hot
encoded target vector yi:

H(y, σ) = −
M∑
i

yi log σi (2)

The calculated losses, averaged over a minibatch of samples
are used to update the network parameters θ. In this study,
this update is done using a first-order gradient-based opti-
mization algorithm called Adam. Empirical results show that it
outperforms previously popular optimizers such as AdaGrad,
RMSProp and SGDNesterov [29].

The performance of CNNs is naturally determined by their

inputs, as they should capture all relevant information for the
model to make a prediction. This research utilizes the Solution
Space Diagram (SSD) as input to the neural network. The
SSD was originally designed as a decision support tool that
integrates various critical parameters of the Conflict Detection
and Resolution problem [30]–[32]. This was later extended
to complexity and workload analysis [11], [33]–[35], and
automated conflict resolution [15], [36]. Based on the findings
of these studies, this research hypothesizes that an SSD image
as learning feature contains sufficient information concerning
air traffic conflicts to make an informed decision.

Figure 2 illustrates how the SSD is constructed. It consists
of an area of reachable velocities, bounded by concentric
limits of minimum and maximum operating speeds. This
reachable space is reduced by triangular velocity obstacles that
correspond to the set of velocity vectors that would lead to
a loss of separation with a nearby aircraft. The color of the
velocity obstacles is determined by the time to closest point of
approach (CPA), divided into three ranges: red (tcpa < 60s),
orange (60 < tcpa < 120s) and gray (tcpa > 120s). The
remaining free space corresponds to the reachable conflict-free
speed/heading combinations. In the SSD, the current heading
and speed are indicated by the green vector, see Figure 2. As an
additional feature, the target heading to the exit waypoint of the
respective aircraft is shown with a blue line. This information
is part of the normal tasks of an air traffic controller, and may
influence conflict resolution decisions.

In the current study, the above method is used to learn
individual controller strategies for observed traffic conflicts.
Following Westin’s approach [37], this study defines strategy
in terms of three control variables: resolution type (heading,
speed, or direct-to), resolution direction (left or right, speed
increase or decrease), and resolution magnitude ([0, 10] deg,
[10, 45] deg and > 45 for heading resolutions, and [200−250]
kts, and [250− 290] kts for speed resolutions) With the SSDs
of all detected conflicts as input, three independent CNNs (as
described in Figure 1) are trained to match the SSD of the
controlled aircraft to the observed controller strategy: one CNN
for resolution type, one for resolution direction, and one for
resolution magnitude.

III. EXPERIMENT

An experiment was performed to provide training and testing
data for the model described in the previous section. In this
experiment, participants were asked to control a sector with



Exit waypoint

Protected zone

(a)

Vmin
Vmax

-Vint

(b)

Velocity obstacle

Exit bearing

reachable velocities

(c)

Fig. 2: Construction of the SSD: (a) The grey area indicates the set of conflicting relative velocities. (b) The area is displaced by
the velocity vector of Aintruder to generate the velocity obstacle of Aintruder for Acontrolled, (c) The SSD is created by limiting the
solution area with the minimum (Vmin) and maximum (Vmax) velocity of Acontrolled. Adapted from Mercado et al. (2010) [11].

multiple incoming aircraft, where they guided the aircraft to
their exit waypoint as efficiently as possible, while avoiding
losses of separation. The shape of the sector – inspired by Am-
sterdam Sector South 1 – is shown in Figure 3. Maneuvering
was restricted to the horizontal plane, i.e., all aircraft flew at
the same flight level and only heading, speed, and direct-to
commands were allowed by means of a command interface
(Figure 4). These restrictions decreased the solution space and
degrees of freedom, which enabled better comparison between
controllers in terms of consistency and strategy.

A. Conditions
Two traffic scenarios (S1 and S2) were used in the experi-

ment with identical sector geometry but different traffic flows.
Each scenario consisted of 10 conflict pairs. The main aircraft
flow was always directed towards the north, and was crossed
by traffic on several headings from the east. All conflicts were
crossing conflicts, with conflict angles between 45 and 135
degrees. Every conflict angle in the set {45, 55, ... , 135} was
visited at least four times during the entire experiment. The
conflicts were chronologically spaced in a way to minimize
interference between conflicts.

Both scenarios were performed two times, resulting in a total
of four 20-minute scenarios, generating 80 minutes of data
per participant. The order of the conditions was randomized
between participants to avoid learning biases.

B. Participants
The population consisted of 12 participants. All participants

were novices, with varying experience in performing ATC
control tasks. Half of the participants had knowledge of ATC
concepts, but no working experience in controlling a sector.
The other half of the participants previously participated in
an ATC introductory course at the Dutch Aerospace Research
Laboratory NLR, and therefore had some experience in con-
trolling air traffic.

C. Procedure
The experiment was performed on a personal computer with

a 30” screen showing the sector under control, and a touch
control device window similar to the touch control devices
used at the Dutch air navigation service provider LVNL.

SPL

SUG

HSD

SSB

NIK

Fig. 3: The 50nm× 60nm sector as displayed in ATC simulator
SectorX. The magenta lines depict the main traffic flows north-
and west-bound. Three aircraft are visible of which two are
in conflict. The circles surrounding the aircraft indicate the
protected zones (D = 5nm).

EFL

HDG

SPD

SVE

7

DCT

TOC

PZN

8 9

4 5 6

1 2 3

0

CLR

PRV

EXQ

RA4743:EFL70:DCT

Clear

Preview

Execute

Executive Flight Level

Heading

Speed

Speed Vector On/Off

Direct

Transfer of Control

Protected Zone On/Off

Selected Aircraft and Commands

Fig. 4: The command interface that participants used in con-
trolling the aircraft.



Participants could control aircraft through this interface using
a computer mouse. Before measurements, each participant
performed three training runs of increasing difficulty to get
acquainted with the ATC simulator. Training runs lasted 90s,
but could be prolonged when required.

Each time a command was given, the application saved
the command together with all aircraft states at that moment
plus an image of the controlled aircraft’s SSD. Commands
were defined in terms of type (heading, speed, or direct-
to), direction (left or right, speed increase or decrease) and
magnitude (magnitude of the heading or speed change). During
supervised model training, the SSD image functions as input
while the given command functions as target.

D. Data preprocessing

The SSD dataset consists of 128x128 pixel RGB samples
which were preprocessed for computing time improvements.
First, the SSD images were rotated track-up, so that the
velocity vector of the controlled aircraft always points upward.
Second, because the most relevant information in the SSD is
located in the upper half of the image (aircraft are not likely
to make turns larger than 90 deg), the lower half of the SSD
was cropped away to decrease training times.

E. Dependent measures

To avoid misleading results from an imbalanced dataset,
model performance is evaluated using the Matthews Corre-
lation Coefficient (MCC) [38] for training and validation. For
example, if a controller chooses to use heading instead of speed
commands in 95% of the situations, simply always guessing
‘heading’ would result in a 0.95 accuracy score. This would
give a false sense of model performance, because 0% of the
speed commands are predicted. In such cases, the MCC metric
gives less biased results than accuracy [39]. The definitions of
accuracy and the two-class MCC are shown in Equations (3)
and (4) respectively, where TP = true positive, TN = true
negative, FP = false positive, FN = false negative.

accuracy =
TP + TN

TP + TN + FP + FN
(3)

with possible values [0, 1].

MCC=
TP×TN−FP×FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
(4)

with possible values [-1, 1]. As MCC is a more critical metric,
MCC values are often lower compared to accuracy values for
identical models.

In this study, consistency is considered as the relative
occurrence of the most often-used command. For resolution
type and resolution direction this is determined by summing
over all commands per participant:

consistency = max(
∑

class 1∑
class 1 + . . . + class n , . . . ,∑

class n∑
class 1 + . . . + class n ) (5)

where for example class 1, 2, and 3 are respectively HDG,
SPD, and DIRECT-TO for command type consistency. Using this
definition, consistency equals 1 when a single command type

Iteration 1 TestTrainingVal

Run 1 - 3

Iteration 2 TestVal

Iteration 3 TestVal

Iteration 4 TestVal

Iteration 5 TestVal

Run 4

Fig. 5: Stratified 5-fold cross-validation with a separate test
set.

is used and 0.5 when they are evenly balanced. For resolution
magnitude, a different equation is used:

consistency =

∑
unique values possible∑

unique values used
(6)

where the consistency of a participant decreases when a
broader range of magnitude values is used.

F. Model training
The data from the experiment is used in two ways: First, the

dataset from each participant is used to train individual models.
Then, five general models are trained on random samples
drawn from the combined participant data.

The individual models are trained following the procedure
illustrated in Figure 6. After preprocessing, the test data is
separated into a training set (experiment runs 1-3) and a test
set (experiment run 4). The training data is used to train three
personalized models per participant, one for each resolution
dimension (type, direction, and magnitude), see Table I for
a summary of the selected training procedure settings. During
training, K-fold validation is used to select a model that obtains
the highest prediction performance. With K-fold validation,
1/kth of the data is iteratively reserved for validation, as
illustrated in Figure 5. Using this validation data, the best
model is then selected as a final model. This combination
of model training and validation has proven to have lower
variance and bias of performance measures compared to other
methods [40]. In the current experiment, due to the limited
quantity of data available, five folds are applied during training.

The five general models are trained on random samples of
all (between-subject) data, in the same way that the individual
models are trained. An equal number of random samples is
used as is available in the individual model training. The
mean performance of these five models will be taken, and will
be compared to the individual models as a (non-individually
sensitive) baseline.

G. Model testing
After training, each individual model is tested with the

participant’s corresponding test dataset (i.e. the 4th run), to
test the individual prediction accuracy of the trained models,
as shown in Figure 7a. Additionally, each individual model is
tested with all other participants’ test datasets, to evaluate how
individually-sensitive each model is (Figure 7b). The general
models are also tested with all participants’ test datasets
(Figure 7c).

IV. RESULTS

Using the data from twelve participants in the human-in-the-
loop experiment, twelve individual models and five general



SPL

SUG

HSD

SSB

NIK

Magnitude

Direction

Type

Model testing

Individual modelsK-fold validation

Supervised learning

Training data
(run 1-3)Dataset

run 1-4

ATCo ATC simulator

Test data (run 4)

Performance
metrics

Consistency
metric

Part A: Part B: Part C:
Data generation Model training Measuring conformance

Fig. 6: Data generation and training & testing of the individual models for one participant. The dataset consists of input (SSD
images) and target (commands) data. The models are used to predict a command for a given SSD image. Model performance is
based on prediction accuracy.

Individual
model P1

ConformanceTest data
P1

(a) Regular

Individual
model P1

Cross-
conformance

Test data
P1

Test data
P12

(b) Inter-participant (c) Baseline

Fig. 7: Three validation steps for participant 1 (P1).

TABLE I: (Hyper)parameters during training.

Parameters Value

Optimization algorithm Adam
Output activation Softmax classifier
Loss function Categorical entropy
Train/val/test ratio 60%/15%/25%
K-folds 5
Mini batch-size 32 samples
Steps-per-epoch 2 × training samples / batch-size
Epochs 30
Learning rate 0.01
Dropout rate 20%
Input image dimensions 128x128 px

models were trained. In this section, the training phase is
illustrated with an example of convergence of performance
in the training phase. Subsequently, this section presents the
individual model results, individual model performance as a
function of participant consistency, an inter-participant test of
model performance, and a comparison of individual models to
the average general model performance. Here, performance is
measured using the MCC (see section III-E), which ranges be-
tween −1 and 1. Because negative correlation never occurred,
all MCC result figures are clipped to a range of [0, 1].

A. Training convergence

In the training phase, data from the first three experiment
runs is used to train several candidate models. Using the K-
fold method illustrated in Figure 5, five candidate models
are trained, of which the performance is validated using five
different subsets of the data. Figure 8 shows the training
progress in terms of these validation results for the individual
model of Participant 1, with training epoch on the x-axis,
and the resulting MCC score on the y-axis. Here, the spread
around each line depicts the range between the least and best
performing folds per control variable during training, which
lasts 25 epochs. It can be seen that with successive epochs,
MCC values increase, which indicates that the neural network
successfully ‘learns’ from the data samples. In most cases,
the models reach MCC scores > 0.95 during training, a
performance level that is not achieved in the validation steps,
as can be seen in Figure 8. This difference between training
and validation performance indicates overfitting on the training
data. The spread shows that validation MCC can differ more
than 0.2 per fold, which is a relatively large amount compared
to the mean value.

B. Model performance on individual test data

After training (Figure 8), the individual models are applied
to the test datasets of each participant (Run 4). Figure 9 shows
the achieved MCC scores per control variable. In this figure,



5 10 15 20 25
Epoch

0.0

0.2

0.4

0.6

M
C

C

Type Direction Magnitude

Fig. 8: Validation performance during training of P1’s individ-
ual model. The spread indicates the maximum and minimum
performance for each fold per control variable.

Type Direction Magnitude
Control variable

0.2

0.4

0.6

0.8

M
C

C

Fig. 9: Model test-performance per control variable.

the large variability in performance (particularly for the type
control variable) indicates that the personalized predictions are
not equally effective across the entire population of partici-
pants. The direction prediction shows the highest MCC score
(mean = 0.76, SD = 0.11), while type (mean = 0.52, SD =
0.21) and magnitude (mean = 0.64, SD = 0.12) predictions
achieve lower performances.

A potential reason for poor performance of the trained
model is low participant consistency: in some cases, the
participant data on which the model is trained does not show
sufficiently consistent behaviour across different runs, and
between conflicts that do appear comparable in the SSD.
Figure 10 shows the normalized consistency (as defined in
Section III-E) per participant and control variable. Here, it can
be seen that while some participants are relatively consistent
(participants 5, 7 and 10), other participants (particularly 8
and 11) show more erratic decision-making. Figure 10 also
shows that participant consistency varies per control variable.
For instance, participants can be very consistent in the type of
resolution they choose, but are less consistent in the direction
they choose for their resolutions.

The effect of participant consistency on the performance of
the trained model can be evaluated by observing the correlation
between consistency and model performance. To illustrate this,
Figure 11 shows the mean model performance (the mean over
all folds and abstraction levels), against the mean consistency
per participant. When a Pearson Correlation Coefficient test is

1 2 3 4 5 6 7 8 9 10 11 12
Participant

2

1

0

1

2

C
on

si
st

en
cy

 (n
or

m
al

iz
ed

)

Control variable
Type Direction Magnitude Mean

Fig. 10: Consistency scores per participant split per control
variable.

1.0 0.5 0.0 0.5 1.0 1.5
Participant Consistency

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

M
ea

n 
M

C
C

P1
P2

P3
P4

P5

P6
P7

P8

P9 P10

P11

P12

Fig. 11: Participant consistency vs individual model perfor-
mance. R2 = 0.56.

applied to this data, a positive correlation (r = 0.75, p = .005)
can be found between participant consistency and individual
model MCC. This supports the assumption that the personal
models of more consistent participants perform better than the
models of their less consistent counterparts.

C. Model performance on inter-participant data

A way to evaluate whether the personalized models are
indeed individual-sensitive, is to test the models against all
other participant test datasets. Figure 12 shows the results
of using the models of each participant on the test data of
all participants. In these spider-plots, the model performance
(MCC value) in terms of type (blue), direction (orange), and
magnitude (green) is shown for each participant’s test data,
along twelve radials of each chart. For the individual models
of participants 1, 6, 7, 9, and 10 it can be seen that overall
performance is highest when the model is applied to the test
data of the corresponding participant. For instance, for the
individual model of participant 1, a mean performance of MCC
= 0.72 is achieved when the model is applied on the test data
of participant 1, compared to an average MCC of 0.37 when
testing with other participants’ data. This difference indicates
that participant 1 makes different decisions in similar situations
compared to the rest of the population. Other participants’
models show more uniform MCC scores, regardless of which
test set is used.



Fig. 12: Performance (in MCC) of individual models tested on the test datasets of all other participants.

P1
P2

P3

P4

P5

P6
P7

P8

P9

P10

P11

P12

0

0.25

0.50

0.75

1.00 mcc

General models Individual model

Fig. 13: Performance (in MCC) of each participant’s individual
model compared to the mean performance of five general
models, averaged over all abstraction levels.

D. Comparison between individual and general models

A second way to test whether the trained models are
individual-sensitive is to compare individual model perfor-
mance to the performance of the general models, when applied
to the test data of each respective participant. Figure 13 shows
the average individual model performance per participant,
compared to the average general model performance per partic-
ipant. The chart shows that most individual models outperform
the mean of the general models, but some cases show near
equal or even worse (P4 and P8) performance, possibly caused
by a strategy change in the final run.

A paired t-test shows that the individual models perform

Fig. 14: Comparison of model performance between general
and individual models.

significantly better (t(11) = 2.9, p = 0.02) than the general
models in terms of MCC, see Figure 14. The individual models
provide a mean 0.08 (SD = 0.10) MCC improvement over the
general models. The personalized approach is most effective
for participant 1, whose individual models score 0.20 MCC
higher than the baseline.

V. DISCUSSION

The aim of this study was to create individual-sensitive
models of controller strategy by training a set of convolutional
neural networks on a visual representation of traffic conflicts.
A human-in-the-loop experiment was performed to generate
training data for the model creation.

It is a common problem in machine learning that such
model training requires a large amount of data. To mitigate
this problem, the performed experiment considered only a
subset of the types of conflict that controllers can encounter in
their sector. Throughout the experiment, similar conflicts were
presented to each participant multiple times, by only introduc-
ing conflicting traffic from the east, with a limited number
of crossing angles. In addition, altitude differences were not
taken into account, nor were altitude changes accepted as



a conflict resolution. Increasing the breadth of encountered
conflicts could increase the validity and applicability of the
trained models, but would require more training data. Results
show that model performance per validation fold can fluctuate
up to 0.2 MCC, which shows sensitivity to random state-action
pair sampling from the training set. This indicates that even
for this limited subset of conflicts, performance improvements
can be gained with exposure to more training data.

Evidence that convolutional neural networks are able to
interpret the SSD is shown by the accuracy increase during
training. This might, however, also indicate that the network
overfits on the training data at pixel-level without general-
ization to new samples. For the current dataset, the ability
to generalize is demonstrated by the fact that the validation
performance during training follows an upward trend similar
to the training performance. Test results using the separate test
set further confirm this. On the other hand, overfitting on the
training samples does occur to a certain extent, indicated by
the performance difference between the training and test sets.

It is expected that performance improvements can be
achieved by a formal grid search to optimize the hyperpa-
rameters of the model. However, since every training iteration
generates 360 models (12 participants × 3 control variables
× 2 repetitions × 5 cross-validation folds), iterating over
parameters is computationally expensive and meticulous. The
network architecture used in this research is kept constant
for all control variables, i.e., it can predict command type,
direction and magnitude by only altering the last fully con-
nected layer. Designing separate network architectures that are
tailored to each control variable could consequently improve
performance.

Resolution magnitude predictions are obtained using clas-
sification (i.e., dividing possible magnitudes over a limited
number of bins) to more easily compare results to type and
direction predictions. As resolution magnitude values are,
in reality, more finely grained, this caused the accuracy of
magnitude predictions to be reliant on the classification, i.e.,
the granularity of the bins. Therefore, more precise predic-
tions are expected to be achieved using regression instead of
classification.

Data quantity is often a limiting factor in machine learning
experiments with human data. A method to increase effective-
ness of the available data is reinforcement learning. One option
is to start with supervised learning – incorporating human
strategy – and to improve the models with more experience
using reinforcement learning [23]. Another approach could be
to use inverse reinforcement learning, which could learn a
personalized reward function that is subsequently used to train
a model through interaction with a simulated environment.

Nonetheless, the achieved MCC scores using the current
methods indicate a considerably better than random prediction,
even for the general models (up to 81% accuracy, averaged
over all three control variable models). This illustrates that
the SSD indeed captures sufficient information concerning air
traffic conflicts to base predictions on – given the simplified
scenarios used in this research – confirming the hypothesis.
However, apart from the conflict geometry information in-
cluded in the SSD, research on control heuristics indicates
that traffic flows, sector geometry and other controller goals
are also play significant drivers of ATCo strategy [41], [42].
Including these sector characteristics in the visual network
input could further increase prediction conformance. Moreover,

model predictions could be taken to a higher-level decision
stage such as aircraft selection and resolution geometry (e.g.
‘behind’ or ‘in front’), as proposed in Westin et al.’s consis-
tency framework [37]. Finally, it should be noted that humans
base their decisions on a dynamic situation, while the SSD
only provides a static representation of each conflict situation.
Using multiple consecutive SSD frames could be a way to
incorporate the dynamics of a conflict situation into the model.

The premise of individual-sensitive automation is that con-
trollers are sufficiently consistent, and that there is sufficient
difference in strategies between different controllers. In this
study, the results indeed reveal a correlation between par-
ticipant consistency and model performance. This is in line
with the expectation that more consistent controllers are better
suited to base strategic conformal automation on. It should
be noted, however, that the validity of the consistency metric
is limited to asymmetric crossing scenarios and constrained
conflict angles, as used in this research. In reality, different
conflict geometries will have different implications on the
resolution strategy of a controller. A tailored consistency
metric which evaluates all situations in a case-by-case fashion
would be better suited to determine the true consistency of a
controller.

Both the application of the individual models to inter-
participant data, and the comparison of the individual models
to the general models illustrate that indeed, different partici-
pants show different strategies, and that the individual models
are able to capture this. Although the mean accuracy and
MCC improvements are not always large in these comparisons,
for half of the population, MCC scores increased by more
than 0.10 (up to 0.20) when comparing the individual model
to the general model. Nevertheless, the difference between
the most accurate models (mean = 83% accuracy) and the
least accurate models (mean = 61% accuracy) is considerable.
For participants 4 and 8, this even resulted in the individual
model performing worse than the general model. In these
cases, it may be that the participants were still learning during
the experiment measurement phase, and may have changed
control strategies in between runs. Combined with the results
on controller consistency, however, it can be seen that models
become more accurate when controllers are more consistent,
which is in accordance with previous empirical research where
professional ATCos were used [8], [43].

VI. CONCLUSIONS AND RECOMMENDATIONS

This research evaluated to what extent strategic confor-
mal automation for air traffic control can be achieved using
convolutional neural networks through a human-in-the-loop
experiment. A 12-participant experiment was devised to gen-
erate training data consisting of solution space diagram (SSD)
images and conflict resolutions. Achieved model performances
show that the SSD contains sufficient information to make ac-
curate predictions on resolution type, direction and magnitude
given by controllers in 2D traffic conflict scenarios.

Results show a correlation between the controller consis-
tency metric and achieved model performance, confirming
the hypothesis that consistent controllers are more suited
for strategic conformal automation. Regardless, the majority
of controllers in the population is sufficiently consistent to
base the conformal automation on. Personalized models obtain
significantly higher prediction accuracies than general models,



indicating that controllers in this experiment exhibit differenti-
ating strategies, i.e., are not homogeneous as a group. This is a
critical assumption for strategic conformal automation. How-
ever, the performance improvement due to individual modeling
substantially differs per controller, ranging from a deterioration
to improvements of 0.20 MCC (Matthews Correlation Coef-
ficient) and 12% accuracy. Nonetheless, convolutional neural
networks appear to be a feasible method to achieve strategic
conformal automation.

REFERENCES

[1] SESAR Consortium, “The Concept of Operations at a glance,” Single
European Sky, 2007.

[2] Joint Planning and Development Office (JPDO) and Next Generation Air
Transportation System (NextGen), “Concept of operations for the next
generation air transportation system,” Tech. Rep., 2011.

[3] M. Bekier, B. R. Molesworth, and A. Williamson, “Tipping point: The
narrow path between automation acceptance and rejection in air traffic
management,” Safety science, vol. 50, no. 2, pp. 259–265, 2012.

[4] T. S. Bolic, “Automation adoption and adaptation in air traffic control,”
Ph.D. dissertation, University of California, 2006.

[5] R. Ehrmanntraut, “Full automation of air traffic management in high
complexity airspace,” Doctor of Engineering), Technical University of
Dresden. Eyferth, K., Niessen, C., and Spaeth, 0.(2003), A model of air
traffic controllers’ conflict detection and conflict resolution. Aerospace
Science and Technology, vol. 7, no. 6, pp. 409–416, 2010.

[6] C. Westin, C. Borst, and B. Hilburn, “Strategic Conformance: Over-
coming Acceptance Issues of Decision Aiding Automation?” IEEE
Transactions on Human-Machine Systems, vol. 46, no. 1, pp. 41–52,
2016.

[7] T. Prevot, J. R. Homola, L. H. Martin, J. S. Mercer, and C. D. Cabrall,
“Toward automated air traffic control: investigating a fundamental
paradigm shift in human/systems interaction,” International Journal of
Human-Computer Interaction, vol. 28, no. 2, pp. 77–98, 2012.

[8] B. Hilburn, C. Westin, and C. Borst, “Will Controllers Accept a Machine
That Thinks Like They Think? The Role of Strategic Conformance in
Decision Aiding Automation,” Air Traffic Control Quarterly, vol. 22,
no. 2, pp. 115–136, 2014.

[9] R. S. Sutton, A. G. Barto, and R. J. Williams, “Reinforcement Learning
is Direct Adaptive Optimal Control,” IEEE Control Systems, vol. 12,
no. 2, pp. 19–22, 1992.

[10] R. M. Regtuit, C. Borst, E.-J. Van Kampen, and M. R. M. van Paassen,
“Building Strategic Conformal Automation for Air Traffic Control Using
Machine Learning,” in AIAA SciTech Forum. Kissimmee, Florida: AIAA
Information Systems, 2018.

[11] G. Mercado-Velasco, M. Mulder, and M. Van Paassen, “Analysis of Air
Traffic Controller Workload Reduction Based on the Solution Space for
the Merging Task,” AIAA Guidance, Navigation, and Control Confer-
ence, vol. AIAA 2010-, no. August, pp. 1–18, 2010.

[12] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments us-
ing velocity obstacles,” The International Journal of Robotics Research,
vol. 17, no. 7, pp. 760–772, 1998.

[13] S. B. J. Van Dam, A. L. Abeloos, M. Mulder, and M. Van Paassen,
“Functional presentation of travel opportunities in flexible use airspace:
An EID of an airborne conflict support tool,” Conference Proceedings -
IEEE International Conference on Systems, Man and Cybernetics, vol. 1,
no. January, pp. 802–808, 2004.

[14] J. Ellerbroek, K. Brantegem, M. Van Paassen, N. de Gelder, and
M. Mulder, “Experimental evaluation of a coplanar airborne separation
display,” IEEE Transactions on Human-Machine Systems, vol. 43, no. 3,
pp. 290–301, 2013.

[15] Y. I. Jenie, E.-J. van Kampen, C. C. de Visser, J. Ellerbroek, and
J. M. Hoekstra, “Selective velocity obstacle method for deconflicting
maneuvers applied to unmanned aerial vehicles,” Journal of Guidance,
Control, and Dynamics, vol. 38, no. 6, pp. 1140–1146, 2015.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[17] B. Piot, M. Geist, and O. Pietquin, “Bridging the gap between imitation
learning and inverse reinforcement learning,” IEEE transactions on
neural networks and learning systems, vol. 28, no. 8, pp. 1814–1826,
2017.

[18] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA: MIT Press, 2018.

[19] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation Applied to Handwritten
Zip Code Recognition,” Neural computation, vol. 1, no. 4, pp. 541–551,
1989.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, p. 529, 2015. [Online].
Available: http://dx.doi.org/10.1038/nature14236

[21] D. a. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” Advances in Neural Information Processing Systems 1, pp.
305–313, 1989.

[22] Z. Chen and X. Huang, “End-To-end learning for lane keeping of self-
driving cars,” IEEE Intelligent Vehicles Symposium, Proceedings, pp.
1856–1860, 2017.

[23] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, “Mastering the game of Go with deep neural networks and
tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016. [Online].
Available: http://dx.doi.org/10.1038/nature16961

[24] Y. LeCun, R. Pfeifer, Z. Schreter, F. Fogelman, and L. Steels, “Gener-
alization and network design strategies,” Elsevier, Zurich, Switserland,
Tech. Rep., 1989.

[25] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting,” Journal of Machine Learning Research, vol. 15, pp.
1929–1958, 2014.

[26] K. Jarrett, K. Kavukcuoglu, and Y. LeCun, “What is the best multi-stage
architecture for object recognition?” in Computer Vision, 2009 IEEE 12th
International Conference on. IEEE, 2009, pp. 2146–2153.

[27] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
USA: Springer, 2006.

[28] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations (ICLR), 2015.

[30] S. B. J. Van Dam, M. Mulder, and M. van Paassen, “Ecological
Interface Design of a Tactical Airborne Separation Assistance Tool,”
IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems
and Humans, vol. 38, no. 6, pp. 1221–1233, 2008.

[31] J. Ellerbroek, M. Visser, S. B. J. van Dam, M. Mulder, and M. M. van
Paassen, “Design of an Airborne Three-Dimensional Separation Assis-
tance Display,” IEEE Transactions on Systems, Man, and Cybernetics,
part A: Systems and Humans, vol. 41, no. 6, pp. 863–875, 2011.

[32] J. Ellerbroek, K. C. R. Brantegem, M. M. van Paassen, and M. Mulder,
“Design of a Co-Planar Airborne Separation Display,” IEEE Transactions
on Human-Machine Systems, vol. 43, no. 3, pp. 277–289, 2013.

[33] P. Hermes, M. Mulder, M. Van Paassen, and H. Huisman, “Solution-
Space-Based Analysis of the Difficulty of Aircraft Merging Tasks,”
Journal of Aircraft, vol. 46, no. 6, pp. 1995–2015, 2009.

[34] S. M. A. Rahman, “Solution Space-based Approach to Assess Sector
Complexity in Air Traffic Control,” Ph.D. dissertation, 2014.

[35] J. G. D’Engelbronner, C. Borst, J. Ellerbroek, M. van Paassen, and
M. Mulder, “Solution Space-Based Analysis of Dynamic Air Traffic
Controller Workload,” Journal of Aircraft, vol. 52, no. 4, pp. 1146–1160,
2015. [Online]. Available: http://arc.aiaa.org/doi/10.2514/1.C032847

[36] Y. I. Jenie, E.-J. van Kampen, C. C. de Visser, J. Ellerbroek, and
J. M. Hoekstra, “Three-Dimensional Velocity Obstacle Method for
Uncoordinated Avoidance Maneuvers of Unmanned Aerial Vehicles,”
Journal of Guidance, Control, and Dynamics, vol. 39, no. 10, 2016.

[37] C. Westin, Strategic Conformance: Exploring Acceptance of Individual-
Sensitive Automation for Air Traffic Control. PhD Thesis. Delft
University of Technology, Netherlands, 2017.

[38] B. W. Matthews, “Comparison of the predicted and observed secondary
structure of T4 phage lysozyme,” Biochimica et Biophysica Acta (BBA)-
Protein Structure, vol. 405, no. 2, pp. 442–451, 1975.

[39] D. M. Powers, “Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation,” Journal of Machine
Learning Technologies, vol. 2, no. 1, pp. 37–63, 2011.

[40] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in International Joint Conference on
Artificial Intelligence, vol. 14, no. 2. Montreal, Canada, 1995, pp.
1137–1145.

[41] B. Kirwan and M. Flynn, “Investigating air traffic controller conflict
resolution strategies,” EUROCONTROL, Brussels, Belgium, Tech. Rep.,
2002.

[42] S. Fothergill and A. Neal, “Conflict-resolution heuristics for en route air
traffic management,” Proceedings of the Human Factors and Ergonomics
Society, pp. 71–75, 2013.

[43] C. Westin, C. Borst, and B. Hilburn, “An empirical investigation into
three underlying factors affecting automation acceptance,” Proceedings
of the Fifth SESAR Innovation Days, pp. 1–9, 2015.



Sjoerd van Rooijen received his MSc in Aerospace Engineering
from Delft University of Technology in January 2019 (cum laude).
The work presented in this paper was part of his thesis.

Joost Ellerbroek received the M.Sc. (2007) and Ph.D. (2013)
degrees from the Delft University of Technology, The Netherlands. He
is currently assistant professor with the CNS/ATM chair at the faculty
of Aerospace Engineering of TU Delft. His current work includes,
amongst others, urban airspace design for drones, topics of airspace
complexity and capacity analysis, data mining applications for ATM,
analysis of future ATM concepts such as the extended arrival manager,
and new approach procedures, separation algorithms for UAS, and
several other ASAS-related studies.

Clark Borst received the M.Sc. (2004) and Ph.D. degrees (2009)
from the Delft University of Technology, The Netherlands, where he
is currently working as an Assistant Professor in aerospace human-
machine systems. His work and research interests include developing
and evaluating human-centered aviation automation for flight deck
and air traffic control applications using Ecological Interface Design
principles.

Erik-Jan van Kampen obtained his BSc (2004) and MSc (2006)
degrees in Aerospace Engineering, and his PhD degree (2010) at Delft
University of Technology. The topic of the PhD-research was interval
optimization and its application to aerospace problems. His research
interests are Intelligent Flight Control, nonlinear adaptive control, and
interval optimization.


