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Abstract—The air traffic management system is one of the most 

complex man-made systems, with stringent standards for safety 

and operational performance. Modern surveillance systems 

make available detailed flight and airport information, through 

on-board and ground recording systems. These recorded 

datasets can be used for detecting and/or predicting anomalies 

which hinder safe and efficient operations. The prediction of an 

anomaly is performed by identifying events that precede the 

occurrence of an anomaly, which are called precursors. In this 

paper, we propose a detection algorithm that can identify 

precursors for flight anomalies through data-driven models 

designed with surveillance data recorded in the terminal 

airspace. The proposed algorithm is demonstrated to detect 

precursors of flight anomalies in the terminal airspace around 

LaGuardia (LGA) airport in New York City using real traffic 

data obtained from the Airport Surface Detection Equipment - 

Model X (ASDE-X) and the Terminal Automation Information 

Service (TAIS) surveillance datasets. 
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I.  INTRODUCTION 

To assist air traffic controllers (ATCs) with airspace 

operations while ensuring high efficiency and safety, it is 

important to analyze operational anomalies. Recently, there 

have been extensive efforts to develop anomaly detection 

algorithms for unlabeled aviation datasets using machine 

learning techniques [1]–[6]. Once the anomalies are detected, 

the next step is to find the causes for these anomalies and to 

aid ATCs and pilots in mitigating such anomalous behavior. 

The approach to finding the causes is called prognosis and 

requires the identification of events or conditions that precede 

the anomaly and have some correlation to the occurrence of 

the anomaly, called precursors. If detected, the precursor 

could be used to initiate actions to avoid the anomaly from 

ever occurring or mitigate it.  

 

There have been extensive research efforts to develop 

precursor detection algorithms to predict anomalies. One 

approach to prognosis is to use a physics-based or a rule-

based model of the system, and this approach relies on 

models designed by domain experts [7]. Common examples 

of such an approach is system health monitoring [8][9] and 

conformance monitoring [10][11]. Another approach is the 

data-driven approach, also known as the data mining or 

machine learning approach. This approach uses large records 

of historical data to learn a model of system behavior. In the 

aviation domain, data-driven approaches have been applied 

to structural, gas turbine, battery prognostics, etc. [12]–[14]. 

Considering that air traffic management is an increasingly 

complex system with a continuously evolving behavior, we 

propose a data-driven precursor detection algorithm for 

anomalies in the terminal airspace. 

 

The main objective of this paper is to develop a supervised 

precursor detection algorithm to augment the unsupervised 

anomaly detection algorithm developed in our earlier work 

[6], called TempAD. The proposed precursor detection 

algorithm, called reactive TempAD, detects precursors using 

the surveillance data that correlate to specific anomalies in 

terminal airspace operations. We demonstrate its 

performance by summarizing and analyzing the results of the 

proposed algorithm applied to terminal airspace surveillance 

data, such as Airport Surface Detection Equipment - Model 

X (ASDE-X) and Terminal Automation Information Service 

(TAIS) datasets. The recorded datasets are obtained from 

aircraft during their final approach to the LaGuardia (LGA) 

airport in New York City. 

 

The outline of the paper is as follows: Section II describes 

the precursor detection problem and the preliminaries 

regarding data pre-processing and anomaly detection. In 

Section III, the precursor detection algorithm is developed 

using supervised machine learning techniques. In Section IV, 

we demonstrate the working of the proposed precursor 

detection algorithm for predicting go-around and S-turn 

anomalies detected for arrivals to LGA using the ASDE-X 

and TAIS datasets. Finally, concluding remarks are made in 

Section V. 

II. PRELIMINARIES FOR PRECURSOR DETECTION 

In this section, we first describe the data which is used as 

input to the precursor detection algorithm after pre-

processing, followed by the anomaly detection algorithm to 

which we augment our precursor detection algorithm. These 

help us set up the problem for precursor detection, which we 

aim to solve. 
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A. Input Data and Pre-processing 

The input surveillance data comprises of the aircraft track 

data which contains the position (latitude and longitude), 

speed, altitude, heading and a unique flight identifier for each 

flight in a time-series format, recorded for arrival flights to 

the LaGuardia (LGA) airport. We source the surveillance 

data from the Airport Surface Detection Equipment – Model 

X (ASDE-X) [15] and the Terminal Automation Information 

Service (TAIS) [16] datasets. The ASDE-X dataset has a 

detection range of about 20 nautical miles from the airport 

and records data at every second. On the other hand, the TAIS 

dataset has a detection range of about 141 nautical miles from 

the airports and records data at a rate of 5 seconds. The 

recording used in this paper from ASDE-X is between April 

6th to 24th, 2016, which has records of 9,634 arrivals at LGA, 

and for TAIS is during the months of September, October and 

November 2016, which has records of 36,243 arrivals at 

LGA. 

 

The setup of the proposed algorithm requires extracting 

specific aircraft states which are combined and identified as 

precursors. We use features corresponding to the following 

dimensions in this paper: 

• Horizontal (H): Obtained from the positional 

(latitude and longitude) time-series data 

• Vertical (V): Obtained from the altitude (ℎ) time-

series data 

• Speed (S): Obtained from the ground speed (𝑣) 

time-series data 

• Specific Total Energy (STE): ℎ + 𝑣2/2𝑔 

• Specific Potential Energy Rate (SPER):  ℎ̇ 

• Specific Kinetic Energy (SKE): 𝑣2/2𝑔 

where 𝑔 is the gravitational acceleration constant. Note that 

the first three dimensions are directly available from the 

ASDE-X and TAIS datasets, but the features in the energy 

dimensions need to be derived from the others. 

 

B. Anomaly Detection 

To detect anomalies in unlabeled terminal airspace 

surveillance data, we use the temporal logic-based anomaly 

detection algorithm called TempAD presented in our earlier 

study [6]. This algorithm is capable of generating 

mathematical expressions called predicates for the bounds of 

normal operations in terms of time and physical parameters 

in a human-readable format. These bounds comprise the 

anomaly detection model for that specific dataset. An 

example of such a model for arrivals to the LaGuardia airport 

runway 22 is shown in Figure 1. The figure presents the 

anomaly detection models in blue. Any violation of these 

models is labeled as an anomalous trajectory and is plotted in 

red, while the normal trajectories are plotted in green. 

 

The corresponding anomaly detection model is expressed 

as: 

 

𝐺[20,0](−1.1429𝑥 + 𝑦 − 123.1929 > 0)

∧ 𝐺[20,0](−1.3409𝑥 + 𝑦 − 139.8514 < 0) 

 

Here, 𝑥 and 𝑦 are the longitude and latitude, respectively, in 

degrees. The expression can be understood as a requirement 

of all normal aircraft arriving to runway 22 from the northeast 

to lie within the given bounds during the final 20 nautical 

miles before touchdown at all points of time (𝐺). 

 

This anomaly detection algorithm has been shown to be 

capable of detecting anomalies in all five dimensions. 

Furthermore, the detected anomalies can be segregated and 

characterized automatically, based on the specific relevance 

they have to air traffic operations. For example, some 

identified anomalies are go-around, S-turn (path stretch), 

overspeed/underspeed, late interception of glideslope, energy 

excess/deficit, and change of runway anomalies. 

 

Once the flight trajectories are labeled as normal or 

anomalous, we now find the precursors to these anomalies. In 

the next section, we describe the precursor detection 

algorithm, and present specific approaches to apply it to a few 

of the anomaly types described above. 

 

 
Figure 1. Horizontal anomaly detection for arrivals to LGA RWY22 

III. REACTIVE TEMPAD ALGORITHM DEVELOPMENT 

For the detection of precursors, we investigate the causal 

relations of the anomalies identified by TempAD and present 

the concept of a reactive temporal logic algorithm, called 

reactive TempAD [17] to detect precursors (causes) to these 

anomalies (effects). 

 

Consider a set of 𝑁 signals (e.g., flights) {𝑠𝑖}𝑖=1
𝑁 , each of 

which has the length of 𝑇 time steps. By truncating 𝑠𝑖 to its 

final �̃� time steps, let 𝑠𝑖,𝑒 denote the latter part of 𝑠𝑖 (i.e., for 

[𝑇 − �̃�, 𝑇]) and 𝑠𝑖,𝑐 denote the earlier part of 𝑠𝑖 (i.e., for 

[0, 𝑇 − �̃�)), as shown in Figure 2. We assume that an anomaly 

occurs in the latter part of a signal (called effect signal, 𝑠𝑖,𝑒) 

and hence its corresponding precursor can be detected in the 



earlier part of the signal (called cause signal, 𝑠𝑖,𝑐). Note that 

�̃� is a design parameter which can be determined by analyzing 

the results of the anomaly detection algorithm (e.g., if all the 

anomalies occur during the final 5 time steps, �̃� is set as 5). 

 
Then, based on TempAD, we propose a framework for 

precursor detection, as presented in Figure 3. For the set of 

unlabeled signals {𝑠𝑖,𝑒}𝑖=1
𝑁

, we first apply TempAD to identify 

whether a signal is normal or abnormal, by which each signal 
can be labeled (𝑝𝑖 = 1 for normal and 𝑝𝑖 = 0 for abnormal) 
and an effect model (or anomaly detection model) 𝜑𝑒 is 

obtained. Then, the set of labeled signals {𝑠𝑖,𝑐 , 𝑝𝑖}𝑖=1
𝑁

is fed into 

a supervised learning algorithm for precursor detection, called 
reactive TempAD, to learn a cause model (or precursor 
detection model) 𝜑𝑐 such that if and only if 𝑠𝑖,𝑐 violates 𝜑𝑐 in 

[0, 𝑇 − �̃�),  it is guaranteed that 𝑠𝑖,𝑒 violates 𝜑𝑒 within [𝑇 −
�̃�, 𝑇]. 

 
Figure 2. Cause and effect in a signal 

 

 
Figure 3. Architecture of proposed precursor detection algorithm with 

TempAD 

Note that the main difference between reactive TempAD and 

the original TempAD algorithm is that reactive TempAD 

involves supervised learning which incorporates the labeled 

signal information. We use the support vector machine 

(SVM) and artificial neural network (ANN) machine learning 

algorithms for generating the separating hyperplane for 

classification. 

 

Furthermore, note that the cause model and the effect 

model may be implemented using different features. This is 

essential for precursor detection in aircraft operations, since 

a cause in one feature dimension can have an effect in another 

feature dimension. For example, a go-around anomaly could 

be detected using an effect model 𝜑𝑒,𝑎𝑙𝑡  implemented using 

the altitude feature, but the cause model 𝜑𝑐 for precursor 

detection does not necessarily indicate any physical and 

operational significance in the altitude feature but can be 

better described in other features (e.g., energy). 

 

In the next section, we will choose specific anomalies and 

apply the precursor detection algorithm to predict these 

anomalies using the aircraft states prior to the occurrence of 

the anomaly. 

IV. PRECURSOR DETECTION USING REACTIVE TEMPAD 

In this section, we apply the proposed precursor detection 

algorithm to the go-around anomaly and the S-turn anomaly 

and analyze the results. 

A. Precursor Detection for Go-around Anomalies 

A go-around anomaly is one where the pilot in the 

anomalous flight aborts the landing during the short final, 

climbs using a missed approach procedure, circles around and 

attempts landing again. A visualization of the horizontal 

trajectory during a go-around is illustrated in Figure 4. A go-

around anomaly is a severe anomaly, in the sense that it 

manifests as an anomaly and is detected in all the dimensions. 

 

 
Figure 4. Horizontal view of go-around anomaly 

 

To illustrate the use of reactive TempAD for precursor 

detection, we implement this algorithm to find a precursor for 

all the go-around anomalies detected at LGA airport across 

19 days of the ASDE-X data (9,634 flights). To determine the 

feature capable of delivering the best precursor detection 

performance, we search across several features and choose 

the feature that grants the highest F1 classification score, 

thereby implying a good correlation between the occurrence 

of the precursor and the occurrence of the anomaly. The F1 

classification score can be computed as: 



 

Precision = ratio of true anomaly detection of total 

precursor detections 

 

Recall = ratio of anomalies detected by precursors over 

total true anomalies 

 

F1 score = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
.   

 

It was observed that a derived feature (𝑓) from other 

energy features gave the highest F1 score from all tested 

candidate features: 

 

𝑓 =
𝑆𝑃𝐸𝑅

𝑆𝑃𝐸
× 𝑆𝐾𝐸 =

ℎ̇

ℎ
×
𝑣2

𝑔
. 

Here, SPER is the specific potential energy rate, SPE is the 

specific potential energy (altitude) and SKE is the specific 

kinetic energy. 

 

The results of reactive TempAD with this feature 𝑓 are 

presented in Figure 5, Figure 6 and Table 1: the go-around 

flights (signals) are in red and the normal flights are in green. 

Figure 5 demonstrates go-around anomaly detection, while 

Figure 6 demonstrates go-around precursor detection. Thus, 

if the go-around flights violate the cause (or precursor) model 

(𝜑𝑐) in Figure 6, it is guaranteed within a margin of error that 

the effect (or anomaly) model (𝜑𝑒) will be violated in Figure 

5, where the cause and effect models are respectively given 

as: 

 

𝜑𝑐 = 𝐺[0,55) (
𝑆𝑃𝐸𝑅

𝑆𝑃𝐸
𝑆𝐾𝐸 < 37) 

𝜑𝑒 = 𝐺[55,60)(1650 × 𝑡 + 75 × altitude < 123750). 

 

 

 
Figure 5. Go-around anomaly detection model 

 
Figure 6. Precursor detection model 

Using Figure 6, we can detect violations of the precursor 

model by determining signals which go above the precursor 

model (in blue) at any point of time through their trajectory 

in the first 55 time steps. Thus, using Figure 5 and Figure 6, 

we can determine true positives as flights that violate the 

precursor model in the first 55 time steps and the anomaly 

model in the last 5 time steps. Similarly, true negatives, false 

negatives (missed detections) and false positives (false 

alarms) can be determined to form a confusion matrix. Table 

1 summarizes the results of reactive TempAD for the go-

around anomaly in such a confusion matrix. The accuracy of 

the algorithm is 99.81% when 5-fold cross validation is used. 

The precision value is 87.50%, the recall value is 72.92% and 

thus, the F1 score is 79.55%. 
 

TABLE 1. CONFUSION MATRIX FOR GO-AROUND PRECURSOR DETECTION 

USING REACTIVE TEMPAD-SVM 

Predicted 
Anomalous flights Normal flights Total 

True 

Anomalous flights 

True positive 
35 

False negative 
13 

48 

Normal flights 
False positive 

5 
True negative 

9,581 
9,596 

Total 40 9,594 9,634 

 

To characterize the operational usability of the precursor 

detection algorithm, we introduce the concept of look-ahead 

time, which is the time difference between the detection of 

the precursor and the time of occurrence of the anomaly. It is 

desirable that this look-ahead time be as long as possible, 

since it allows more time for the ATC and pilot to make 

decisions and better accommodates pilot input lag. 

 

The above feature 𝑓 resulted in an average look-ahead 

time of 7 seconds, which is a decent number for precursor 

detection. However, if it were to be applied to real-time 

implementation, it might not be sufficient enough since it 

gives the pilot and ATC only 7 seconds to react to the 

anomaly. From aircraft design and missed approach studies, 

7-8 seconds are always required for engine spool-up during a 



go-around [18] and thus the look-ahead time achieved here is 

just feasible to be used.  

 

To allow for a longer reaction time and make the precursor 

detection algorithm more effective, we modified the 

framework of the reactive TempAD algorithm to use the 

artificial neural network (ANN) learning algorithm (called 

reactive TempAD-ANN) instead of SVM (called reactive 

TempAD-SVM). ANN automatically weighs the best 

combination of diverse features in a manner better than SVM 

and gives better test results. Further, ANN can merge 

information contained in multiple features. Thus, it explores 

more complex causal relations than SVM and is expected to 

give a longer average look-ahead time. Note that due to the 

complex nature of the ANN algorithm, it is not always 

possible to physically interpret or to present the mathematical 

expression for the classification model succinctly. 

 

Furthermore, a new feature (distance to preceding aircraft) 

is introduced into the feature space, which determines the 

vertical and horizontal distances to the nearest preceding 

flight (arriving or departing) and attempts to learn from loss 

of separation in terminal airspace. With the new feature set, 

using reactive TempAD-ANN, the results are improved with 

a test accuracy of 99.87%, precision of 89.13%, recall of 

85.41% and an F1 classification score of 87.23%, as shown 

in Table 2. More importantly, the average look-ahead time is 

increased to 11 seconds, an improvement of nearly 57%.  

 
TABLE 2. CONFUSION MATRIX FOR GO-AROUND PRECURSOR DETECTION 

USING REACTIVE TEMPAD-ANN 

Predicted 
Anomalous flights Normal flights Total 

True 

Anomalous flights 

True positive 

41 

False negative 

7 
48 

Normal flights 
False positive 

5 

True negative 

9,581 
9,596 

Total 46 9,588 9,634 

 

It is important to note that the number of false negatives 

using the reformulated reactive TempAD-ANN has nearly 

halved. This is important, as minimizing instances of false 

negatives (anomalies not predicted by the precursor, i.e., 

missed detections) is vital in safety-critical applications such 

as air traffic management (ATM). 

 

B. Precursor Detection for S-turn Anomalies 

To further demonstrate the applicability and performance 

of the reactive TempAD algorithm, we demonstrate precursor 

detection for the S-turn anomaly. An S-turn anomaly is a 

special anomaly in the horizontal dimension which involves 

an extension of flight path, called a path stretch [19]. They 

are generally caused due to significant safety and operations 

related incidents and are critical anomalies in the terminal 

airspace [20]. Examples of S-turn trajectories detected by the 

TempAD algorithm for arrivals to LGA runway 22 and 

runway 4 are presented in red in Figure 7 and Figure 8, 

respectively. 

 

 
Figure 7. Horizontal view of S-turn anomaly in arrivals to RWY22 at LGA 

 

 
Figure 8. Horizontal view of S-turn anomaly in arrivals to RWY4 at LGA 

To illustrate the use of reactive TempAD for precursor 

detection for S-turn anomalies, we implement this algorithm 

to find a precursor for all the S-turn anomalies detected at 

LGA airport across 88 days (September – November 2016) 

of the TAIS data (36,243 flights). Considering that the TAIS 

dataset (nearly 3 months) is much larger in size than the 

ASDE-X dataset (19 days), a higher training data size is 

expected to result in more effective models using supervised 

learning. The precursors for the S-turn anomaly were 

searched from features comprising of separation from 

preceding flight (both arriving and departing flights); excess 

approach speed; and altitude. Here, the first feature is related 

to loss of separation, while the last two features relate to 

unstable approach of the arriving flight. The results of testing 

reactive TempAD-ANN over 88 days of the TAIS dataset for 

arrivals to LGA are presented in Table 3. 



TABLE 3. CONFUSION MATRIX FOR S-TURN PRECURSOR DETECTION USING 

REACTIVE TEMPAD-ANN 

Predicted 
Anomalous flights Normal flights Total 

True 

Anomalous flights 

True positive 

714 

False negative 

195 
909 

Normal flights 
False positive 

97 

True negative 

35,237 
35,334 

Total 811 35,432 36,243 

 

The classification results have a test accuracy of 99.19%, 

a precision of 88%, recall of 78.57% and an F1 classification 

score of 83.01%. The average look-ahead time for precursor 

detection for the S-turn anomaly is nearly 9 seconds. 

V. CONCLUSION 

This paper considers the problem of detecting precursors 

to anomalies in flights using aircraft surveillance datasets. 

The identified precursors can potentially be used to avoid or 

mitigate the corresponding anomaly, if detected sufficiently 

in advance to the anomaly. To address the problem of 

precursor detection, a temporal logic-based precursor 

detection algorithm – called reactive TempAD – has been 

developed which determines causal relations to the 

occurrence of the anomaly. This algorithm is a supervised 

learning algorithm that relies on labels generated using an 

unsupervised anomaly detection algorithm. For the purpose 

of demonstration, we use real surveillance datasets of Airport 

Surface Detection Equipment - Model X (ASDE-X) and 

Terminal Automation Information Service (TAIS) for 

arrivals to the LaGuardia (LGA) airport. Using these datasets, 

precursors to go-around and S-turn anomalies are detected 

and corresponding operational performance results are 

analyzed to demonstrate the working of the algorithm. 

 

In the future, we plan to extend the applicability of 

precursor detection to several other types of anomalies 

detected in the terminal airspace. Furthermore, it was 

observed that some anomalies were preceded by a sequence 

of precursors. Facilitating the algorithm to analyze this 

sequence and detect the precursor that is the most distant 

from the anomaly will enhance the algorithm by generating a 

longer look-ahead time, thereby giving the ATC and pilots a 

longer time to make decisions and mitigate the anomaly. 
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