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Abstract—This paper presents a framework to identify and
characterise anomalies in past en-route Mode S trajectories. The
technique builds upon two previous contributions introduced in
2018: it combines a trajectory-clustering method to obtain the
main flows in an airspace with autoencoding artificial neural
networks to perform anomaly detection in flown trajectories.
The combination of these two well-known Machine Learning
techniques (ML) provides a useful reading grid associating cluster
analysis with quantified level of abnormality.

The methodology is applied to a sector of the French Bordeaux
Area Control Center (ACC) during its 385 hours of operation
over seven months of ADS-B traffic. The results provide a good
taxonomy of deconfliction measures and weather-related ATC
actions. The application of this work is manyfold, ranging from
safety studies estimating risks of midair collision, to complexity
and workload assessments of traffic when a sector is operated, or
to the constitution of a database of ATC actions ensuring aircraft
separation. This database could be used to train further ML
techniques aimed at improving the state of the art of deconfliction
algorithms.

Keywords—trajectory analysis; trajectory clustering; anomaly
detection; autoencoders

I. INTRODUCTION

The forecast growth of air traffic will lead to an increase in
safety issues especially in the already congested high-density
airspaces of the US and Europe. The respective air transport
authorities are both addressing the problem in part by putting
into place initiatives to better collect and analyze recorded
flight information such as the Flight Operational Quality
Assurance (FOQA) data programs. On the other hand, the
availability of vast amounts of data via open or public sources
like ADS-B along with the advances in the Machine Learning
(ML) field smooth the way towards an automatic discovery of
unsafe flight patterns and other operational anomalies.

This paper presents a methodology to identify operationally
significant events in recorded ADS-B flight data which can
be associated with Air Traffic Control (ATC) actions in en-
route traffic. Controllers work to ensure safety and optimize
traffic flows; they provide various clearances and take conflict
resolution measures. The identification of traffic situations
and associated ATC actions could address many applications,
including safety analyses or preparations of ATC training
simulations. Identifying situations which could have led to
a separation loss, analyzing context and proximate events
are valuable inputs for Collision Risk Models (CRM) [3],
resulting in estimations of mid-air collision risks. Locating
hot spots based on identified situations could also help assess

the complexity of traffic inside a given sector when it is in
operation.

The detection of significant events can be achieved by
automatically identifying flights presenting a certain degree of
anomaly. The goal of our research is to design a methodology
for finding anomalies in the en-route phase of the flights in a
given airspace or sector. Our approach combines a trajectory
clustering method [1] to identify air traffic flows within the
considered airspace with a technique to detect anomalies [2]
in each flow. The proposed method highlights trajectories,
which in spite of not being considered directly as outliers by
the clustering algorithm, still present a degree of dissimilarity
significant enough to justify further analysis. The final goal
would be to understand the causes and implications of what
could be labelled as potential ATC actions.

The evaluation of our methodology is performed on a
seven months’ traffic data from a sector in the Bordeaux
Area Control Center (ACC) for periods when the sector was
operationally deployed according to the Sector Configuration
Plans (SCP), also known as opening schemes. Our method has
been able to identify many ATC situations of various types,
to be related to the structure of the traffic in the sector.

The rest of the paper is organized as follows. Section II
reviews the state of the art with respect to clustering and
anomaly detection techniques. Section III presents the con-
sidered use case over LFBBPT sector controlled by Bordeaux
ACC. Section IV recalls the various steps of clustering and
anomaly detection that are applied to the considered dataset.
Then, Section V presents the results and Section VI analyses
specific situations found by our toolchain. In conclusion, we
recall the most significant benefits of our approach, main
results and the potential impact of our contribution.

II. LITERATURE REVIEW AND RELATED WORK

Recently, Machine Learning (ML) techniques have brought
a new perspective to ATM related problems: unsupervised
machine learning mainly addresses the description of data and
of its underlying structure: clustering [1], [4], [5], [6], and
anomaly detection [2], [7], [8] fall into this category; super-
vised machine learning applies to labeled datasets and focuses
on predicting aircraft trajectories [9], [10], [11]. Reinforcement
learning addresses more traditional optimisation problems [12]
where the search space may be explored through interactions
with a simulator or based on a history of situations.



Bundling [13], [14] is a reliable technique related to flow
identification. It is a powerful visualisation tool which distorts
and groups pieces of trajectories; this method is well suited
to exploration analytics but fails to provide a label to each
trajectory, essential for grouping samples into categories to be
used for further studies.

A natural way to identify trajectory flows is by using clus-
tering techniques. Such algorithms group similar trajectories
together in clusters, where each cluster is associated with
a traffic flow represented by a centroid, i.e. the mean of
the trajectories in the cluster. A number of methods in the
literature [5], [6], [15], [16], [17], [18] exist to cluster flight
trajectories into flows, most of them based on density-based
clustering algorithms such as DBSCAN [19].

Basora et al. [1] describe a clustering method specifically
designed to identify the traffic flows in a sector, based on
a progressive clustering technique originally developed by
Andrienko et al. [16], [17]. This method was successfully
applied to identify the flows for all the sectors in the Bordeaux
Area Control Center (ACC) by selecting a set of six clustering
variables.

Analysing outliers resulting from a clustering algorithm can
be a relevant method to find anomalies in a dataset. Olive [6]
proposed a different technique for identifying converging flows
in the terminal area of Toulouse which helps understand how
approaches are managed. The analysis of outliers provides
elements to understand and assess specific situations calling
for more in-depth safety analyses.

Other techniques for anomaly detection have been proposed
in recent years: Das et al. [7] introduced a technique called
Multi-Kernel Anomaly Detection (MKAD) based on a One-
class Support Vector Machine (SVM), which has been applied
to FOQA data to detect significant events in the approach
phase [20], [21], [22]. The main advantage of this method
is the ability to consider continuous and discrete variables
through a linear combination of many kernel functions for each
variable type. On the other hand, clustering based anomaly
detection (ClusterAD) [23], [24] associates nominal flights
with clusters and considers the remaining flights not belonging
to a specific cluster (outliers) as anomalous flights.

In spite of the good quality results, limitations in both
ClusterAD and MKAD have been pointed out in studies [25],
[26]: the authors pointed out the need for dimensionality
reduction, the poor sensitivity to short duration anomalies,
and the inability to detect anomalies in latent features. They
proposed different approaches [26], [27] based on a Vector
Auto-Regressive (VAR) technique to model the FOQA data
and identify anomalies in the flights.

Alternatively, Nanduri et al. [25] describe the application
of Recurrent Neural Networks (RNNs) to overcome the lim-
itations enumerated above. In particular, they showed that a
Long-Short Term Memory (LSTM) architecture can perform
better than MKAD in detecting flight anomalies. The authors
trained several RNN architectures to detect 11 canonical
anomalies found in the literature [7], [23], [28] by generating
data in the format of FOQA from an X-Plane simulation. As

a result, RNNs were able to identify 8 out of 11 anomalies,
whereas MKAD was only able to identify 6 of them.

In this paper, we focus on autoencoders, a particular kind
of neural network which have recently proved successful
at anomaly detection. They have already been used to find
breakpoints in time series [29], to predict realistic transitions
in sector configurations [30] and to detect and distinguish
atypical situations (mostly weather related) and controllers’
actions in Mode S data [2]. Autoencoders are comparable
to compression methods: they are trained to reconstruct, i.e.
compress then decompress, data (trajectories) passed in input.
In practice, they learn to reconstruct most samples in a training
dataset and fail to reconstruct the more atypical ones. Anomaly
detection is based on the distance, the reconstruction error,
between input trajectories and their reconstructed copies. In
particular, the analysis of distributions of reconstruction errors
has been a powerful asset in the context of ATM data.

III. SCENARIO AND DATASETS

Mode S has become one of the most important technologies
in air traffic management as it supports the operation of
secondary surveillance radar (SSR), traffic alert and colli-
sion avoidance systems (TCAS), and Automatic Dependent
Surveillance–Broadcast (ADS-B). In practice, transponders in
aircraft are selectively interrogated by sensors (radars) to
provide situational awareness through the exchange of binary
encoded information.

The OpenSky Network [31] is a crowd-sourced sensor
network collecting such air traffic data. The collected data used
for this study contains only ADS-B data of aircraft flying a
specific sector in the French Bordeaux Area Control Center
(ACC) between January 1st and August 6th 2017.

Each ACC, in charge of providing air traffic control ser-
vices to controlled flights within its airspace, is subdivided
into elementary sectors that are used or combined to build
control sectors operated by a pair of air traffic controllers.
Airspace sectorisation consists in partitioning the overall ACC
airspace into a given number of these control sectors. In most
centres, the set of control sectors deployed, i.e. the sector
configuration, varies throughout the day. Basically, sectors are
split when controllers’ workload increases, and merged when
it decreases.

We call Sector Configuration Plan (SCP) the sequence of
sector configurations to be deployed within an ACC through-
out a day of operations. This plan, also known as opening
scheme, is established by the Flow Management Position
(FMP) on a daily basis and contains the information regarding
the opening time slots for each sector configuration. The SCP
dataset for this study was provided by the operational team in
Bordeaux ACC in order to enable the selection of trajectories
operated in each sector.

We have chosen for our study a specific sector, LFBBPT,
and selected in the SCP dataset the time intervals when the
sector was operationally deployed, meaning that a pair of
controllers were in charge of the sector. We have considered all
the sector opening slots of longer than 30 minutes and selected



all the associated trajectories (only for aircraft equipped with
ADS-B capable transponders) crossing the sectors during these
intervals. The goal of using the SCP is for the traffic under
analysis to be representative of operational situations with a
level of workload deemed acceptable by the controllers.

Fig. 1. Scenario with en-route traffic in Bordeaux ACC within LFBBPT sector.
A traffic sample of 5000 trajectories is plotted for reference.

The scenario and the geographic footprint of the sector
(available on the eAIP France, ENR 3.81) are illustrated in
Fig. 1 with a subsample of 5000 trajectories crossing the sector
while it is in operation. Trajectories have been preprocessed
to filter the noise out and extract the trajectory parts within
the area of interest (sector LFBBPT, above 19,500 ft). Also, we
have removed flights spending less than five minutes within
the sector.

In order to meet the prerequisites of the clustering and
anomaly detection techniques, the resulting trajectories have
been resampled so as to have an equal number of points which
we have fixed at 50 points per trajectory. During the 385 hours
of operation of LFBBPT, a dataset of 14,461 trajectories has
been used to evaluate our approach.

IV. METHODOLOGY

In this section, we describe the methodology for anomaly
detection in the en-route traffic of an airspace. First, we
identified the air traffic flows crossing the sector when opera-
tionally deployed. The flow identification is performed by the
trajectory clustering algorithm developed in [1]. The output
of the algorithm is the set of trajectory clusters and the set
of outliers, i.e. the trajectories which could not be allocated
to a cluster and which therefore should already present some
degree of abnormality. The main goal in this phase is not so
much to find anomalies in the traffic as to properly identify
the air traffic flows. Then, we apply an autoencoder-based
anomaly detection method [8] to detect events in the identified
flows.

A. Flow Identification

In the clustering algorithm described in [1] a trajectory
within a sector is represented with only its first and last points
corresponding to the entry and exit points of the flight in the

1https://www.sia.aviation-civile.gouv.fr

sector. Therefore, for the clustering algorithm, the notion of
similarity between trajectories is limited in this case to the
way the flights enter and leave the sector. The authors found
that this level of trajectory representation was sufficient to
properly identify the flows as seen by the operational teams
in the Bordeaux ACC sectors and so should be applicable to
our scenario case.

The steps of the clustering method are illustrated in Fig. 2.
First, a matrix is built from the trajectory dataset generated
in the preprocessing phase, where each line of the matrix is a
vector of six dimensions representing the trajectory entry/exit
points to/from the sector, i.e. the two geographic coordinates
and altitudes of each entry/exit point. A logarithmic function
is applied to the altitude data, such that two stable (levelled
off) cruise trajectories at high levels (e.g. FL330 and FL370)
will be considered closer than two potentially evolving (stable,
climbing or descending) trajectories interacting at lower levels
(e.g. FL290 and FL330). This technique has been designed to
help the algorithm separate the two types of trajectories. Also,
all matrix values have been standardized to have zero mean
and unit variance. The resulting matrix is the input to the
DBSCAN algorithm which identifies the initial set of clusters
(flows) and the outliers.

Load sector trajectory sample

Build trajectory matrix

DBSCAN
For each subset
of trajectories in

{Clusters} + {Outliers}

New clusters
identified?

Postprocessing

{Clusters} + {Outliers}

{Clusters} + {Outliers}

no

yes

Fig. 2. Flow identification method.

As some of the flows were not always well separated after
the first application of DBSCAN, we refined the clusters ob-
tained by applying DBSCAN again separately to each of them,
using a technique called progressive clustering approach [16],
[17]. This refinement can be achieved thanks to the effect of
data standardization which transforms data differently at the
cluster and sub-cluster level. Moreover, we perform at every
level of the recursion a fine-tuning of DBSCAN parameters, i.e.
the density parameter ε (the maximum distance between two
samples for them to be considered as in the same neighbor-
hood) and the minimum sample size n, aimed at identifying
additional flows within the clusters and outliers.

The iterative flow identification process stops when no new
clusters are identified. Eventually, a post-processing phase is



initiated after the cluster centroids are computed. A fusion step
was also added by the authors to compensate for the potential
effect of over-clustering that can be caused by the iterative
application of DBSCAN.

B. Autoencoders for Anomaly Detection

We implemented the method presented in [2] that had
already been successfully applied to detect controllers’ actions
before aircraft enter the Terminal Maneuvering Areas of major
airports. In this paper, we applied this technique en-route, on
flows identified by trajectory clustering rather than on flows
identified by city pairs. The technique uses autoencoders and
work on the distribution of reconstruction errors.

1) Autoencoders: Autoencoders are artificial neural net-
works consisting of two stages: encoding and decoding. A
single-layer autoencoder (Fig. 3) is a kind of neural network
consisting of only one hidden layer. Autoencoders aim at find-
ing a common feature basis from the input data. They reduce
dimensionality by setting the number of extracted features to
be less than the number of inputs. Autoencoder models are
usually trained by backpropagation in an unsupervised manner.
The underlying optimization problem aims to minimize the
distance between the reconstructed results and the original
inputs.
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Fig. 3. Autoencoder neural network architecture with one layer

The encoding function of an autoencoder (such as the one
depicted in Fig. 3) maps the input data s ∈ Rd to a hidden
representation y ∈ Rh = e(s) = g(w · s+ b) where w ∈ Rd×h

and b ∈ Rd are respectively the weight matrix and the bias
vector and g(·) is a non linear activation function such as
the sigmoid or hyperbolic tangent functions. The decoding
function maps the hidden representation back to the original
input space according to ŝ = d(y) = g(w′ · y+ b′), g(·) being
most of the time the same activation function.

The objective of the autoencoder model is to minimize the
error of the reconstructed result:

(w,b,w′,b′) = argmin `(s,d(e(s))) (1)

where `(u,v) is a loss function determined according to the
input range, typically the mean squared error (MSE) loss:

`(u,v) =
1
n ∑ ||ui− vi||2 (2)

2) A new term of Regularisation: The method proposed
in [2] is based on the analysis of the distribution of re-
construction errors ρi = ||ui− vi||2. We found that once the
autoencoder has converged, the reconstruction errors are dis-
tributed according to a (possibly exponential) rapidly decreas-
ing density function with most samples centred around zero.
The few samples with the highest reconstruction errors were
associated with exceptional events (mostly weather related)
whereas reconstruction errors located in the ”belly” of the
distribution happened to match traditional ATC deconfliction
or sequencing operations.

A major challenge of our approach is the attempt to identify
flows from trajectories entering and leaving a sector rather
than from city-pair trajectories. Identified clusters may result
from the aggregation of sparsely distributed trajectories. When
samples are distributed in such a way that variation modes (or
sub-clusters) of unbalanced weights emerge, these modes may
subsist in the distribution of reconstruction errors in the form
of a distribution with two ”hills” (see Fig. 4). In order to limit a
premature optimisation of the autoencoder which would learn
to favour one mode over the other, we improved the training
of our network with a regularisation term added to the loss
`(u,v).

A regularisation term is a penalty term added to the loss
that is commonly used to prevent overfitting. Among neural
networks, L1- (resp. L2-) regularisations penalize the loss after
each iteration with the sum of the absolute (resp. squared)
weights of the neural network. In our case, since we expect a
distribution of reconstruction errors that would fit an exponen-
tial law, we propose a regularisation term based on a measure
of distance between distributions.

After each iteration, we fit an exponential law to our distri-
bution of reconstruction errors. The best fit to an exponential
distribution can be written based on the mean of all (ρi)
samples, which has already been computed in form of the
MSE loss `(u,v). Therefore, the best fit for the probability
density function becomes:

f : x 7→ 1
`(u,v)

· e
−

x
`(u,v) (3)

Then, we compute the distance (Fig. 4) between the dis-
tribution of reconstruction errors and the fitted exponential
probability density function. For each t j ∈ [0,max(ρi)] equally
sampled with j ∈ [1,m], we evaluate the difference:

δ j =

(
1
n ∑

i
1[t j ,t j+1](ρi)

)
− f (t j) (4)

Finally, we sum all the positive δ j as a regularisation term
to the original square loss. For our specific use case, we found
λ = 10−2 to be particularly efficient.



Fig. 4. Distribution of ρi (suggesting two modes of variations) and their fitted
exponential law: the regularisation aims at minimising the coloured area.

`?(u,v) = `(u,v)+λ

m

∑
j=1

max(0,δ j) (5)

The differentiation of the regularisation term `?(u,v), nec-
essary to implement the gradient descent and backpropagation
during the training period has been delegated to the autograd
module of PyTorch. All terms presented in this subsection can
be written with torch functions which provide all that is needed
for backpropagation.

V. APPLICATION TO TRAJECTORY ANOMALY DETECTION

In order to identify the flows in the sector LFBBPT, we have
applied the clustering method described in Section IV-A. This
method is based on the DBSCAN algorithm, which requires
two main parameters determining the size n and the density ε

of clusters. For the first application of DBSCAN, we have set ε

to 0.4 and n to 1% of the total number of trajectories. For the
refinement of the clusters, DBSCAN has been executed with ε

set to 0.5 and n set to 1% of the total number of trajectories
in the cluster where it is applied. The minimum number of
trajectories for a cluster to be formed has been established to
2% of the traffic in the sector.

The resulting cluster centroids representing the flows are
displayed in Fig. 5. A total number of nine flows have been
identified with a percentage of outliers reaching 26.4% of the
traffic. We have checked how well the generated clustering
centroids match the ATS Route Network (ARN) also published
on eAIP. Some clusters fit well to sections of the published air
routes, e.g. UN869 (cluster 1), UM728 (cluster 5) or UN460
(cluster 7) but a similar match is less evident with clusters 0, 3
and 4. Cluster 0 is an evolving flow with flights taking off from
Paris area, so it seems reasonable to have it separated from
clusters 3 and 4 which are both stable flows with a centroid
at FL360. The reason for separating clusters 3 and 4 is less
obvious, but certainly due to the fact that the exit points of
these two clusters are separated by a less dense area, which
can be observed in Fig. 1.

All trajectories within a cluster are then considered inde-
pendently. We applied to each cluster the anomaly detection
technique presented in Section IV-B1 with details in [2]. We

Fig. 5. The clustering method applied to our dataset trimmed to LFBBPT
sector resulted in the nine following clusters. The altitude below the identifier
of the cluster reflects the altitude profile of the centroid.

used a different autoencoder network architecture illustrated
in Fig. 6, adapted to the resampling of our trajectories at 50
points per trajectories, working only with true track angles so
as to focus on lateral resolutions of potential conflicts. The
ADAM optimizer was iterated for 30,000 iterations.
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Fig. 6. Neural network architecture with two layers of progressive compres-
sion (encoding) and two layers of decompression (decoding).

The MSE loss converged properly to each cluster, although
the distribution of reconstruction errors of clusters with more
sparsely distributed trajectories (e.g. cluster 4) lead to distri-
bution profiles suggesting two modes, as reflected in Fig. 4.
Using the regularisation term presented in Section IV-B2 lead
to better results as Fig. 7 reflects: the same network has been
trained twice on the same data, first with a regular MSE loss



`(u,v), then with a regularised loss `?(u,v); the MSE loss
has been computed for both executions so as to provide a
meaningful comparison.

Fig. 7. Convergence of the MSE loss is at first slower but soon becomes better
with regularisation (cluster 4, λ = 10−2): final value for the MSE loss after
30,000 iterations is 2.79 ·10−4 with regularisation but 2.98 ·10−4 without.

Eventually, even though the optimizer focused on optimising
the network so as to minimize the regularised loss `?(u,v), it
found a better vanilla MSE loss `(u,v). This result validates
the idea behind regularisation which consists in penalizing our
criterion hoping we can avoid overfitting and converge toward
a more robust solution.

VI. ANALYSIS OF RESULTS

The output of our anomaly detection technique is a score
(namely the reconstruction error) associated with each trajec-
tory. The score is relevant with respect to the distribution of all
scores inside the cluster. Results presented in [2] suggest that
very high scores are to be related to exceptional events such
as cumulonimbus impacting the area whereas samples located
closer to the end of the distribution are often to be associated to
ATC actions for deconfliction. This section analyses the result
on the LBBPT sector and further validates this assumption.

We considered hereafter only a subset of our trajectories,
namely trajectories with a reconstruction error higher than a
given threshold. Since no reference catalogue of anomalous
situations validated by experts is available, we have no choice
but to arbitrarily set this value: we defined a threshold based
on the fitted exponential distribution f defined in (3) and
illustrated in Fig. 8 with the set of samples {xi} s.t.

f (xi)≤
1
5
· f (0) i.e. xi ≥ log(5) · `cluster(u,v) (6)

A. Weather-related events

In order to validate our first assumptions about the most
abnormal situations that were detected, we selected the top 10
trajectories with the highest reconstruction errors for each
cluster, for a total of 90 trajectories. Table I shows that two
days were particularly represented in that subset of trajectories.
The last column (rank) reflects the position of the sample in
the distribution: 1 stands for the highest reconstruction error,
2 for the second highest, etc.

Fig. 8. Selection of the sample trajectories with the higher reconstruction
scores (example of cluster 4). For the purpose of the study, we chose a
threshold of 1/5 = 20% although this could be reconsidered in the future.

callsign date and time of entry in LFBBPT cluster rank

TRA47R 2017-06-20 18:21:00Z 2 6
RYR9TG 2017-06-20 19:09:28Z 4 1
TOM84T 2017-06-20 19:14:51Z 4 3
RYR79EY 2017-06-20 18:35:46Z 4 7
SAA235 2017-06-20 19:07:15Z 5 9
DAH1007 2017-06-20 18:33:34Z 6 8
DLH68F 2017-06-20 18:25:17Z 7 8
VLG83TJ 2017-06-20 18:21:00Z 8 2

AFR88DM 2017-07-08 19:55:01Z 0 1
VLG8248 2017-07-08 20:09:53Z 0 6
AEA1008 2017-07-08 19:39:50Z 0 9
AAF221 2017-07-08 20:08:52Z 0 10
FIN611 2017-07-08 19:42:22Z 2 8

TABLE I
MOST SIGNIFICANT TRAJECTORIES/DAYS IN LFBBPT GROUPED BY DATE.

A first look at the METAR history in airfields located around
the LFBBPT sector (LFLX, Châteauroux, to the North-West of
LFBBPT and LFLC, Clermont-Ferrand in the Southern part of
the sector) reflects locations of cumulonimbus (CB) and tower
cumulus (TCU) consistent with the location of anomalous
trajectories (Fig. 9): CB impacted the whole sector (hence
clusters 2, 4, 5, 6, 7 and 8) on June 20th but only the Northern
part of the sector (mostly clusters 0) on July 8th.

A more thorough assessment of the meteorological situa-
tion is available in Appendix. METAR history is printed for
reference. Anomalous trajectories are also plotted together
with the locations of cumulonimbus on June 20th, estimated
from thermal IR data collected from the Spinning Enhanced
Visible and Infrared Imager (SEVIRI) by the Meteosat Second
Generation of Satellites.

B. Cross-analysis between flows

Isolating deconfliction ATC orders in regular traffic is a
difficult task because most flights are executed without much
deviation from their original intention. Reconstruction errors
help isolate flights calling for further analysis. In an attempt
to automatize the process, we computed the closest point of
approach (CPA) for all pairs of trajectories which fly at the



Fig. 9. Situations with strong thunderstorm activities, on June 20th (left-hand
side, reported in LFLX and LFLC) and July 8th (right-hand side, reported only
in LFLX).

same moment in LFBBPT and which belong to our subset of
trajectories defined in (6). For the CPA computation, we used
the distance between two trajectories based on the cylindrical
norm defined in [32]:

dCPA = min
t

(
max

(
dlat(t)
5nm

,
dvert(t)
1,000ft

))
(7)

where dlat is the distance between the two WGS84 coordi-
nates and dvert the difference of altitudes. 5 nm and 1000 ft are
respectively the lateral and vertical separation minima required
between aircraft flying within Reduced Vertical Separation
Minima (RVSM) airspace [33]. Since we observe traffic which
has allegedly been deconflicted by ATC, all pairs of trajectories
should be separated by a distance dCPA ≥ 1. However, we
assume that an action of deconfliction is likely to involve pairs
of trajectories with a dCPA relatively small.

In the following we focus on pairs of trajectories respecting
the following conditions:

1) each trajectory has a reconstruction error higher than
log(5) · `cluster(u,v) (see Fig. 8);

2) their dCPA ≤ 2, i.e. the lateral and vertical distance at
the CPA should be smaller than 10 nm and 2000 ft
respectively. In addition, we impose a constraint on the
vertical distance to be smaller than 1500 ft in order to
focus only on aircraft flying at adjacent flight levels.

Each trajectory being associated with a cluster, we build the
density matrix as shown in Fig. 10 which reads as follows:
the darker the color at position (i, j) with i ≥ j, the more
trajectories from cluster i and j are possibly subject to a
deconfliction order from the ATC. A first consistency cross-
check with the map on Fig. 5 seems convincing: cluster 0
interact with clusters 3 and 4 (mostly cluster 3); cluster 1
interact with clusters 2, 6 and 8, albeit less with cluster 5.
Cluster 7 fly at a relatively lower altitude and only interact

with cluster 6 (trajectories climbing) but not with clusters 2
and 8 (constant altitudes).

Fig. 10. Density matrix (upper triangle only): the darker the color in (i, j), the
more trajectories from clusters i and j are possibly subject to a deconfliction
order from the ATC.

We focus in the following on specific situations in converg-
ing flows, then on pairs of trajectories in the same flow which
may be impacted by the same factors.

C. Anomalies in pairs of trajectories from different flows

Fig. 11 reflects two situations involving cluster 1 and one of
clusters 2, 6 and 8, containing mainly deconfliction situations
for aircraft flying at the same level. Fig. 12 focuses on the
interaction between cluster 0 (aircraft taking off from Paris
area) integrating into en route traffic from clusters 3 and 4.

Fig. 11. Deconfliction actions between cluster 1 and cluster 6 (left, on
January 3rd), resp. cluster 1 and cluster 2 (right, on March 4th).

The first situation of Fig. 11 involves TVF021Z (cluster 6)
and TAP933A (cluster 1). The dashed line projects the situation
as if no order had been given five minutes before the closest



point of approach with a possible conflict situation at the
intersection of both routes. On the right hand side, ATC orders
given to IBK7VY and IBK6113 seem to have anticipated the
situation earlier with a probable deconfliction order given
ten minutes before the closest point of approach. For such
situations of converging routes at the same flight level, a future
direction for improvement could be to automatically detect the
level of anticipation of the deconfliction by looking backward
from the CPA.

Situations involving cluster 0 are more representative of how
to insert trajectories at the end of their climbing phase, at the
moment they interact with en route flights. The first situation
in Fig. 11 involves DAH1087 from cluster 0, taking off from
Paris Orly and RYR24JE. The lateral separation between the
two aircraft comes as close as 2 nautical miles before they start
flying apart after 13:22 UTC. When DAH1087 reaches FL320,
their separation seems comfortable (around 10 nm), but ATC
probably gave a first clearance to FL320 before giving another
clearance to climb to their final altitude of FL350, making sure
the trajectories were properly separated. On the right hand
side, IBE34PP, taking off from Paris Orly, and IBK6113 seem
to have received proper deconfliction orders, yet IBE34PP is
stopped at FL360 before being given an additional clearance
to FL370.

Fig. 12. Deconfliction actions between cluster 0 and cluster 3 (left, on
January 15th), resp. cluster 0 and cluster 4 (right, on March 31th).

D. Anomalies in pairs of trajectories from the same flows

The density matrix on Fig. 10 reflects a high number of
potential deconfliction situations between pairs of trajectories
from cluster 0 and from cluster 1. Fig. 13 looks into those
situations.

On the left hand side, AEA1038 takes off from Paris Charles
de Gaulle and RAM781S from Paris Orly. They both belong
to cluster 0 and will probably be vectored on the same route.
Having similar climb profiles (both aircraft are B738), special
attention is paid to their lateral separation, probably leading
to these peculiar trajectories.

On the right hand side, TAP817 flies Milan–Porto while
CES709 flies Shanghai–Madrid. When both aircraft join route
UN869, a special attention is paid to their separation (see the
plateau at FL360) before they are probably separated by being
placed on lateral offsets from UN869.

Fig. 13. Deconfliction situations between trajectories in the same clusters.

VII. CONCLUSIONS

In this paper, we presented a significant improvement to
our previous contribution [2] based on the work in [1]. We
developed an efficient methodology for detecting abnormal
situations with a rule of thumb to distinguish weather related
actions from deconfliction actions.

The approach applies an anomaly detection method to the
results of a clustering algorithm. It yields convincing results,
with the regularisation term presented in Section IV-B2 being
a significant asset to address sparse clusters. The results of the
method give a good grasp of the structure of traffic in LFBBPT
sector when it is deployed by the ACC; a good taxonomy
of problematic situations is covered by the results of this
technique (thunderstorms, flows converging at the same flight
level, one or several climbing trajectories to merge into en-
route traffic, etc.) Such an analysis may give hints so as to
find a better way to evaluate the workload associated to a
sector.

Future work could include a robustness assessment so as to
evaluate how stable the catalogue of resulting critical situations



is after several different trainings of the autoencoder, and after
tuning the hyperparameters we introduced in the clustering and
neural network training. Also, outlying trajectories from the
clustering were left aside in this study although a thorough
study of their interaction with the remaining traffic would
probably be of great interest. Safety studies could also benefit
from quantitative assessments resulting for our approach,
possibly with a cross analyses with TCAS Traffic Advisories
(TA) and Resolution Advisories (RA).

APPENDIX

A. METAR history
1) June 20th, 2017:

LFLX 202000Z AUTO 15002KT CAVOK 23/17 Q1015 TEMPO 18015G30KT
3000 -TSRA SCT040CB=
LFLX 201930Z AUTO 15003KT CAVOK 25/18 Q1015 TEMPO 18015G30KT
3000 -TSRA SCT040CB=
LFLX 201900Z AUTO 01003KT CAVOK 26/17 Q1015 TEMPO 18015G30KT
3000 -TSRA SCT040CB=
LFLX 201830Z AUTO 04005KT 350V080 9999 ///TCU 28/18 Q1015
TEMPO 18015G30KT 3000 -TSRA SCT040CB=
LFLX 201800Z AUTO 06008KT 020V110 9999 TS ///CB 31/17 Q1015
TEMPO 18015G30KT 3000 -TSRA=

LFLC 202000Z AUTO 28010KT 9999 RA ///TCU 25/16 Q1016 BECMG
NSW NSC=
LFLC 201930Z AUTO VRB03KT 9999 ///CB 29/15 Q1016 BECMG NSC=
LFLC 201900Z AUTO 35003KT 310V030 CAVOK 31/15 Q1016 NOSIG=
LFLC 201830Z AUTO 00000KT 9999 ///CB 32/14 Q1015 BECMG NSC=
LFLC 201800Z AUTO VRB02KT 9999 ///CB 31/16 Q1015 BECMG NSC=

2) July 8th, 2017:
LFLX 082100Z AUTO 10004KT 070V130 9999 -RA ///TCU 21/18
Q1015 BECMG NSC=
LFLX 082030Z AUTO 23013G25KT 9999 -RA VCTS ///CB 22/17 Q1016
BECMG 04008KT NSW NSC=
LFLX 082000Z AUTO 19004KT 110V210 9999 ///CB 22/17 Q1015
TEMPO 08015G25KT 2000 TSRA BECMG NSC=
LFLX 081930Z AUTO 07009KT 9999 ///CB 23/16 Q1014 TEMPO
08015G25KT 2000 TSRA BECMG NSC=
LFLX 081900Z AUTO 13013KT 090V160 9999 TS ///CB 23/16 Q1015
TEMPO 08015G25KT 2000 TSRA=

LFLC 082100Z AUTO 14003KT CAVOK 21/18 Q1016 TEMPO SCT040TCU=
LFLC 082030Z AUTO 26004KT CAVOK 19/17 Q1016 TEMPO SCT040TCU=
LFLC 082000Z AUTO 14003KT 120V180 CAVOK 20/18 Q1015 TEMPO
VRB15G25KT TSRA FEW040TCU=
LFLC 081930Z AUTO 31005KT 270V050 CAVOK 20/18 Q1015 TEMPO
VRB15G25KT TSRA FEW040TCU=
LFLC 081900Z AUTO 09010KT CAVOK 20/17 Q1017 TEMPO VRB15G25KT
2000 TSGR SCT040TCU=

B. Trajectories of aircraft flying to avoid cumulonimbus on
June 20th 2017

Fig. 14 plots positions, trajectories for the past 15 minutes
and comets for the next 5 minutes of aircraft flagged as
anomalous by our method on June 20th 2017. The location
of cumulonimbus is estimated from Thermal IR data from the
Spinning Enhanced Visible and InfraRed Imager (SEVIRI),
collected by the Meteosat Second Generation series of satellite.

The sector was implemented during the last hours of day-
light, which may suggest that pilots avoid thunderstorms areas
based on their visual perception in the early hours of operation,
and relied on their on board weather radar in the later hours.
Based on this kind of heatmap, future safety studies could
assess how pilots manage to avoid thunderstorm areas based
on the information of on board weather radars.
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