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Abstract—The ability to meet a controlled time of arrival during
a continuous descent operation will enable environmentally
friendly and fuel efficient descent operations while simultane-
ously maintaining airport throughput. However, if the wind fore-
cast used to compute the initial trajectory plan is not accurate
enough, the guidance system will need to correct time deviations
from the plan during the execution of the descent. Previous
work proposed an on-board guidance strategy based on model
predictive control, which repeatedly updates the trajectory plan
in real-time from the current aircraft state and for the remainder
of the descent. However, the wind conditions downstream, at
altitudes not explored yet, were difficult to predict due to the lack
of data. This paper shows the potential benefits of using wind
observations, broadcast by nearby aircraft, to reconstruct the
wind profile downstream. The wind profile in the trajectory opti-
mization problem is modeled as a spline, which control points are
updated to fit the observations before re-planning the trajectory.
Results from simulations using realistic wind data show that the
performance of model predictive control significantly improves
when including up-to-date wind observations, in terms of time
and energy errors at the metering fix and fuel consumption.
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I. INTRODUCTION

Continuous descent operations (CDOs) with controlled
times of arrival (CTAs) at metering fixes could enable more
environmentally friendly procedures while simultaneously
maintaining (or increasing) airport and airspace throughput.

These type of time-based flight operations are a cornerstone
for the queue-management project by the Single European
Sky Air traffic management Research (SESAR) program in
Europe, and for the analogous Time-Based Flow Management
(TBFM) program in the United States. One of the goals
of both projects is to use timing at meter points to more
efficiently deliver aircraft to the terminal maneuvering area.

The RTCA published standards for time of arrival control
as 95% compliance with accuracy levels of ±10 s for CTAs
involving descents subject to the wind uncertainty model
described in [1]. In this context, several studies investigated
the effect of errors in the wind forecast on the performance
of CDOs with CTAs [2], [3], and concluded that an accurate
knowledge of the actual wind conditions is of utmost im-
portance. Results from a flight test conducted at the Denver
International Airport (KDEN) that explored seven different
categories of errors in trajectory calculations by the flight
management systems (FMSs), indicated that approximately

two-thirds of the mean time error and nearly all of the
standard deviation was due to an incorrect wind forecast [4].
Other flight trials described in Ref. [5], also showed the
importance of using a high-quality wind forecast during the
trajectory planning process to accurately comply with CTAs.

State-of-the-art FMSs compute the optimal descent tra-
jectory plan satisfying applicable CTAs before starting the
descent, using the best available forecast of the wind along the
route towards the arrival airport. Then, this initial trajectory
is frozen and the guidance system uses different strategies
to execute it. However, the initial trajectory plan shows only
what can be achieved given perfect knowledge of the actual
wind conditions. If the wind forecast used by the FMS does
not match the actual wind conditions, the initial trajectory
plan is no longer the most optimal, and some operational
constraints (including the CTA) may be violated if errors
are not actively nullified by the guidance system. The use of
accurate and up-to-date wind data when planning the initial
trajectory could potentially reduce the throttle and speed
brakes actions commanded by the guidance system and to
significantly improve compliance with CTAs. Moreover, a
primary driver of accurate CTA compliance is not only the
quality of the wind forecast provided to the FMS, but also
the guidance strategy used to execute the trajectory plan [6].

Previous work [7] showed that nonlinear model predictive
control (NMPC) [8], is very robust in terms of correcting
energy (speed and altitude) and time deviations, providing at
the same time acceptable fuel consumption and noise nuisance
figures. NMPC is a guidance strategy based on a frequent
update of the optimal trajectory plan during the execution
of the descent. Other research [9] has also demonstrated the
feasibility of using NMPC to achieve precise spacing between
aircraft, the objective of interval management (IM) operations.

Recently, the NMPC guidance algorithm was enhanced to
enable the calculation of the optimal trajectory plan using a
wind profile based on the original forecast but progressively
updated based on the ownship sensed winds [10]. However,
that only corrects the wind profile for current and previous
positions, not downstream positions, that is, from current
position to destination. The short-coming of using ownship
sensed winds is that any time deviation due to an incorrect
wind forecast at a downstream waypoint requires a higher
and higher change to the aircraft’s airspeed as the distance to
that point becomes shorter and shorter [6]. Using wind obser-



vations from aircraft that have recently crossed downstream
waypoints at an altitude similar to that planned by the ownship
is expected to improve the accuracy of the ownship trajectory
prediction that is essential to meeting any constraints.

Refs. [11]–[13] proposed wind prediction algorithms that
use wind observations broadcast by nearby aircraft to update,
on-board and in real-time, the wind profile used to calcu-
late the trajectory plan. Other studies investigating aircraft
spacing during IM operations showed that the use of wind
predictions generated from observations emitted by aircraft
in range within a wind networking concept could reduce the
spacing time error if compared with using outdated wind
information [14].

In this paper, the NMPC guidance strategy is implemented
to guide aircraft during CDOs subject to CTAs, and uses the
concept of accessing data available in a hypothetical wind
networked environment to generate accurate and up-to-date
wind predictions on-board and in real-time.

II. BACKGROUND

This paper assesses the benefit of combining a NMPC
guidance strategy with updating the wind profile using wind
observations broadcasted by nearby aircraft.

A. Nonlinear model predictive control (NMPC)

NMPC is based on the solution, at each time sample, of an
optimal control problem over a future time horizon [8]. The
resulting optimal control is applied only until the next time
sample, where the optimal control problem is solved again.

Typical NMPC applications consider a fixed-length time
horizon, which advances an interval sample at each re-
calculation. Alternatively, when the system has to reach a
certain state at a particular time, a shrinking horizon is often
preferred. Using this strategy, the length of the horizon is not
fixed but decreases by one interval sample at each update.

1) NMPC trajectory optimization: Many real-life pro-
cesses, such as the descent of an aircraft, can be divided
into several phases (or stages) where the dynamics of the
system, the cost function and/or the constraints might change.
Note that, in this paper, the term phase does not refer to the
standard phases of a flight (e.g., take-off, climb, cruise), but to
the stages of a generic multi-phase optimal control problem.

Let the continuous time horizon [tI , tF ] be divided into P
time intervals [tj , tj+1] for j = 0, . . . , P−1, where each time
interval corresponds to a different phase. Note that t0 = tI
and tP = tF . Then, each time intervals (phase) is discretized
into Nj equidistant time samples τk, τk+1, . . . , τk+Nj−1,
where τk = tj , τk+Nj−1 = tj+1 and k =

∑
i<j Ni, for

all j = 0, . . . , P − 1. The discretization step of the jth phase
(difference between two consecutive time samples) is denoted
by ∆τj . As a result, the whole time horizon is discretized into
N + 1 =

∑P−1
j=0 Nj time samples τ0, τ1, . . . , τN .

Let T be a multi-dimensional set that relates the index of
each phase to the indexes of its corresponding time samples.
The subset E ⊆ T only includes the index corresponding to
the last time sample of each phase; and I is defined as T \E .

For instance, for a multi-phase optimal control problem
with P = 2 phases and N + 1 = 8 time samples equally

distributed among them (i.e., Nj = 4 for j = 0, 1), these
subsets would be particularised as:

T = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 4), (1, 5), (1, 6), (1, 7)}
E = {(0, 3), (1, 7)}
I = {(0, 0), (0, 1), (0, 2), (1, 4), (1, 5), (1, 6)}.
The optimal control problem starting at τ0, and minimizing

a cost function J (e.g., fuel) in the remaining horizon is:

min
xk,k=0,...,N
uk,k=0,...,N−1

J :=
∑

(j,k)∈E

φj (xk,d) +
∑

(j,k)∈I

Πj (xk,uk,d,∆τj)

s.t x0 = X

xk+1 = F j (xk,uk,d,∆τj) ; ∀(j, k) ∈ I
beqj (xk,uk,d) = 0; ∀(j, k) ∈ I
binj (xk,uk,d) ≤ 0; ∀(j, k) ∈ I
ϑeqj (xk,d) = 0; ∀(j, k) ∈ E\{(P − 1, N)

ϑinj (xk,d) ≤ 0; ∀(j, k) ∈ E\{(P − 1, N)

ψ (xN ,d) = 0

xk − xk+1 = 0; ∀(j, k) ∈ E\{(P − 1, N)},
(1)

where xk ∈ <nx and uk ∈ <nu are the state and control
vectors discretized at τk, respectively; d ∈ <nd is the vector
of fixed parameters of the model; beqj : <nx ×<nu ×<nd →
<nϕj and binj : <nx × <nu × <nd → <nbj are the
algebraic and path constraints, respectively, of the jth phase;
ϑeqj : <nx × <nd → <nϑeqj and ϑinj : <nx × <nd →
<nϑinj represent applicable equality and inequality interior-
point constraints, respectively, applied at the last time of
the jth phase; ψ : <nx × <nd → <nψ are the terminal
constraints; and Πj : <nx × <nu × <nd × < → < and
F j : <nx × <nu × <nd × < → <nx are the quadrature
and states evolution functions for the jth phase, respectively,
which are the result of integrating the continuous running cost
(πj) and the system ordinary differential equations (ODEs)
describing the dynamics of the system (f j) during an interval
of duration ∆τ using the discretized states and controls. For
instance, using the Euler method, these functions would be:

F j(xk,uk,d,∆τj) = xk + f j (xk,uk,d) ∆τj , (2a)

Πj(xk,uk,d,∆τj) = πj (xk,uk,d) ∆τj ; ∀(j, k) ∈ I.
(2b)

Note that the discretization step of each individual phase
could be considered either a known parameter or variable to
be optimized, depending on the context. For instance, if the
duration of the whole time horizon were fixed to a certain
parameter, say a CTA, but the duration of each phase were
flexible, ∆τj for j = 0, . . . , P − 1 would become additional
decision variables subject to the following constraint:

P−1∑
j=0

(Nj − 1) ∆τj − CTA = 0, (3)

which would be appended to Eq. (1).



It should be noted that the vector of fixed parameters of
the model (d), however, is not part of the decision variables
and, consequently, must be chosen by the user and remains
constant during the whole optimisation process.

The optimal trajectory plan can be computed by formulat-
ing the discrete-time optimal control problem Eq. (1) as the
following parametric nonlinear programming (NLP) problem:

min
z

f (z,p)

s.t h (z,p) = 0

g (z,p) ≤ 0,

(4)

where z ∈ <nz is the vector of primal variables; h : <nz ×
<np → <nh and g : <nz × <np → <ng are the vectors of
equality and inequality constraints, respectively; and p ∈ <np
is the vector of (fixed) parameters of the NLP optimization
problem. In this paper, the following notation has been used:

z := [z0, z1, . . . ,zN ]
T

h (z,p) := [h0 (z,p) ,h1 (z,p) , . . . ,hN (z,p)]
T

g (z,p) := [g0 (z,p) , g1 (z,p) , . . . , gN (z,p)]
T
,

(5)

where (·)T represents the transpose of (·) and

zk :=

{
[uk,xk]

T if k 6= N

xk if k = N

hk :=


[
xk+1 − F j,k, beqj,k

]T
if (j, k) ∈ I[

ϑeqj,k,xk − xk+1

]T
if (j, k) ∈ E\{P − 1, N}

ψ (xk,d) if k = N

gk :=

{
binj,k if (j, k) ∈ I
ϑinj,k if (j, k) ∈ E\{P − 1, N}.

(6)
According to Eq. (6), zk includes both discretized states and
controls at the time sample τk. Similarly, gk and hk include
the inequality and equality constraints applied at τk.

In Eq. (4), f is the cost function of the original optimal
control problem evaluated at the primal variables and fixed
NLP parameters, i.e., f (z,p) = J(z,p). In this paper, the
vector of fixed NLP parameters is composed of the initial
conditions (X) and the parameters of the model, i.e., p =
[X,d]

T .
Furthermore, in order to reduce the number of variables and

constraints, the constraint that determines the initial condition
of the optimal control problem to the current state of the
system is eliminated by substituting the variables x0 for the
initial conditions X in the whole NLP optimization problem.
This makes the constraint x0 = X of Eq. (1) redundant,
allowing to remove the variable x0 from the calculations.

Let PN be the NLP algorithm that provides the optimal
primal-dual solution as a function of p for the next N
samples:

(z∗,λ∗,µ∗)← PN (p) (7)

where λ ∈ <ng and µ ∈ <nh are the Lagrange multipliers
(dual variables) paired up with the constraints g and h,
respectively. A more technical description of the conditions
necessary for optimality is found in Ref. [10].

When using the shrinking horizon NMPC, the optimal
control problem is solved at each τi, i = 0, . . . , N−1 in order
to obtain the optimal trajectory starting at τi and extending to
τN . Let PN−i be the NLP algorithm that provides the optimal
primal-dual solution as a function of p, but starting at τi:

(z∗i:,λ
∗
i:,µ

∗
i:)← PN−i (p) (8)

where (·)i: indicates the elements of (·) corresponding to time
samples from τi to the end of the time horizon (τN ).

2) NMPC guidance strategy: In an ideal case, problem
PN−i is solved at each τi, as soon as the parameter vector p
is measured or estimated. Then, the resulting optimal control
u∗i is applied without delay until τi+1, where the process is
repeated. However, for achieving optimal performance and
good stability properties, problem PN−i needs to be solved
instantaneously. We refer to this hypothetical case as the ideal
NMPC (INMPC). Algorithm 1 details its main steps.

Algorithm 1 Ideal NMPC (INMPC)

1: (z∗0:,λ
∗
0:,µ

∗
0:)← PN (p)

2: for i = 1, . . . , N − 1 do
3: Measure X and estimate d
4: p← [X,d]

T

5: (z∗i:,λ
∗
i:,µ

∗
i:)← PN−i (p)

6: Implement u∗i until τi+1

In practical applications PN−i may be computationally
expensive to solve. This implies that the control u∗i cannot
be applied just after p is measured or estimated, but only
after PN−i is solved. The delay in calculating the new
solution may lead to sub-optimum trajectories, failure to
meet constraints, or in some instances instabilities of the
solution [15]. This motivates the introduction of sensitivity-
based methods, which rapidly update the optimal descent
trajectory plan by using parametric sensitivities instead of
solving a rigorous NLP optimization problem at each time
sample.

Previous work [10] showed that the performance of
sensitivity-based methods are similar to those of the INMPC,
with the sensitivity-based methods being simpler, faster and
more robust. Since the performance was similar, it is expected
that the results from the addition of wind networking to the
INMPC guidance strategy described in this paper should also
apply to the sensitivity-based methods.

B. Wind sources and models

Section II-B1 describes the sources of weather data and
the wind models used by state-of-the-art FMSs to generate
the trajectory plan. Section II-B2 presents basic concepts of
wind networking and lists some relevant works on this topic.



1) Conventional wind sources and models: Currently, the
flight crew receives the wind forecast from the flight dis-
patcher and either enters that information manually into the
FMS or automatically via a data communication system.

The typical FMS allows for storing the forecast wind value
at each departure and arrival waypoint, and up to five values
for each en route waypoint. Operationally, the five altitudes
are usually above, at, and below the aircraft’s expected alti-
tude, allowing the FMS to interpolate between the altitudes.
When required, the FMS can also extrapolate beyond those
altitudes or limits to perform trajectory predictions.

The wind data entered to the FMS are primarily based
on wind charts from numerical weather prediction (NWP)
models. Nowadays, the observations required to initialize
NWP models are mainly gathered from radiosondes and
aircraft equipped with AMDAR (aircraft meteorological data
relay). However, the spatial distribution of the radiosondes,
which are launched only two to four times a day, is too
coarse, and wind observations gathered through AMDAR are
not sufficient because not all aircraft in operation are equipped
with that system [16].

Due to the relatively low spatio-temporal resolution of the
data used to initialize NWP models and the computational
burden of running a prediction, wind forecasts are generated
only three to eight times per day, and are valid until +6, +12 or
+24 hours beyond their issued time. Consequently, the wind
forecast for the descent is not tailored for the current as-
amended flight plan, and could be several hours old by the
time the top of descent (TOD) is reached.

Most flight planning suppliers currently use the world area
forecast model that is produced to an ICAO specification
by meteorological providers. Some flight plan supplies also
generate their own wind forecasts at a finer resolution, but do
not provide a higher update rate due to the time required to
uplink the data to the FMS using the available bandwidth [17].

2) Wind networking: Aircraft could be used as a network
of airborne sensors emitting the sensed wind to ground
systems [18] or to nearby aircraft [19] to provide accurate,
high-resolution and up-to-date wind data replacing or comple-
menting the forecasts obtained from NWP models. At present,
however, aircraft rarely broadcast this valuable information.

Fortunately, the wind vector can be indirectly inferred from
standard surveillance data already in place. Several works
already proposed to use wind observations derived from
surveillance data to provide enhanced wind predictions for
the air traffic management (ATM) community. Most wind
estimation methods found in the literature rely on the fact
that the wind vector is the difference between the ground
speed vector and the true airspeed (TAS) vector.

Early in the 1980s, Ref. [18] was the first to propose a
method to estimate the wind vector from ground-based (radar)
surveillance observations. The ground speed vectors for every
scan of each aircraft track were obtained by taking the
difference between the sequential radar positions of aircraft
and then dividing by the scan interval. Then, the ground speed
vectors from multiple aircraft were used to infer the wind
vector by means of Bayesian estimation techniques, assuming
constant wind speed and aircraft airspeed during turns.

Aircraft equipped with Advanced Surveillance-Broadcast
(ADS-B) autonomously transmit surveillance data including
not only aircraft position but also ground speed vector. The
wide availability of ADS-B receivers at a relatively low
cost and the growing amount of aircraft equipped with this
surveillance system make ADS-B an attractive source of data
for many ATM applications. Similarly to Refs. [18] and [20],
Ref. [19] proposed a method to estimate the wind vector from
ground speed vector observations. In this case, however, the
ground speed vector was directly obtained from the ADS-B
surveillance messages. The method was based on a modified
extended Kalman filter that estimates the wind recursively
from an aircraft in a turn. In addition, a new method to
estimate wind using data from multiple aircraft was also
proposed.

Mode-S messages emitted by the aircraft surveillance sys-
tem as a response to a secondary surveillance radar interro-
gation includes information about the ground speed and TAS
vector, from which the wind vector can be directly inferred.
The use of Mode-S data for wind networking applications was
investigated in [21]. Recently, Ref. [22] applied geostatistical
techniques to generate a four-dimensional wind model for the
terminal maneuvering area; and Ref. [23] investigated a novel
and relatively fast gas particle model that estimates the wind
field in real-time from ADS-B and Mode-S messages.

In summary, the capability to derive the sensed wind data
from aircraft transmitting ADS-B and Mode-S messages will
provide the FMS more accurate information from which to
calculate the optimum trajectory. Nearby aircraft, in particular
those on the same trajectory, broadcast data that can be used
to update and improve the wind profile used by the FMS to
optimize the trajectory while meeting constraints and CTAs.

III. NMPC GUIDANCE STRATEGY FOR A
TIME-CONSTRAINED CDO

In this Section the generic optimal control Eq. (1) problem
is particularized for an aircraft already in descent on a CDO
that is subject to a time constraint at a single metering fix.
Then, an algorithm to estimate the wind profile is proposed.

A. Optimal control problem formulation

The state vector x = [t, v, h]
T is composed of time, TAS,

and altitude; the control vector u = [γ, T, β]
T is composed of

the aerodynamic flight path angle, engine thrust, and speed
brakes deflection. The flight path angle is the control that
is used by the aircraft to modulate energy (i.e., exchange
potential energy for kinetic energy and vice-versa), whereas
thrust and speed brakes are used to add and remove energy.

Different from typical approaches, the independent variable
is the distance to go (s) and not the time. The selection of s as
the independent variable is driven by the fact that during an
ideal CDO, with no intervention from the air traffic controllers
(ATC) except for the assignment of the CTA, the aircraft will
follow a closed-loop route and the remaining distance to go
will be known. In addition, this formulation replicates how
constraints are defined in the current operational environment,
thereby enabling more precise modeling of the constraints.



The dynamics of x are expressed by the following ODEs,
considering a point-mass representation of the aircraft reduced
to a gamma-command model, where vertical equilibrium
is assumed and the cross and vertical winds are assumed
negligible:

f j =
dx
ds

=

 1
T−D(v,h,β)

m − g sin γ
v sin γ

 1

v cos γ + w(h)
(9)

where D : Rnx×nu → R is the aerodynamic drag; g is the
gravity acceleration; m is the mass, which is assumed to be
constant since the fuel consumption during a descent is a
small fraction of the total mass [24]; and the longitudinal
component of the wind w : R → R is modeled by a
smoothing spline [25]:

w(h) =

nc∑
i=1

ciBi(h) (10)

where Bi, i = 1, . . . , nc, are the B-spline basis functions
and c = [c1, . . . , cnc ] are control points of the smoothing
spline. It should be noted that the longitudinal wind has been
modeled as a function of the altitude only, as done in similar
works [12].

The goal is to minimize a weighted sum of the fuel
consumption and speed brakes use (which leads to airframe
noise) for the remaining descent. Thus, the running cost is:

πj =
q(v, h, T ) +Kββ

(v cos γ + w(h))
(11)

where q : Rnx×nu → R is the fuel flow and Kβ a
parameter that determines how much the use of speed brakes
is penalized.

Furthermore, generic phase-independent path
constraints on the controls ensure that the maximum
and minimum descent gradients, thrust and speed
brakes are not exceeded throughout the descent:
bin =

[
γ, γmin − γ, Tmin − T, T − Tmax,−β, β − 1

]T
,

where γmin is the maximum descent gradient;
Tmin : Rnx → R and Tmax : Rnx → R are the idle
and maximum thrust, respectively; β = 0 and β = 1 indicate
that speed brakes are retracted and fully extended.

Different alternatives can be used to model the aircraft
performance functions Tmin, Tmax, D and q and their respec-
tive parameters. In this paper, the EUROCONTROL’s base
of aircraft data (BADA) v4 model has been adopted [26].
However, BADA v4 does not include a model for the effects
of the speed brakes on the drag coefficient (CD). As a
workaround, in this paper the contribution of the speed brakes
is modeled as an extra linear term CDββ in the generic
BADA v4 drag coefficient model, where CDβ is a coefficient
representing the increase in drag coefficient for unit of speed
brakes deflection.

Terminal constraints fix the state vector at the metering fix:

ψ =

 t− CTA
vCAS(h, v)− vCASF

h− hF

 (12)

where vCAS : Rnx → R is the calibrated airspeed (CAS);
vCASF and hF are the CAS and altitude at the metering fix.

The vector of model parameters includes the control points
of the spline approximating the longitudinal wind and the
CTA, i.e., d = [c,CTA]

T . This definition allows the optimal
trajectory to be updated whenever an improved wind forecast
is available or the CTA is tactically modified by ATC.

Finally, the descent is divided into P phases, defined
between two consecutive waypoints of the lateral route with
associated speed and/or altitude constraints. In each phase,
the different operational constraints that may apply can be
modeled in the form of path, algebraic and/or interior-point
constraints. The exact number of phases and associated con-
straints depend on the particular procedure being investigated.

B. Update of wind profile

Given a set O composed by no wind observations with
associated time stamps (ĥk, ŵk, τk), k = 1, . . . , no, and a
vector of fixed knots, the optimal location of the control
points ck, k = 1, . . . , nc, that minimize the curvature of the
smoothing spline while bounding the approximation error is
obtained by solving a weighted least-squares fitting problem:

min
ck,k=1,...,nc

∫
w′′(h)2dh

s.t
no∑
k=1

ωk

(
w(ĥk)− ŵk

)2
≤ ε

(13)

where ε specifies the trade-off between smoothness and
accuracy of the approximation. The weights associated with
the observations can be defined in many different ways. In
this paper, the weights are updated at each time sample τi
according to ωk = Λτk−τi , where τk is the time sample when
the observation at ĥk was obtained, regardless of the source
of information and its geographical location. The forgetting
factor Λ ∈ [0, 1] weights the more recent measurements so
that old observations are discounted at an exponential rate.

IV. EXPERIMENT SETUP

A 1x5 test matrix was used to assess the benefits of
combining wind estimation and NMPC guidance along a
CDO. The CDO selected is currently in use at KDEN, and a
subset of altitude and speed constraints at four waypoints were
modeled. Within each of the five cells of the text matrix, the
CDO was flown 10 times, with each repetition using an initial
forecast wind profile and an actual wind profile to generate
wind error for the aircraft model to experience. The same set
of 10 actual wind profiles was used in each test cell to create
identical wind error per run, allowing direct comparison of
results by run.

A. Arrival route

The BOSSS TWO standard arrival procedure at KDEN
was selected as the starting point to define the lateral route
and the vertical profile used in this paper. The metering fix
where CTAs were assigned by an hypothetical ATC during
the simulations was the final approach point (DYMON). A
more detailed view of this procedure can be found in [10].



From all the waypoints of the route, only the altitude and
speed constraints at QUAIL, BOSSS, CHAPP and DYMON
were modeled. In order to accomplish that, the descent was
divided in P = 4 different phases, with associated phase-
dependent path, algebraic and/or interior-point constraints.
It should be noted, however, that the fact of modeling few
constraints of the real procedure is not a shortcoming nor a
limitation of the model. The model proposed in this paper
can handle an unlimited number of phases and associated
constraints, yet few constraints have been selected aiming to
represent a futuristic and less restricted procedure facilitating
CDOs, as well as to ease the interpretation of the results.
Table I wraps up the different phases and constraints.

TABLE I. Phases and associated constraints for the BOSSS
TWO

Phase binj ϕeq
j ϑin

j ϑeq
j

0

 M − MMO
vCAS − VMO
250 kt − vCAS

 -
[

FL170 − h
h− FL190

] [
vCAS − 250 kt

]
1

[
vCAS − 250 kt
210 kt − vCAS

]
- -

[
vCAS − 210 kt
h− 12, 000 ft

]
2

[
vCAS − 210 kt

GD − vCAS

] [
ḣ
]

- -

3
[
vCAS − 210 kt

GD − vCAS

]
- -

In Table I, M : Rnx → R is the Mach number; MMO and
VMO are the maximum operative Mach and CAS, respec-
tively; and GD is the green dot speed1. In this experiment,
the maximum descent gradient was set to −7◦. In addition, the
values for VMO and MMO were obtained from the BADA v4
global parameters file. The terminal constraints of the generic
model (see Eq. (12)) were set at the waypoint DYMON, such
that hF = 7, 000 ft, vCASF = GD = 200 kt.

Remember that, as described in Section II-A, binj and ϕeqj
are the inequality and equality algebraic path constraints,
respectively, applying all along the jth phase. Analogously,
ϑinj and ϑeqj represent inequality and equality interior-point
constraints, respectively, enforced at the end of the jth phase.

B. Case studies

Accurate wind data were obtained from the rapid refresh
(RAP) forecast/analysis system of the National Oceanic and
Atmospheric Administration (NOAA). This system generates
numerical weather forecasts hourly for look-ahead times up to
+18 hours in a 13 km resolution grid covering North America
and for 50 vertical levels extending up to 10 hPa. Slightly
different, RAP analyses, which reproduce the actual weather
conditions, are generated hourly by using observations gath-
ered from commercial aircraft, balloons, radars and satellites.

Historical RAP wind forecasts for look-ahead times of +3
and +6 hours during one year (from June 2017 to June 2018)
were compared with actual wind data as reported by the

1For the Airbus A320, the green dot speed is the minimum operating
speed in managed mode and clean configuration, being approximately the
best lift-to-drag ratio speed

corresponding RAP analysis. From these data, the root-mean-
square error (RMSE) of each wind forecast over the region
of interests (around Denver) up to FL400 was computed.

For each one of the look-ahead times considered in this
paper, the 5 RAP forecasts with the highest RMSE were
selected. Table II lists the case studies selected for the
experiment.

TABLE II. Case studies

Case Study Look-ahead time Forecast generation RMSE [kt]

00

+3

18-04-21 00:00 18.6
01 18-05-29 00:00 13.3
02 18-04-17 18:00 11.4
03 17-06-10 18:00 9.9
04 18-05-14 18:00 9.5

05

+6

18-04-30 18:00 14.1
06 17-06-12 18:00 12.9
07 17-12-04 06:00 12.8
08 17-11-16 18:00 12.2
09 17-09-19 18:00 12.1

C. Generic simulation workflow

The experiment simulated an Airbus A320-214 cruising at
FL360 and Mach 0.78. Well before starting the descent, the
FMS computed the optimal descent trajectory to DYMON for
a typical cost index of 30 kg min−1 [27], discretizing the con-
tinuous optimal control problem into N = 60 time samples.
The initial plan was computed considering a smoothing spline
for the longitudinal wind profile that approximated the RAP
wind forecast data. As a result of this optimization process,
the best distance to go from the top of descent, sTOD, and the
optimal time of arrival at DYMON were obtained. In addition,
the energy-neutral time window 2 from sTOD to DYMON was
also computed and sent to the hypothetical ATC, who replied
with a CTA at DYMON within this feasible time window.

Then, the FMS set the CTA as a terminal constraint for
the time state in Eq. (12), and calculated the optimal descent
trajectory from the current state to DYMON by solving PN .
All simulations started with the aircraft located at the TOD,
ready to start the execution of the optimal descent trajectory
using the INMPC guidance strategy (see Algorithm 1).

At each time sample, the wind measured by the aircraft
sensors at the current altitude and the wind observations
received during the last time interval from aircraft in the
neighborhood were appended to O. Then, the control points
of the spline approximating the wind profile were updated by
solving Eq. (13). In this paper, the number of wind observa-
tions received from aircraft in the neighborhood during a time
interval was modeled as a Poisson probability distribution:

p (x|µ) = e−µ
µx

x!
(14)

where µ is a parameter describing the expected number of oc-
currences. In this paper, three values of µ have been assessed

2The energy-neutral time window from a state to a metering fix is defined
as the difference between the latest and earliest time of arrival that could
be achieved without requiring neither additional thrust nor speed brakes
use throughout the descent. Previous works show that energy-neutral time
windows up to 4 minutes can be obtained for certain flight conditions [22].



for each case study listed in Table II: 0.0, 0.5 and 1.0. Note
that for µ = 0.0 only ownship wind observations are used to
update c, since p (x|0) = 0∀x ∈ N. In addition, the reference
situation in which the initial wind profile forecast obtained
from RAP is never updated (i.e., the wind profile is static) yet
the descent is executed using NMPC guidance, and the worst-
case situation in which, at each τi, i = 0, 1, . . . , N − 1, the
optimal control u∗i from the initial trajectory plan (computed
at the TOD) is injected to the system in open-loop (OL), are
also assessed. Summing up, the 1x5 test matrix is composed
by three values of µ, the static wind profile, and the OL
execution.

Algorithm 2 outlines the steps performed to update c at τi.

Algorithm 2 Update of c at each τi during the simulation

1: εi ← N
(
µε, σ

2
ε

)
2: wi ← w (hi) + εi
3: O ← O ∪ (hi, wi, τi)
4: K ← Pois (µ)
5: for k = 1, . . . ,K do
6: hk ← U (0, hi)
7: εk ← N

(
µε, σ

2
ε

)
8: wk ← w (hk) + εk
9: O ← O ∪ (hk, wk, τi)

10: Update weights of O
11: c← solve Eq. (13)

First, the wind sensed by the aircraft at hi was appended
to the set of observations. Then, the number of wind observa-
tions received from nearby aircraft between τi−1 and τi, K,
was generated from the Poisson probability distribution. For
each wind observation k = 1, . . . ,K, the altitude hk at which
an hypothetical nearby aircraft sensed the wind was generated
from a uniform distribution in the altitude interval [0, hi].
The sensed wind included a measurement error εk generated
from a normal distribution, which was centered at µε = 0
with a standard deviation of σε = 1 kt. The different wind
observations (hk, wk, τi) k = 1, . . . ,K were progressively
appended to O. Finally, the weights of the wind observations
included in O were updated and c was re-calculated.

After updating c, the optimal trajectory starting at the
current state was re-calculated by solving PN−i according
to a more accurate prediction of the actual wind conditions.

In this paper, PN−i was formulated in CasADi [28], a sym-
bolic framework for automatic differentiation and numeric
non-linear optimization, and solved by using the sequential
quadratic programming (SQP) algorithm implemented by
SNOPT (Sparse Non-linear OPTimiser) NLP solver.

V. RESULTS

Section V-A describes a particular case study for various
values of µ, as illustrative example. The aggregated results for
all case studies and values of µ are discussed in Section V-B.

A. Illustrative example

Case study 09 is the illustrative example. Figure 1 shows
the planned and executed trajectories, where each panel

corresponds to a different rate of wind observations available
to update the wind profile. The lightest solid lines in the three
panels of Fig. 1 are identical to each other, i.e., the initially
planned trajectory (computed at the TOD). Then, the slightly
darker solid lines in Fig. 1 represent the plans resulting from
trajectory updates at two of the sixty time samples. These time
samples, which were selected only for illustrative purposes
and without any specific criteria, are τ10 and τ40. Data for
the remaining time samples are not shown for the sake of
clarity.

Before updating the trajectory at each time sample, the
NMPC guidance system updates the wind profile according
to Algorithm 2 if networked wind data are available. If this
were the case, the forecast wind profile would converge to
the actual wind profile. When networked wind data are not
available, the forecast wind profile remains static and does
not converge to the actual wind profile. This can be observed
in Fig. 2, which shows the initial wind forecast, the wind
forecast at the time samples τ10 and τ40, and the actual wind
profile.

In Fig. 2, the forecast wind profile (lightest blue line) of
case study 09 deviated fairly substantially from the actual
wind (red line) in two different portions of the CDO. From
FL360 to FL220 the forecast wind profile underestimated
the actual headwind (negative values of X-axis), and from
FL200 to the surface it overestimated the actual headwind.
Therefore, when analyzing the error in the forecast wind
profile shown in Fig. 2, the expectation would be an aircraft
would have to increase its airspeed from FL360 to FL220 and
decrease its airspeed below FL200 from the initial calculated
trajectory. A closer examination of Fig. 1 reveals this does in
fact happen. In Fig. 1(b) for µ = 0.5, the ground speed of the
aircraft increases around 15 NM before QUAIL and decreases
afterwards, if compared to the initial plan, in order to satisfy
the operational constraints enforced at the waypoints of the
route. In Fig. 1(c) for µ = 1.0, the speed up is performed
much earlier (around 25 NM before QUAIL) since a better
knowledge of the actual wind profile downstream is available
well in advance (see Figs. 2(b) and 2(c), respectively). In all
cases, after QUAIL the updated trajectory requires the aircraft
to slow its calibrated airspeed to compensate for the weaker
than expected head wind from the initial forecast.

Fig. 2(a) shows that when only own measurements are used
to update the wind forecast, any error in the forecast will not
be corrected at downstream waypoints. On the other hand,
when wind observations from other aircraft are considered in
the estimation of the wind profile, up-to-date wind data in
the whole range of altitudes may be accessible. As expected,
the wind forecast converges earlier to the actual wind profile
as the rate of wind observations received per time interval
increases.

For this particular case study, the time error resulting from
executing the optimal control of the initial plan in open-loop
was 76 s. When implementing the NMPC guidance strategy,
independently of the mechanism selected to manage the wind
profile forecast, the time error was reduced to values below
30 s. Using a static wind profile, the time error was 27 s. The
smallest time error (10 s) was achieved for µ = 1.0.
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Figure 1: Planned and executed trajectories by µ (case study 09)
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Figure 2: RAP wind forecast and analysis by µ (case study 09)

In terms of specific energy (Es)3 error at the metering fix,
the deviation with respect to the initial plan for the open-loop
execution was around 1250 ft. For the NMPC strategy the Es
error was negligible, being lower than 50 ft independently of
the mechanism selected to manage the wind profile forecast.
Again, the best case was achieved with µ = 1.0.

When a fully wind networked concept concept is imple-
mented (Fig. 1(c) with µ = 1.0), the executed trajectory is
changed sooner and more profoundly than when less or no
updated wind information is available as shown by the larger
difference between the light and dark red lines.

B. Aggregated results

This section presents the performance metrics for all case
studies of the experiment. Fig. 3(a) shows the time error at
the metering fix (DYMON) with respect to the enforced CTA
for three different values of µ and for the case in which the
wind forecast was not updated, i.e., the initial wind forecast
from RAP was kept static throughout the descent. The time
error that would be achieved by applying the optimal control
resulting from the initial plan in open-loop is also shown.
Analogously, Fig. 3(b) shows the Es error at DYMON.

According to Fig. 3(a), the time error at the metering fix
when applying the optimal control from the initial plan in
open-loop could be higher than 100 s. When using NMPC
guidance, the time error was drastically reduced and typically

3The specific energy is defined as the total energy of the aircraft divided
by the aircraft weight. By definition, the units of the specific energy are ft.

less than 15 s. For the static wind profile approach, in which
the trajectory is updated at each time sample based on a
wind forecast that does not change during the execution of
the descent, the time error was lower than 30 s for all case
studies. The larger time error corresponds to case study 08,
in which the time error was similar to that of the open-loop
execution. For the simulations in which the wind forecast was
updated with only ownship observations, the time error was
lower than 17 s for all case studies. Using this approach,
the time error was approximately halved with respect to that
using a static wind forecast. Results show that if additional
wind data emitted by aircraft in range were used to update
the wind profile, the time error would be negligible for all
case studies.

According to Fig. 3(b), the metering fix could be achieved
with Es errors up to 1600 ft by implementing the optimal
control of the initial plan in open-loop. Conversely, when
executing the descent with NMPC the metering fix is achieved
with much smaller error. For the static wind profile approach,
the Es error is lower than 200 ft for all case studies. When
the wind profile is updated at each time sample yet using only
ownship wind observations, the maximum Es error is reduced
to 50 ft. Finally, if additional wind observations from nearby
aircraft were used to update the wind profile at each time
sample, the Es error would be negligible for all case studies.

In the methodology proposed in this paper, the optimal
control computed at each τi modulates the energy of the
aircraft by using the elevator to change the aircraft’s airspeed
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Figure 3: Aggregated results at metering fix by case study

to meet constraints and achieve the CTA. When this is
insufficient in certain wind conditions, it then increases thrust
(adds energy) or deploys speed brakes (removes energy). In
this case, the NMPC trajectory optimizer would calculate
the optimal amount of energy to be added or removed in
terms of fuel consumption and speed brakes use such that all
constraints are satisfied.

Fig. 3(c) shows, for each case study, the difference between
the executed trajectory and the initial plan, in terms of
total specific energy removed by deploying the speed brakes.
Positive values indicate that trajectory updates removed more
energy by using speed brakes than initially planned. Fig. 3(d)
shows the difference in specific energy added by thrust
between the initial plan and executed plan, with positive
values indicating more thrust was used than initially planned.

According to Fig. 3(c), the static wind profile approach
requires speed brakes in 8 of the 10 case studies assessed
herein. When the wind profile is updated with only ownship
wind observations, similar energy needs to be removed by
deploying speed brakes, but on the other hand the time
error and the specific energy errors at the metering fix are
appreciably smaller. A significant reduction of the specific
energy removed by deploying speed brakes is observed when
including wind observations of nearby aircraft in the pre-
diction of the wind profile. In particular, for µ = 0.5 only

3 of 10 case studies required the use of speed brakes, and
only 2 case studies for µ = 1.0. It should be noted that, for
this particular set of case studies, incorporating more wind
observations does not only reduce the number of case studies
where speed brakes were required, but also the total amount
of energy removed.

The planned thrust is based on the aircrafts altitude and air-
speed along the arrival procedure. When the aircraft deviates
from the planned altitude and/or airspeed, the thrust actually
used may be different from that of the initial plan at the
same τi. Therefore, the planned thrust at τi could be slightly
different from the actual thrust at τi. These state deviations are
the cause of the specific energy differences shown in Fig. 3(d)
for the OL strategy.

According to Figs. 3(c) and 3(d), the results from the static
wind forecast required the use of speed brakes and throttles
compared to other guidance strategies. For µ = 0.0, only
one energy-neutral descent (i.e., requiring neither additional
thrust nor speed brakes during the descent) was obtained,
corresponding to case study 08. For µ = 0.5 and µ = 1.0,
the number of energy-neutral descents greatly increased to
5. These are very promising results considering that the
case studies selected for this experiment correspond to the
worst RAP forecasts generated for +3 and +6 hours look-
ahead times during one year. It should be noted that for
those case studies in which energy modulation was not
sufficient to satisfy operational constraints, the amount of
energy added/removed by the NMPC guidance system was
optimal in terms of fuel consumption and use of speed brakes.

Fig. 3(e) shows the difference in fuel consumption between
the executed trajectory and the initial plan, with negative
values indicating fuel savings and positive values indicating
that additional fuel was required. Results shown in Fig. 3(e)
agree with those of Fig. 3(d): the cases studies that required
additional specific energy (i.e., thrust), typically resulted in
extra fuel consumption. Interestingly, compared to the initial
trajectory plan, the extra fuel required by the NMPC to
compensate energy and time deviations when considering
the worst wind forecast during one year at Denver is less
than 10%. Furthermore, for most of the case studies analysed
herein, adding wind observations from nearby aircraft resulted
in fuel savings if compared to the initial trajectory plan. These
results indicate that NMPC combined with wind networking
concepts could be a mechanism to correct time and energy
deviations at no extra fuel cost (at aggregated level). However,
a more deep analysis considering a large number of case
studies should be performed to support this hypothesis.

VI. CONCLUSIONS

This paper combined a non-linear model predictive control
(NMPC) guidance strategy, which repeatedly updates the
optimal trajectory of an aircraft, with a wind networking
concept in which aircraft and ground systems share wind
observations to improve the wind profile forecast on-board
and in real-time.

Results from simulations considering the worst wind fore-
cast during one year at Denver show that the performance of
the NMPC strategy is significantly improved when including



up-to-date wind observations, in terms of time and energy
errors at the metering fix and fuel consumption. The proposed
approach has shown to potentially compensate large energy
and time errors using minimum fuel consumption.

Unfortunately, the current and accurate ADS-B and Mode-
S data being transmitted is not currently being used to update
the wind profile used by the FMS to optimize the trajectory
plan. Results arising from this work should encourage the
aviation community to take advantage of data provided in the
wind networked concept to further optimize the trajectory.
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