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Abstract—The classification of weather impacts on airport
operations will allow efficient consideration of expected local
weather events and in an analysis of air traffic network behav-
iors. We use machine learning approaches to correlate weather
data from meteorological reports and airport performance data
contains of flight plan data with scheduled and actual movements
as well as delays. In particular, we used unsupervised learning
to cluster performance impacts at the airport and classify
the respective weather data with recurrent and convolutional
neural networks. It is shown that a classification is possible
and allows estimates of delay including weather and flight plan
data at an airport. This paper serves to illustrate a possible
classification with machine learning methods and is the basis
for further investigations on this topic. Our machine learning
approach allows for an efficient matching of the decreased airport
performance and the occurrence of local weather events. Thus,
we provide an update of current weather classifications, which
will be a basis for a better understanding of interdependencies
between local and network-wide effects in the air transportation
system.

Keywords-component—airport performance; weather impact;
METAR data; machine learning;

I. INTRODUCTION

Weather has a significant impact on airport operations and
the performance of the whole aviation network. Delayed
operations may caused by airport capacity constraints due to
severe weather conditions. The prediction of aircraft processes
along their whole trajectories is required to achieve punctual
operations. Uncertainties during the airborne phase of flights
represent only a minor impact on the overall punctuality. In
the current operational environment, ground tasks gain more
relevance. The focus on ground operations will allow the
different stakeholders to define and maintain a comprehensive
4D aircraft trajectory over the day of operations. Using a
reliable and predictable departure time is one of the main tasks
of the ground activities. Mutual interdependencies between
airports, as departing delays propagate thought the network,
result in system-wide far reaching effects. In 2016, reactionary
delays continued to be the main delay cause, followed by turn
around delays, accounting for 46% of departure delays.

Flight deviations are important for the air traffic manage-
ment and induced by weather and traffic situations as well as
controller actions (e.g. directs [1]). Typical standard deviations

for airborne flights are 30 s at 20 min before arrival [2], but
could increase to 15 min when the aircraft is still on the
ground [3]. As shown in fig. 1, the average time variability
(measured as standard deviation) during the flight phase (5.3
min) is higher than in the taxi-out (3.8 min) and in the taxi-
in (2.0 min) phases, but it is still significantly lower than the
variability of both the departure (16.6 min) and arrival (18.6
min) phases [4]. The changes experienced during the gate-to-
gate phase are comparatively small, leading to a translation
of departure variability into arrival one [5]. Thus, the arrival
punctuality is driven by the departure punctuality and all
stakeholders (airlines, airport, network manager, air navigation
service providers) play a significant role on the system-wide
punctuality performance.

Fig. 1: Analysis of European flights from 2008–2015 regarding
variability of flight phases, not considering flights departing to
or arrival from outside Europe (for data, see [4], [6]).

For example, airlines strategically implement buffers to
absorb a part of the delay generated by tactically reducing
its propagation and achieving a desired target of punctuality
[7], [8]. In 2016, only 81% of the flights were punctual
with a decreasing trend starting from 84% punctuality in
2013 [4]. Weather related delays are reported by the flow
management positions as the second most common cause of
en-route air traffic flow management (ATFM) delays (18%)
[4]. For airports, the closer they operate to their maximum
capacity, the more severe is the impact of a capacity loss due
to external events such as weather.



A. Status quo

Current research in the field of flight and airport operations
addresses economic, operational and ecological efficiency [9]–
[18]. The propagation of delay in the network is paramount
when assessing the impact of congestion [19], [20]. This
is particularly critical when estimating the resilience of the
Air Traffic Management (ATM) system and the impact of
different mechanisms on the expected performances’ variations
[21]–[23]. Dynamic traffic situations emerge from traffic flow
patterns across Europe and to/from intercontinental flows,
military operations [24], volcanic ash eruptions [25], zones of
convective weather [26], prevention of contrails [27], consid-
eration of commercial space operations [28] and integration of
new entrants [29]. Current research also considers passengers
metrics as trade-offs between optimisation of flight perfor-
mances not possibly being aligned with passengers experience
[30]. This can be particularly relevant when optimising arrival
flows at airports under uncertainty [31], [32]. Thus, delay
generation due to weather impacts including location and time
of the primary delay generation and its evolution are relevant
to capture the complexity of the system dynamics.

With a focus on airport operations, the weather phenom-
ena could be categorized by the ATM Airport Performance
(ATMAP) weather algorithm [33] provided by the Eurocon-
trol’s Performance Review Unit (PRU), which aims to quantify
the weather conditions at European airports (measure of the
intensity and duration of weather phenomena). Thus, a group
of experts identifies relevant aviation weather factors and
considers that these factors are additionally coupled with
the availability of local airport technologies (such as pre-
cision approaches in poor visibility conditions) and aircraft
characteristics (such as defined tolerances for crosswind and
tailwind). Furthermore, the ATMAP algorithm weight the dif-
ferent weather factors, that similar ATMAP scores will result
in comparable impacts on airport operations, although they are
based on different weather events (such as high wind speeds
or low visibility conditions). The ATMAP algorithm considers
five weather classes (ceiling and visibility, wind, precipitations,
freezing conditions, dangerous phenomena) and also considers
different degrees of severity per weather class. In fig. 2 the
daily ATMAP weather score (diamond) is displayed against
the airport performance at Frankfurt airport using on-time
performance (delay < 15 min) and cancellations.

Fig. 2: Airport performance data and ATMAP weather score
at Frankfurt Airport (2013).

The following definitions are used in the ATMAP algorithm:
weather phenomenon is a single meteorological element which
impacts the safety of aircraft during air and ground operations;
weather class is a group of one or more weather phenomena
affecting the airport performance; severity code is a ranking
number of the weather class status (from best to worst);
coefficient represents the assignment of a score to a given
severity code in order to describe the nonlinear behavior
of various weather phenomena. The PRU proposes a multi-
step procedure to determine the ATMAP weather score: in a
first step, a given METAR (Meteorological Aviation Routine
Weather Report) observation at the airport will be assessed by
specifying the severity code and its associated coefficient for
each weather class. This METAR message is parsed, filtered,
and transformed to a quantified measures (coefficients). In a
second step, these weather class coefficients are summed up
to the corresponding ATMAP score (per METAR message).
Finally, for a given time interval (hours of operations), the
sum of all ATMAP scores are divided by the number of
METAR observations to calculate an average ATMAP score
per time interval (e.g., per hour, per day). In this context, the
ATMAP algorithm separates days of operations into good and
bad weather days, using an average and airport-independent
ATMAP value of 1.5 (default European score for bad weather
days [33]). In fig. 3 the impact of these different weather
classifications are shown by increased number of accumulated
delay minutes per hour (gray bars) caused by higher numbers
at the ATMAP weather score (green/red bars).

(a) good weather days

(b) bad weather days

Fig. 3: Different hourly delay characteristics at Frankfurt
Airport (2013) considering two weather classifications: (a)
good and (b) bad weather [34].



B. Scope and structure of the document

In this contribution, we provide for the first time a machine
learning approach to quantify the impact of local (severe)
weather conditions to the airport performance. The ATMAP
algorithm by the PRU [33] based on expert judgment and
was initially established in 2011. This quantifying method
will updated based on actual datasets and appropriate latest
methodologies. We propose a machine learning approach,
which considers local weather data (METAR) and airport
performance data (scheduled and actual flight plan) to correlate
the complex dependencies in the airport systems. Herein, we
are not focusing on the causes (input) but on the consequences
(output) to the airport performance. For this purpose, we
categorize the airport performance and backtrack/ evaluate
possible causes from the observed weather phenomenon.
Finally, we will provide a methodology to map individual
weather phenomenon to airport performance impacts, which
will be a basis for a new approach to overcome the limitations
of the current judgment-based ATMAP algorithm.

The document is structured as follows. Section I provides an
introduction of the topic and a status quo of related research
activities. In section II, the datasets for weather and airport
performance are described, including a brief description of the
ATMAP algorithm [33]. The general concept of machine learn-
ing, in particular classification and clustering, is addressed in
section III. In section IV, several neural networks are applied
to the datasets. Finally, the document closes with a conclusion
and outlook (section V).

II. WEATHER AND AIRPORT PERFORMANCE

The dataset we used for the analysis consists of flight
plans and weather data of major European Airports (more
than 60 million flights, year 2014-2015). The flight data sets
include scheduled and actual time stamps of specific aircraft
movements, and air traffic relevant weather data are derived
from the airport specific METAR data. From this dataset
we used a subset with a focus on London Gatwick airport
(EGKK).

A. Weather data

Current weather conditions are usually recorded at each
airport in the form of METARs (Meteorological Aviation
Routine Weather Report [35]). METARs are reported in com-
bination with a Terminal Area/Aerodrome Forecast (TAF).
While TAF provides forecast values, METAR data are mea-
sured values. The unscheduled special weather report (SPECI)
is another format representing significant changes in airport
weather conditions. The time of update and the update in-
terval of a METAR weather report are not harmonized and
implemented differently worldwide. For example, at larger
airports in Germany, a METAR is released twice an hour
(20 min past and 10 to the full hour) while, at small sized
airports like Moenchengladbach (EDLN), a new METAR is
available once an hour only during the operating times of
the airports. Current and historical METAR and also TAF
data are accessible at different public available websites

(such as https://www.ogimet.com). In addition to information
about the location, the day of the month and the UTC-
time (“EDDF 190850Z”), the METAR contains information
about wind, visibility, precipitation, clouding, temperature, and
pressure that are relevant for the air traffic, especially for the
airport operations (see tab. I).

TABLE I: Main components of Meteorological Aviation Rou-
tine Weather Report (METAR) message.

Parameter Measurement METAR Code
(Example)

wind direction azimuth in 06010KT
degrees/speed [kn]

visibility horizontal visibility [m] 7000
precipitation significant weather −SN

phenomenon
cloud cover/height*100 [ft] BKN019

above aerodrome level
temperature air/dew point [◦C] M03/M06
pressure Sea-level pressure Q0998

(QNH) [mbar]
(trend) (reported conditions within (NOSIG)

the next 2 hours)

Fig. 4 exhibits exemplary weather information derived from
the METAR dataset (average per day): temperature, dew point,
wind direction and speed, humidity, and pressure.

Fig. 4: Weather data from the first 60 days in 2014 at Gatwick
airport.

Besides this general weather information, some additional
measurements were available related to adverse weather situa-
tions, such as information about wind gusts, runway conditions
(e.g., ice layer) and thunderstorm related clouds, as well as
calculated values of the Runway Visual Range (RVR). The use
of METAR weather records for data analysis demands for a de-
tailed analysis, since specific characteristics exist and the data
integrity is not assured by the data provider. Typically, data
lacks (partial) loss of significant information, such as wind
data, dew-point data, or runway condition information (e.g.,
depth of deposit), variable units of measure, or incomplete
information about airport runway conditions. To allow for an
appropriate analysis of the weather phenomena, the METAR is

https://www.ogimet.com


decoded stepwise. The information has to be parsed, filtered
and transformed to a usable measure in the context of the
comparison to the airport performance.

B. Standard ATMAP approach

The current ATMAP algorithm quantifies and aggregate
major weather conditions at airports, which have signifi-
cant impact on the airport operations. Five different weather
classes with a significant influence on aircraft and airport
operations are included: (1) ceiling and visibility; (2) wind;
(3) precipitation; (4) freezing conditions; and (5) dangerous
phenomena. In tab. II, these five different weather classes are
shown, described with meteorological conditions, and linked
to the associated maximum coefficient defined by the ATMAP
algorithm. Compared to the other weather classes, danger-
ous phenomenon have a high particular impact on airport
operations which results in the highest coefficients. For both
cumulonimbus (CB) and towering cumulus clouds (TCU), the
ATMAP coefficients are ranging from 3 to 10 (TCU) or from
4 to 12 (CB) depending on the cloud coverage (FEW, SCT,
BKN, OVC). Showery precipitation and intensive precipitation
can lead to a further increase of the coefficient values up to
18 or 24 for TCU as well as CB. Other dangerous phenomena
with impact on the safety of aircraft operations can be divided
into three groups: 30 points (heavy thunderstorm), 24 points
(e.g., sandstorm, volcanic ash), and 18 points (small hail and/or
snow pellets).

TABLE II: Weather classes defined in the ATM Airport
Performance (ATMAP) algorithm.

Weather Class Description Meteorological Coefficient
Conditions

(1) ceiling and deterioration precision approach max. 5
visibility of visibility runways (CAT I-III)

(2) wind strong head- Wind speed max. 4
/cross-wind > 16 knots (+gusts) (+1)

(3) precipi- runway friction e.g., rain, max. 3
tations influencing rwy (+/−) snow,

occupancy time frozen rain
(4) freezing reduced runway T ≤ 3◦C, max. 4

conditions friction, visible moisture,
de-icing any precipitation

(5) dangerous unsafe ops, TCU/CB, max. 30
phenomena unpredictable cloud cover,

impact (+/−) shower, storm

In tab. III, two examples of METARs from Frankfurt Airport
(EDDF) and Munich Airport (EDDM) are given to show the
transformation from the METAR message to the ATMAP
score.The given METAR observation will be assessed by spec-
ifying the severity code and its associated coefficient for each
weather class. These weather class coefficients are summed
up to the corresponding ATMAP score. In the actual example,
both airports are under severe weather conditions (ATMAP
score > 1.5) and Munich exhibits ’dangerous weather phenom-
ena’ in particular (scattered sky at 1800ft with cumulonimbus
(CB) in combination with showers). Both cases are expected
to have significant impact on airport operations.

TABLE III: ATMAP weather score based on local airport
METAR messages.

Weather Class ATMAP
(1) (2) (3) (4) (5) score

METAR EDDF 241320Z 03007KT 9999 −SN FEW012 SCT018
BKN025 01/M02 Q1013 R07L/295 R07C/295 R07R/295

R18/5/295 NOSIG
values 9999 03007KT −SN 01, −SN -
coef. 0 0 2 3 0 5 (sum)

METAR EDDM 082120Z 25006KT 3200 SHSN FEW005 SCT018CB
BKN025 M00/M03 Q1015 TEMPO ...

values 3200 25006KT SHSN M00, SCT018CB,
SHSN SH

coef. 0 0 3 4 15 22 (sum)

According to the time period used at fig. 4 (first 60
days of 2014, daily average), the ATMAP algorithm could
quantify these measurements into a ATMAP weather score.
The aggregated scores for the particularly observed weather
classes indicate the severity of a weather phenomenon with
an increasing value (see fig. 5).

Fig. 5: Corresponding ATMAP score for weather data from
the first 60 days in 2014 at Gatwick airport.

C. Airport performance

The performance of an airport is mainly related to the
number of aircraft movements handled (airport capacity). In
this case, the term capacity generally refers to the ability
of a given transportation facility to accommodate a traffic
volume (e.g., movements) in a given time period (e.g., on
hourly, daily, or yearly basis). If the air traffic demand ap-
proaches or exceeds the given airport capacity, the congestion
of provided infrastructure increases which results in delays and
cancellations. This demand–capacity imbalance is a key cause
of unpunctual operations and affects different components of
the whole airport system on airside (e.g., runways, taxiways,
aprons) and landside (e.g., passenger handling [36], [37]).
Results of a data analysis from Frankfurt airport show that
more than 45% of the variability in daily punctuality are
related to local weather impacts [38].

Flight delays expressed in minutes are defined as the differ-
ence between the scheduled and actual times of arrivals and de-
partures. Reference points for flights are usually their on- and
off-block times. Punctuality is determined as the proportion of
flights delayed less than 15 min, an internationally accepted
performance indicator in air traffic. To anticipate the delay



in phases of high traffic demand (peak times), airlines apply
buffer strategies, to improve punctuality and mitigate tactical
delay costs [4], [21]. The definition of delay can vary accord-
ing to the stakeholder so that a lot of terms and definitions
have been established, such as acceptable delay, network delay,
on-time performance, reactionary delays, delays per flight-
gate to gate, arrival delays, departure delays, surface taxiing
delays, and passenger delay minutes (cf. [36]). In the current
contribution, cancellations will not be considered.

D. Flight plan and weather data

If the airport performance and flight plan data are combined
with the weather data a more complete picture about airport
operations and their weather dependencies will be arise. Fig.
6(a) exhibits how the delay at the airport increases rapidly to
795 minutes (accumulated delay minutes from all flights in a
1 hour period) at the beginning of the day of operations due
to a 2 hour period of fog (ATMAP score 5).

(a) 3rd September 2014

(b) 28th July 2014

Fig. 6: Airport performance data and ATMAP weather score
at EGKK.

The data from EGKK also confirm that the impact of
weather events at the airport performance is even higher with
an increasing severity level. Fig. 6(b) shows the consequences
of 4 hours (06:50 - 10:20 hours) of thunderstorm and rain
in the vicinity of the airport. Since the traffic demand is
increasing due to this time as well, the accumulated delay
could only reduced slowly over the whole day and effects the
operations of nearly all airplanes at this day.

III. MACHINE LEARNING APPROACH

Our approach differs significantly from the basic consider-
ations made at the ATMAP algorithm [33]. ATMAP is based
on expert knowledge, which makes a categorized evaluation of
the weather phenomena. Certain effects of airport performance
are linked to five weather classes (see sc. II-B). One example
is wind categorization: coefficient 1 stands for wind speed
small than 15 kt, coefficient 4 for greater than 30 kt. These
categories are taken as generally valid for European airports
and are not linked to specific airports or regions. We take a
critical view of this, since the location of an airport and the
meteorological conditions there have a significant influence on
its performance. Thus, we want to address these points with
our machine learning approach and focus on two core features
in the model development:

• the model must be impact-based
(i.e. we link effects to their causes),

• the model must be adaptive
(i.e. enable an airport-specific assessment).

In order to evaluate the performance of an airport, it is es-
sential to use the performance (delay in scheduled operations)
itself as a benchmark. Therefore, in our model we convert
a weather categorization into an inverse problem - we deduce
from an output (airport performance) its causes (weather). The
basic idea behind this approach is that weather phenomena are
categorized based on an assignment to effect categories and
not vice versa. Therefore the method includes the following
steps.

1) data preparation of flight schedules/ weather data
2) clustering, class creation of impact data
3) model creation, parametrization and setup
4) model training, application of model to data
5) evaluation, error measurement
Due to a large amount of data, non-linear time series

and interdependencies, self-learning algorithms are used as a
model. These algorithms offer possibilities for independent,
complex solutions to similar problems.

A. Classification with Neural Networks

At first, it is essential to distinguish between classification
and regression. Classification is about predicting a label and
regression is about predicting a quantity. Classification predic-
tive modeling is the task of approximating a mapping function
f from input variables X to discrete output variables Y . The
output variables are often called labels or categories. The
mapping function predicts the class or category for a given
observation.

Classification problems can be solved by a variety of meth-
ods within and outside machine learning. They all have ad-
vantages and disadvantages and their applicability depends on
the particular application. Examples are Logistic Regression,
k-Nearest Neighbors and Support Vector Machines (SVM).
However, neural networks also offer the possibility to classify
non-linear, multivariate data. Thus it is possible to build
an adaptive decision support that delivers complex but fast



outputs to specific input sets. This is the reason why we focus
on neural networks in our application.

There are two main approaches to neural networks that are
suitable for time series classification and that have proven suc-
cessful several applications. These are Convolutional Neural
Network Models (CNN) and Recurrent Neural Network Models
(RNN), especially their sub-type Long Short-Term Memory
(LSTM).

demand
input features

ATMAP 2.0
Neural Network

output class

METAR

delay Δflights
Fig. 7: Neural Network Classification.

RNNs and LSTMs are recommended to detect short-term
correlations that have a natural order, while CNN is better
able at deriving long-term repeated interdependencies. The
reason for this is that RNN could take advantage of the
time correlation between measurements, and CNN is better at
learning deep traits contained in recursive patterns [39]. The
benefit of using LSTMs for sequence classification is that they
can learn from the raw time series data directly (see [40]).

B. Impact Clustering

In order to enable the process of classification, the target
data streams must be labeled (see fig. 8). This label creation
can be done algorithmically or added by expert knowledge. In
contrast to ATMAP, however, the effects, not the causes, are
labeled here. The labels of the target variables should represent
effect categories, which severity the respective effect has on
the performance of the airport. Using the general example of
the delay, it can be discussed, similar to [41], that a deviation in
time of −15 min to 5 min (on time) has no significant influence
on the performance of an airport. Based on this, further
categories can be found that capture the severity of a growing
deviations (delay). This, in turn, is an individual value that
refers to the specific airport and demand/capacity conditions
there. This form of label creation requires local expertise.
It should also be noted that the exclusive consideration of
delay is a 1D target label. In this case creating intervals is
recommended. The use cases consider these intervals under
the abbreviation ”1D” (see sec. IV).

For the algorithmic, multidimensional label creation dif-
ferent methods can be used, which allow a categorization
without expert knowledge. In the field of machine learning,
this is referred to unsupervised learning. Typically, unsuper-
vised algorithms make inferences from datasets using only
input vectors without referring to known (or labeled) outputs.
A basic method from this area is k-Mean clustering. This
method searches for a defined number of k groups in a dataset

which are similar to each other and takes into account the
underlying patterns. To process the learning data, the k-Mean
algorithm in data mining begins with a first set of randomly
selected centroids used as a starting point for each cluster, and
then performs iterative calculations to optimize the centroid
positions [42].

IV. APPLICATION

The following experiments take up the basic idea of fig. 7
and adapt it to the existing data foundations (see fig. 8). The
neural network serves as an adaptive intermediate model and
processes weather and airport performance data. The selection
of these data can be done algorithmically as well as by expert
knowledge. The same applies to the classification of the impact
(performance impact at the airport). The neural network itself
is determined by its parameters, its structure and the range of
data available.
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Fig. 8: Classification of time-discrete data streams.

We implemented the given neural networks in Python
3.6.5 using the open-source deep learning library Keras 2.2.4
(frontend) with open-source framework TensorFlow 1.12.0
(backend) and Scipy 1.0.0 (routines for numerical integration
and optimization). Training and testing were performed on
GPU (NVIDIA Geforce 980 TI) using CUDA as parallel
computing platform and application programming interface.
Similar experiments have also been carried out for regression,
in which LSTM models were used to predict delays (cf [43]).

A. Data preparation

In the first step of the application, the raw data must be
prepared for the use of machine learning. This includes the
selection of features for input and output and the classification
of output. Similar to clustering, the choice of features also
offers the possibility of solving this algorithmically or of
drawing on expert knowledge. The feature selection for the
following applications is made with expert knowledge. Fea-
tures are all numerically accessible factors of METAR dataset
(see Input A in tab. IV). The airport performance is decisively
determined by the relationship between demand and capacity,



where capacity significantly influenced by weather events. An
imbalance between the demand (scheduled movements) and
capacity (actual movements) results in delays, which are added
as a supplementary airport performance indicator.

TABLE IV: Feature selection of weather and airport perfor-
mance data.

Features

Input A wind speed, visibility, temperature, humidity, pressure,
wind direction, heat index, wind gust speed; actual air-
craft movements (arrivals and departures)

Input B Input A + snow, rain, fog
Input C Input B + thunder, hail, precipitation; scheduled aircraft

movements (arrivals and departures)

The indicators snow, rain, fog, thunder, hail and precipita-
tion have not turned out to be statistically significant (only
few events are observed in 2014 and 2015) and are there-
fore added separately. In the latter case, narrivals scheduled and
ndepartures scheduled are added to increase detail.

Both delay and the deviation of n f lights scheduled from
n f lights actual can be used sensibly as outputs. It should be
noted that the METAR data is provided at 30 min intervals
and the output values need to refer to these slots. A uniform
database is indispensable for the learning process. Either the
METAR data is mapped to the single flights or the flight data
is aggregated to the 30 min slots of the weather data. Since we
consider the constant 30 min time slots as an advantage in the
learning process, we have decided for the second variant. As
aggregated value, the average, absolute delay as the deviation
from the scheduled time to the actual time at the gate is
used. The deviation ∆flights = n f lights scheduled − n f lights actual
is calculated absolutely per 30 min slot.

The outputs are either mapped to intervals for the 1D case
(delay) or clustered the 2D case (delay and ∆flights) (see tab.
V). For both cases we create k = 5 impact labels. The result
of the k-Mean clustering is shown in fig. 9.

Fig. 9: k-Mean-clustered 2D-data set with k = 5 clusters.

The combination of two indicators is intended to reflect
the effect of meteorological conditions on the dynamics of an

airport in greater detail. The limits of the intervals for 1D are
inspired by [41]. The properties of the intervals or clusters are
shown in tab. V.

TABLE V: Label creation with clustering and intervalization.

borders / centroids sizes

1D output

 5
15
25
50




0 2,740
1 10,340
2 9,066
3 2,515
4 72



2D output


−0.20 11.38
−1.55 34.20
0.15 2.42
6.50 18.40
−3.51 20.00




0 1,757
1 9,097
2 4,080
3 3,854
4 5,945



For the faultless use of k-Mean, delay outliers with a value
of ≥ 100 min were removed. However, only 2 sequences
were deleted. The lines of the centroid matrices represent a
combination of flights and delay. The first line corresponds
for example to -0.20 ∆flights and 11.38 min delay, whereby it
should be noted that ∆flights assume integer values, but this
is not relevant for the centroids.

B. Neural Network Setup

The result of a learning process of neural networks depends
essentially on their structure and parametrization. A certain set
of parameters determines this process. For the following exper-
iments, parameters should remain uniform across applications,
others should be changed.

TABLE VI: Hyperparameter setup of the networks.

individual parameter constant parameter

Config I nlayer = 100, window size = 50 optimizer = Adam,
Config II nlayer = 100, window size = 6 nepochs = 20,
Config III nlayer = 10, window size = 6 batch size = 64

The optimizer determines the learning rate (η = 10−3) of the
network, the number of epochs the repetitions. This increases
to a total of 300, since it is a stochastic process that is
performed 15 times each for evaluation. The number of layers
determined the complexity of the network, the window size
includes the inclusion of past time steps in the calculation.
A higher value would have no relation to reality with 48
half-hour sequences per day. A total of 24,733 sequences are
available, of which 66% (16,324) are used for training and
34% (8,409) for testing.

In addition to the parametrization, the structure is essential.
This differs depending on the paradigm. Tab. VII exhibits the
chronological order of the used layers.

Of the core layers mentioned, LSTM, Conv1D and ConvL-
STM2D are essential components of the defined paradigms.
In addition to these layers, dropout is particularly noteworthy.
It helps to avoid overfitting by setting a fraction rate of 0.5.



TABLE VII: Structure of the network paradigms.
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LSTM x x x
CNN x x x x x
CNN-LSTM x x x x x x
ConvLSTM x x x x

C. Model fitting and evaluation

As already described, each application is executed 15 times.
The reason for this is that neural networks are stochastic,
which means that a different specific model is created when
training the same model configuration with the same data. This
is an advantage of the network, because it gives the model
its adaptability, but requires a more complex assessment of it.
Tab. VIII shows the final accuracies after 15 applications of the
respective model - for a better overview the corresponding σ

have been omitted. These values include the correctly mapped
input-output ([weather,demand]-delay) combinations and thus
the quality of the trained net.

TABLE VIII: Accuracy of LSTM, CNN, CNN-LSTM and
ConvLSTM with different data sets and hyperparameters.

Config I Config II Config III
1D 2D 1D 2D 1D 2D

L
ST

M

Input A 82.1% 89,6% 72.5% 66.0% 70.5% 72.0%

Input B 76.8% 73.6% 75.1% 67.0% 71.8% 70.1%

Input C 64.3% 55.7% 63.8% 52.6% 42.8% 47.9%

C
N

N

Input A 90.1% 96.9% 74.1% 68.8% 72.1% 62.8%

Input B 36.4% 23.8% 42.8% 41.0% 42.8% 37.7%

Input C 36.3% 61.3% 42.8% 37.7% 42.8% 43.0%

C
N

N
-L

ST
M Input A 72.6% 74.3% 70.6% 61.9% 66.6% 53.6%

Input B 42.4% 36.6% 41.6% 53.6% 42.7% 39.3%

Input C 41.5% 55.2% 41.9% 61.4% 42.2% 55.2%

C
on

vL
ST

M Input A 87.4% 88.2% 74.2% 77.3% 74.2% 77.2%

Input B 36.3% 61.3% 42.8% 50.3% 42.8% 37.7%

Input C 42.6% 37.6% 42.8% 34.0% 42.8% 37.8%

The best results in tab. VIII are achieved uniformly with a
2D target label using the most elaborate learning configuration.
In all cases, this refers to Input A, i.e. the consideration of
statistically relevant weather phenomena and demand. The
ConvLSTM achieves similarly strong results with 1D outputs.

Input B has the lowest accuracy of all paradigms (except
LSTM). This is due to the addition of weather indicators that
have already proved irrelevant in exploratory analyzes. They
falsify the result. The results are improved by adding further

performance indicators to input C. It shows that the LSTM
can handle irrelevant inputs better than the CNN.

A merger of LSTM and CNN is intended to ensure that even
irrelevant inputs do not lead to distorted results. The results of
input B only partially confirm this for both CNN-LSTM and
ConvLSTM. The consideration Config I - 2D - Input B is the
most inexact of all paradigms at CNN.

The computing times dropped considerably from configu-
ration I to III. It should also be noted that the use of hybrid
paradigms (CNN-LSTM, ConvLSTM) led to a sharp increase
in computing time.

D. Model summary

From the results in tab. VIII it can be concluded that
there are several satisfactory model solutions for different
prerequisites, data and configurations. A decision depends
largely on the available data and the level of detail of the
investigation.

The results show that a transfer of weather events and
performance indicators to a classified delay is possible. It
should be mentioned here that extracting knowledge from the
neural network can provide added value. Possible approaches
exist for all paradigms. However, it is difficult to express
the influence of individual meteorological components on the
overall delay, like in [33]. A combinatorial conclusion must
always be assumed which can describe the delay as the end
product of several dependent inputs. The results show that this
combinatorial mapping by machine learning is possible.

The trained network can therefore be used as adaptive
decision support, taking into account the local conditions of
the airport 1:1. A prediction of decision recommendations is
determined by the inputs. These are weather data and demand
in our experiment. While the demand is anchored in the flight
plan by STA and STD and offers a wide forecast horizon,
a weather forecast is limited by the size of the TAF. This
amounts to a period of 6 hrs and means a forecast horizon of
12 time slots with width 30 min.

Note that this is a multi-step prediction and no one-step
prediction. This means that the value predicted by the model is
not updated by the real value over the entire forecast horizon.
Labels that are predicted incorrectly are carried accordingly.
Input values that flow into the calculation of a delay label refer
to the window size.

A short, representative example (tab. IX, fig. 10 and 11)
refers to flight plan data at EGKK on 3rd September 2014.

TABLE IX: Label prediction for 3rd September 2014.

timeslot
t +1 t +2 t +3 t +4 t +5 t +6

EGKK 4 4 1 2 2 2
LSTM 4 4 1 1 2 2
CNN 4 4 1 2 2 2
CNN-LSTM 4 2 2 2 2 2
ConvLSTM 4 4 1 2 2 1

label



All networks were used in their best configuration (for
input A, configuration I, 2D). The start pulse thus comprises
a sequence of 50 time steps of preceding time slots. A 6-
step prediction is performed. The values of tab. IX and fig. 11
represent the labels (cluster numbers) of the k-Mean clustering.
The data refer to the presented example day from fig. 6(a), but
are already labeled and assigned to the slots of the weather
data. Fig. 10 depicts the underlying dataset.
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Fig. 10: 3rd September 2014, labeled and slotted.

The advantage of neural networks, especially recurrent
paradigms, is the integration of parallel or past knowledge.
Thus, errors can occur in predictions which do not lead to
a continuation of erroneous predictions. Tab. IX shows that
LSTM, CNN-LSTM and ConvLSTM each have one or two
prediction errors. The comparison to the actual labels of
EGKK is represented in fig. 11.
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Fig. 11: 3rd September 2014, 6 slot prediction of tab. IX.

The application shown is only intended as an example
of a possible use of the model. In further investigation we
want to find out, how a decision support for the user can be
derived from the trained knowledge. An example would be

an optimal adaptation of the demand to meteorological condi-
tions to minimize the overall delay. Furthermore, a complex
quantification of the individual components of METAR makes
sense, which, however, should be addressed separately due to
complex internal interactions of the weather components.

V. CONCLUSION

In this paper we investigated a quantification of the influence
of meteorological conditions on the individual airport perfor-
mance at London Gatwick airport (EGKK) using machine
learning. Different paradigms of neural networks were used
and combined in order to process the corresponding data foun-
dation in a target-oriented way. The accuracy of the trained
networks was compared and finally exemplarily applied.

The developments in this paper contrast with the mechanism
used by the ATMAP algorithm [33], since our approach
follows a effect-to-cause relation. From the grouped perfor-
mance effects at the airport (e.g. delayed operations), machine
learning methods were used to draw conclusions about the
underlying weather data. The grouping took place by means
of unsupervised learning, the classification by supervised
learning. Especially pure paradigms from LSTM and CNN
show satisfactory results and allow a weather-related decision
support for future airport operations.

A more detailed splitting of the data set makes sense in
the future in order to gain model complexity. In particular, a
separation of arrivals and departures and the associated delays
makes sense in the future, as arrival delays also represent
reactionary delays of the feeder airports. In this respect, a
more specific splitting of the data set would also be useful.
The weather will only have a significant influence on the
capacity when the airport is working at its capacity limits as
far as possible and can no longer serve the demand. We aim
to continue our experiments in this direction. Therefore, we
want to investigate further airports and airport clusters [34]
with regard to their specific weather impacts.
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