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Abstract—The analysis of the airport operational reliability is 

fundamentally linked to the knowledge of the system’s behavior 

and dynamics. This paper proposes a model for assessing airport 

performance at a tactical level (time scale), focusing on the 

airspace-airside turnaround operations (space scale) and 

considering different areas: delay, capacity, environmental impact 

and operational complexity. Airports are transportation systems 

that can complete their tasks with partial performance levels: 

failures of some system elements may lead to partial degradation 

of the system behavior, which cannot be assessed with the 

traditional binary reliability view (working – not working). To 

consider this performance granularity, our model uses a multistate 

approach. A Markov-chain based methodology allows us to 

predict the system’s reliability evolution and move from 

reactionary measures to predictive interventions. It also considers 

the impact of stochasticity on performance prediction by assessing 

the system operational dynamics. The methodology is developed 

through a case study at a major European hub airport: a collection 

of 160,460 turnaround operations (registered at 2016) is used to 

statistically determine the system characteristics. Results for the 

appraised case study show that the airport tends to evolve towards 

repaired states, and that delays are major drivers for airport 

performance dynamics. The contribution of the paper is twofold: 

it presents a new methodological approach to evaluate airport 

operational dynamics and it also provides insights on how 

different factors influence performance. 

Keywords: reliability analysis; turnaround operations; multistate 

systems; Markov processes; performance prediction; system 

dynamics. 

I.  INTRODUCTION 

Airports play a prominent role in supporting connectivity, 
facilitating air cargo, promoting regional accessibility and also 
driving the economies of the areas they serve [1], [2]. Moreover, 
airports are inter-modal transportation infrastructures that act as 
nodes in the air transport network [3]. Failures or degradation of 
airport operations may easily propagate through the network and 
generate system-level effects [4]. Therefore, understanding 
airport operational dynamics, while measuring its performance, 
is one key to successful and efficient management of transport 
systems [5]. As airport dynamics depend on various and 
heterogeneous factors, a holistic view that considers different 
key performance areas is then essential [6]. 

The analysis of the operational dynamics for major transport 
infrastructures is closely related to reliability appraisal, since it 
provides an assessment of the progress of the system operation 
[7]. In traditional system reliability evaluation, both the system 
and its components are considered binary elements, which work 
in two working levels: perfect functioning and failure [8]. 
Airports are complex systems that have different components 
and performance levels, and where we cannot formulate an “all 
or nothing” type of failure criterion. Failure of some of the 
system elements may lead only to performance degradation, and 
a binary model (100%, 0%) would be a poor representation of 
the system. In this paper, we propose a reliability analysis with 
different performance levels for the system and its components, 
which is known as a multistate system (MSS) approach [9]. 

An attribute of an air transport network, which is similar to 
many large complex network systems, is that most of elements 
in the network (including airports acting as nodes) are subject to 
stochastic influence (e.g. the operation of an airport is subject to 
weather conditions, which influence the practical runway 
capacity and some processes). Additionally, the components of 
the system can transit from perfect functioning to degraded 
performance levels during working periods. The combined 
stochastic and time-varying nature of the airport operational 
system creates a set of “dynamics” that affect the way an airport 
is managed and can complete its tasks [3]. Moreover, since 
reliability levels of the system components change during 
functioning periods, this variability should be considered when 
performing the reliability assessment. The theory of system 
dynamics provides a framework to capture the dynamic behavior 
of complex systems [10]; in air transport studies, this 
methodology has already been applied to airport terminals [11]. 

Probabilistic approaches are common in the risk assessment 
of complex engineering systems, nevertheless it is usually 
difficult to combine empirical data with expert knowledge of the 
problem [12]. In this paper, a novel approach based on Markov 
processes has been used, which merges prior expert knowledge 
with real data to obtain posterior distributions of transition 
intensities [12], [13]. Adaptive and stochastic methods can be a 
useful tool for solving airport operational problems [14]. 

The time scale for the analysis is related to the tactical phase 
(the day of operations), as the model predicts, monitors and 
updates the airport operational performance based on the current 



situation. This could be used as an input for continuous 
performance assessment according to real time traffic demand 
(capacity optimization and delay management). However, the 
method could also be applied in a pre-tactical phase (to predict 
future performance levels according to foreseen initial 
operational situations) and the results could be further reviewed 
in a post-operational phase (to measure performance targets or 
evaluate operational processes). 

Regarding the space scale of the analysis, we focus on the 
Airport Transit View (ATV). This concept describes the “visit” 
of an aircraft to the airport [15] and includes the main 
Collaborative Decision Making milestones (Figure 1). 

 

Figure 1. Extension of the ATV concept. Source: adapted from [15]. 

The ATV framework connects inbound-outbound airborne 
segments, providing a tool to optimize airport operations and to 
enable a more efficient and cost-effective deployment of 
operator resources. It integrates airside operations (landing, 
taxiing, turnaround and take-off) and surrounding airspace 
operations (holding, final approach and initial climb) [16]–[18]. 
From an air transportation system view, a flight could be seen as 
a gate-to-gate or an air-to-air process [19]. Whereas the gate-to-
gate is focused on the aircraft trajectory flown, the air-to-air 
process concentrates on airport operations [20]. ATV processes 
act as major drivers for delays and capacity constraints [19], 
[21], [22]. Therefore, to comply with air traffic management 
challenges over the day of operations, a change to an air-to-air 
perspective is necessary, with a specific attention on integrated 
airside/airspace operations (coordination of local airport 
management decisions with the surrounding airspace decisions). 
In Europe, local turnaround delays accounted for 35% of all 
departure delays in 2016, where the average departure delay per 
flight reached 11.2 min [23]. This demands a sustainable 
improvement of the turnaround performance monitoring and 
predictability. 

The main aim of our study is to produce a mechanism to 
monitor and forecast the system’s operational state, as a way to 
proactively assess the reliability of airports (how the system 
performance evolves, what is the mean time to system 
degradation or reparation). Therefore, by applying a new 

methodological approach we seek to evaluate airport operational 
dynamics and provide insights on how different factors 
influence performance. 

Expected direct benefits of the model are better performance 
due to better predictability of airport dynamics and significant 
resilience benefits through better management of forecasted or 
unexpected operational shortfalls. It also supports the 
improvement of airspace/airside operations, situational 
awareness and collaborative decision-making processes through 
the integration and monitoring of aircraft flows throughout the 
ATV cycle. 

The remainder of this paper consists of five primary sections: 
Section 2 provides a literature review of existing approaches and 
models for airport performance analysis, while Section 3 
introduces the data and scenario that will be used in the study. 
Section 4 presents the methodology for assessing the airport 
operational dynamics, introducing the concepts of MSS, Markov 
chains (MC) and reliability indicators. Main results arising from 
the application of the model to the appraised scenario can be 
found in Section 5. This case study demonstrates the use of the 
proposed methodology for modelling and analyzing airport 
dynamics. Finally, the paper presents the main conclusions, 
recommendations and potential future work (Section 6)  

II. BACKGROUND 

Performance measurement at airports is evolving in a 
dynamic regulatory, ownership, and market environment in the 
context of rapid demand growth and technical innovation [24], 
[25]. Airport Operators (AOs) and Air Navigation Service 
Providers (ANSPs) require effective performance measures and 
assessment methods to plan and manage within this complex 
context. Many studies have investigated the productivity or 
financial performance of airports, and how changes in the 
industry may have affected them [26]–[29]. Meanwhile, several 
works have focused its performance analysis on operational 
metrics: delays [30]–[33], capacity congestion [34]–[37], 
weather impact, complexity [38], [39] or safety [40]. However, 
it is usual to segregate the influence of each area on airport 
operations. In this paper, we propose a holistic view, aiming to 
construct performance evaluations on the basis of the multiple 
outputs which airports produce and the multiple inputs which 
they utilize. Moreover, in our study we revise the linkage 
between inbound and outbound flights by assessing the aircraft 
operational flow (turnaround integration in the air traffic 
network). This approach is in line with past analyses [30], [41]–
[43]. Our main contribution in this field is to extend the spatial 
scope to the Terminal Maneuvering Area (TMA) boundaries. 
Instead of considering airspace and airside processes in 
isolation, our approach contemplates the cross impacts among 
operations. (e.g. the knock-on effects of prior delays cascading 
from arrival to departure operations [44]). Hence, we extend the 
spatial scope of previous works that were centered on airside 
operations [45] to the airport/airspace environment. With regard 
to the time scale, while many past performance studies were 
devoted to post-operational analysis [46]–[48], our paper 
proposes a model for describing and predicting airport 
performance at a tactical level (day of operations). 

Therefore, this study addresses two gaps in the literature: (i) 
at present, airport stakeholders lack models able to provide an 



integrated view of the ATV processes (airside and surrounding 
airspace) and analyze the tradeoffs between the various 
measures of airport operational behavior such as capacity, 
delays, environmental performance and complexity; (ii) current 
system-wide congestion problems are worsened due to airport 
operational inefficiencies [4], hence, there is an opportunity to 
develop new conceptual tools to support airport management 
functions. In this sense, we propose a novel approach for 
assessing and predicting the airport’s operational behavior, 
given certain operational circumstances. 

III. SCENARIO & DATA 

A. Scenario definition 

The analysis of the airport operational reliability and its 
dynamics is applied to a case study at Adolfo Suárez Madrid-
Barajas Airport (LEMD). The observation period corresponds to 
2016, when 160,460 turnaround operations were registered [49]. 

B. Preparation of data 

The data preparation phase covered all activities required to 
assemble the final dataset from the initial raw operational and 
meteorological data provided by the airport, including locating 
and refining erroneous measurements. 156,386 final valid 
observations were appraised. Data include operational 
timestamps, meteorological features, aircraft and airline 
information, flight and route details and airport configuration. 
The most representative attributes when assessing airport 
performance were chosen using feature selection techniques 
[50]. The objective of the feature selection step is twofold: 
improving the representativeness and effectiveness of 
performance attributes and providing a better understanding of 
the underlying relationships between variables. 

C. Exploratory analysis of data (distribution fitting) 

Data were used to statistically appraise the system 
characteristics. Distribution fitting has three main objectives: (a) 
to characterize each attribute and its statistical behavior; (b) to 
use probability distributions as a tool for dealing with 
uncertainty when assessing performance; and (c) to use 
probability distributions as inputs for setting the states in the 
MSS model that is developed later. See Figure 2 for an example 
of distribution fitting. 

 

Figure 2. Histogram and distribution fitting for (a) In-Block Delay (seconds) 

and (b) Off-Block Delay (seconds). 

IV. METHODOLOGY & MODEL DEVELOPMENT 

A. Continuity study 

The reliability model is trained for data corresponding to 
airport operations under conditions of continuous demand and 
aircraft queuing. This is when the airport’s operational reliability 

can be evaluated. Otherwise, recovery indicators may be 
affected by the transit time between operations. Moreover, when 
applying the MSS and MC methods, it is necessary to ensure that 
operations are equally spaced in time. Thus, we performed a 
continuity study of airport operations to establish which time 
intervals are the most appropriate for the analysis. During the 
main operational hours of the airport (i.e., from 5 to 24, local 
time), we can assume that operations are continuous (3 min of 
mean time between operations, with an interquartile range of 1 
min), and therefore the theory of MSS and MC is applicable. 

B. Multistate systems reliability analysis and Markov chains 

A system is designed to accomplish a defined task in a 
determined environment, under different changing conditions. 
Traditionally, systems have been modelled in a binary way, thus 
the system has only two possible states: perfect functioning or 
complete failure [21], [36], [37]. Nevertheless, most real 
systems can develop their tasks in more than two performance 
levels. Additionally, real systems are usually composed of 
elements that can also be found in different states [21]. When 
the performance rate of the system’s elements can vary because 
of their deterioration (fatigue, partial failure) or because of 
variable ambient conditions, the entire system may be 
considered a multistate system (MSS) [37]. An MSS reliability 
approach allows us to consider a finite number of states for both 
the system and its components. 

Before studying a complete MSS behavior, it is necessary to 
characterize the elements that constitute it. Any element j of the 
system can have different kj states corresponding to the 
performance levels of the element, represented by the set: 

𝒈𝒋 = {𝑔𝑗1, 𝑔𝑗2 , … , 𝑔𝑗𝑘𝑗} (1) 

where gji is the performance level (or performance rate) of 
the element j at state i (i ∈ {1,2,…,kj}. 

The performance level Gj(t) of the element j for any instant 
t ≥ 0 is a random variable, which takes values from gj: Gj(t) ∈ gj. 
Therefore, for the time interval [0, T] (in which T is the operation 
period of the MSS), the performance level of the element j can 
be defined as a stochastic process. The probabilities associated 
with each state (or performance rate) of the system element j for 
any instant t can be represented with the following set of 
equations: 

𝑷𝑗(𝑡) = {𝑝𝑗1(𝑡), 𝑝𝑗2(𝑡), … , 𝑝𝑗𝑘𝑗(𝑡)} (2) 

where 

𝑝𝑗𝑖(𝑡) = Pr {𝐺𝑗(𝑡) = 𝑔𝑗𝑖} (3) 

Since the states of the elements are a complete group of 
mutually exclusive events (which means that element j can be in 
one of the states kj and only one), the following condition must 
be fulfilled: 

∑𝑝𝑗𝑖(𝑡) = 1, for any 𝑡:  0 ≤ 𝑡 ≤ 𝑇

𝑘𝑗

𝑖=1

 (4) 



Equation (3) defines the probability function of a discrete 
random variable Gj(t) at any instant t. The pairs gji, pji(t) (with 
i=1,2,…,kj) completely determine the probability distribution of 
performance (PD) of the element j at any instant t. 

When an MSS is composed of n elements, its performance 
rate is determined in an unambiguous way by the performance 
levels of the elements that compose it. At each moment, the 
elements of the system have a performance level that 
corresponds to their current state. The state of the entire system 
is determined by the states of its elements. Therefore, the 
definition of a MSS reliability model must include the 
performance stochastic process for each element j of the system: 
Gj (j=1,2,…,n) and the system structure function that generates 
the stochastic process corresponding to the output performance 

of the entire MSS: 𝐺(𝑡) = 𝜑(𝐺𝑖  (𝑡), … , 𝐺𝑛 (𝑡)) (Figure 3). 

 

Figure 3. Example of an MSS structure (n components). 

In our study, the MSS analysis is developed through a 
Markov-chain methodological approach. Markov chains (MC) 
are discrete stochastic processes in which the probability of an 
event only depends of the previous state of the system. Then, 
this type of systems satisfy the Markov property [51]: 

𝑃(𝑋𝑛+1 = 𝑥𝑛+1|𝑋𝑛 = 𝑥𝑛, 𝑋𝑛−1 = 𝑥𝑛−1, … , 𝑋2 = 𝑥2, 𝑋1 = 𝑥1) 

= 𝑃(𝑋𝑛+1 = 𝑥𝑛+1|𝑋𝑛 = 𝑥𝑛) 
(5) 

An MC {X(n), n=0,1,2,...} is described by a sequence of 
random variables X(0) = X0, X(1) = X1,… X(n) = Xn, where X0 is 
the initial state. The probability of transition between state 
𝑋𝑛−1 = 𝑖 and 𝑋𝑛 = 𝑗 is given by 𝛾𝑖,𝑗. Therefore, the matrix 𝑷 

represents the one-step transition probabilities [52]: 

𝑷 = ( 

𝛾1,1 𝛾1,2 ⋯ 𝛾1,𝑘
𝛾2,1 𝛾2,2 ⋯ 𝛾2,𝑘
⋮ ⋮ ⋯ ⋮
𝛾𝑘,1 𝛾𝑘,2 ⋯ 𝛾𝑘,𝑘

) (6) 

The vector 𝜋𝑛
𝑇 defines the probability of finding the system 

in a particular state on the n-th transition: 

𝜋𝑛
𝑇 = [𝜋1,𝑛    𝜋2,𝑛    ⋯    𝜋𝑘,𝑛] (7) 

where 𝜋𝑘,𝑛 is the probability that the system is in state k on 

the n-th transition. The probabilities for each transition are 
determined iteratively as follows: 

𝜋𝑛
𝑇 = 𝜋𝑛−1

𝑇 𝑷 (8) 

The stationary distribution 𝜋 of a system represented by a 
MC (steady state or long-term, 𝑛 → ∞), does not change over 
time, and thus represents the long-term behavior of the system: 

𝜋 = 𝜋𝑇 (9) 

𝑇∞ = lim
𝑛→∞

𝑇𝑛 (10) 

An equivalent description of the MC can be given by a 
directed graph called the state-transition diagram of the MC. 
Figure 4 gives a basic example of a two-state discrete time MC 
diagram. The one-step transition probability matrix for the 
example is as follows, where p00 + p01 = 1 and p10 + p11 = 1. 

𝐏 = [
𝑝00 𝑝01
𝑝10 𝑝11

] = [
1 − 𝑝01 𝑝01
𝑝10 1 − 𝑝10

] 

 
Figure 4. Example of two-state discrete-time Markov chain. 

The MC is constructed by all the candidate samples or states. 
The current state depends only on its adjacent states. The steps 
are often thought of as moments in time, but they can refer to 
any other discrete measurement. Formally, the steps are the 
integers or natural numbers, and the random process is a 
mapping of these to states. Note that in our case, each step 
corresponds to an arrival operation. 

C. Model development: definition of blocks and state vector 

The airport reliability model is divided into four blocks 
(system components): delay, capacity, environmental impact 
and complexity, which provide a holistic view of airport 
operational performance. A number of variables or elements 
defines each block. This sub-division allows us to perform a 
specific analysis of each component, so we can get a better 
understanding of the global model. The three levels (airport 
system, blocks and partial elements) have different performance 
rates (all follow a multistate approach). Therefore, the airport is 
defined as an MSS, which consist in four blocks (system 
components). Each of these blocks is also divided in different 
variables/elements with changing performance rates (Figure 5). 

 

Figure 5. MSS structure for the airport operational behavior. 



The performance rate of any component of the system can 
range from complete failure up to perfect functioning. The 
failures that lead to a decrease in the component performance 
rate are called partial failures. After partial failure, components 
continue operating at reduced performance rates, while after 
complete failure the components are unable to perform their 
tasks [51]. 

The delay block is defined by three parameters: In-Block 
Delay to represent punctuality in arrivals, Off-Block Delay to 
represent punctuality in departures and Turnaround Excess Time 
to represent punctuality during the airport ground processes (as 
well as potential Air Traffic Flow and Capacity Management -
ATFCM- regulations). Off-Block Delay is defined as the 
difference between the Actual Off-Block Time (AOBT) and the 
Scheduled Off-Block Time (SOBT) [53]. In-Block Delay is 
defined as the difference between the Actual In-Block Time 
(AIBT) and the Scheduled In-Block Time (SIBT) [53]. 
Turnaround Excess Time is defined as the difference between 
the Actual Turnaround Time (AIBT-AOBT) and the Scheduled 
Turnaround Time (SIBT-SOBT) [53]. These indicators are the 
most transparent measures regarding airport delays and the ones 
with the most direct relevance to operations [5]. Note that delays 
are defined as schedule delays, therefore it may occur that delays 
are “negative”, meaning early departure/arrival of a flight or 
process completed ahead schedule. “Negative” delays occur 
when the schedule is running close to plans and can cause issues 
for airport operations; e.g., disrupting the sequencing of flights 
and the allocation of resources (gates, handling equipment), 
especially during peak hours at busy airports [3]. “Positive” 
flight delays often cause significant problems for all the involved 
stakeholders; e.g., they affect operational and financial 
performance of airports and airlines, schedule adherence and use 
of resources, passenger experience and satisfaction, and system 
reliability [3], [54]. Schedule delays are common occurrences in 
airline and airport operations, given the multiple agents 
involved, the stochastic nature of operating times, and the 
unexpected disruptions in tasks [1], [3]. The three possible states 
of the parameters of the delay block elements are illustrated in 

TABLE I. We define the thresholds between states (performance 
ranges) for each element based on operational targets (e.g. the 
±3 min threshold for punctuality set by SESAR’s performance 
metrics [5] and the 15 min threshold for defining delay that has 
historically been common in Air Traffic Management [55]–[57]) 
or based in expert judgement. We interviewed experts from 
airlines, airport operators, air navigation service providers, 
regulators and ground handlers; each for a period of one or two 
days each. The interviewed explained aspects related to 
procedures and operational interactions and answered questions 
in semi-structured interviews [58]. The main inputs from experts 
relate to performance rates and thresholds. 

The capacity block is defined by four parameters: 
Throughput ASMA 60 NM, Congestion Index 60 NM, 
Demand/Capacity Balance and Departures/Arrivals Ratio. The 
spatial boundary of this study is enlarged to a wider context than 
the airport itself, to consider both the Arrival Sequencing and 
Metering Area (ASMA) and potential holding patterns. The 
ASMA is usually defined as a virtual cylinder with a 40 NM 
radius around the airport, but it can be extended to 100 NM in 
some analyses [15]. For our case study is particularly important 

to consider an ASMA of 60 NM. This is due to the fact that 
holdings at Adolfo Suárez Madrid-Barajas Airport (LEMD) are 
located beyond a radius of 40 NM, as depicted in Figure 6. 

 

Figure 6. ASMA 40 NM and ASMA 60 NM for LEMD. 

Throughput ASMA 60 NM is a theoretical hourly rate based 
on the truncated 20 min window prior to the arrival of the aircraft 
to the ASMA. The (theoretical) maximum airport throughput 
ASMA 60 NM is a determinant of the level of traffic saturation 
and, thus, the threshold at which effects of congestion can be 
observed. For each aircraft arriving at the ASMA 60 NM, the 
number of aircraft that landed in the previous 20 minutes is 
counted [59]. Congestion Index ASMA 60 NM is the number of 
arrivals in the queue ahead of the current flight, once it enters 
the ASMA 60 NM. It is a metric that reflects the level of 
congestion for the inbound traffic flow. Therefore, these two 
elements (throughput and congestion index) reflect potential 
problems related to capacity saturation. The Demand/Capacity 
Balance (DCB) is defined as the ratio of aircraft landed in the 
previous hour to the airport’s practical arrival capacity (an 
operational measure of airport throughput) at this hour. This 
metric is selected to reflect the importance of scarce arrival 
capacity in the airport operational performance [60], [61]. The 
Departures/Arrivals Ratio (DAR) is calculated by confronting 
the number of departures to the number of arrivals in the 
previous hour, as a measure to understand the airport’s ability to 
manage aircraft flows (ability to “absorb” inbound traffic and 
“produce” outbound traffic). The three possible states of the 
parameters of the delay block elements are illustrated in TABLE I 

(throughput and congestion data have been normalized and 
range from 0 to 1). These thresholds are calculated by analyzing 
the operational data and using expert judgement. 

TABLE I. PERFORMANCE STATES AND THRESHOLDS FOR DELAY, 
CAPACITY AND ENVIRONMENTAL IMPACT BLOCKS ELEMENTS 

States of 

blocks 

elements 

Elements 

Time elements 

(delays) 

Throughput 

and 

Congestion 

Index 

DCB DAR 

Target state 

(state 1) 

−3𝑚𝑖𝑛 < 𝑑
< 3𝑚𝑖𝑛 

𝑥 ≤ 0.2 
0.8 ≤ 𝑥
≤ 1 

0.1 ≤ 𝑥
≤ 1.1 

Correct 
state 

(state 2) 

−15𝑚𝑖𝑛 <
𝑑 ≤ 3𝑚𝑖𝑛 or 

3𝑚𝑖𝑛 ≤ 𝑑
< 15𝑚𝑖𝑛 

0.2 > 𝑥
≥ 0.8 

𝑥 < 0.8 
0.2 ≤ 𝑥
≤ 2.2 

Incorrect 

state 

(state 3) 

𝑑 ≤ −15𝑚𝑖𝑛 
or 

𝑑 ≥ 15𝑚𝑖𝑛 

𝑥 > 0.8 𝑥 > 1 
𝑥 < 0.2 𝑜𝑟 
𝑥 > 2.2 



The environmental impact block aims to include the metrics 
that reflect emissions of particles and gases (CO2, water vapor, 
hydrocarbons, carbon monoxide, nitrogen oxides, sulfur oxides, 
lead and black carbon) nearby and within the airport, due to 
airport operations. It can be represented by the extra time 
invested in aircraft processes related to approach and on-ground 
operations. That is why this block is modelled by the Additional 
Taxi-In Time, the Additional Taxi-Out Time and the Additional 
ASMA 60 NM Time. Additional Taxi-In Time is the difference 
between the actual taxi-in process time and an estimated 
unimpeded time to perform the taxi-in operation (depending on 
the aircraft parking stand and the runway in use). It collects the 
inefficiencies in the airport taxiways due to traffic congestion or 
potential incidents. Unimpeded taxi times (flows in the absence 
of any obstacles) can only be as short as the physics of the 
process allows, but can grow large in the event of a slow taxi 
operation [62]. Similarly, the Additional Taxi-Out Time is the 
difference between the actual taxi-out time and an estimated 
unimpeded time to perform the taxi-out process (aircraft flow 
from the parking stand to the runway header for take-off). The 
Additional ASMA 60 NM Time is a proxy for the average 
arrival runway queuing time on the inbound traffic flow, during 
congestion periods at airports. It is the difference between the 
actual ASMA time of a flight and a statistically determined 
unimpeded ASMA time based on ASMA times in periods of low 
traffic demand. The environment block states and performance 
thresholds are defined in the same way as the delay block states 
and summarized in TABLE I. 

The complexity block considers unusual operational 
situations that introduce complexity into the system. It is 
represented by four parameters: Runway Configuration, 
Holdings, Season and Meteorological Conditions. Runway 
Configuration is the layout or design of a runway or runways, 
where operations on the particular runway or runways being 
used at a given time are mutually dependent [1]. The operational 
preferential configuration at LEMD is called north configuration 
(wind coming from the north). A Holding pattern is a 
predetermined maneuver which keeps aircraft within a specified 
airspace while awaiting further clearance from air traffic control 
[63]. Holding patterns are flown as a delaying tactic and may 
represent airspace saturation or complex operational situations. 
Season represents the impact of seasonality and peak traffic 
periods on airport operations. The Meteorological Indicator 
considers different variables: cloudiness (height and quantity), 
visibility, wind (intensity and direction) and special 
meteorological phenomena (e.g. presence of fog, snow, rain). It 
ranges from 0 to 7 and it is calculated by weighting the impact 
of weather elements on the operational conditions of the airport 
[64]. TABLE II illustrates the states for the complexity block. 

TABLE II. PERFORMANCE STATES AND THRESHOLDS FOR THE 
COMPLEXITY BLOCK ELEMENTS 

States of 

the block 

elements 

Elements 

Runway 

Configuration 

Number 

of 

Holdings 

Season 

(as IATA 

calendar) 

Meteorological 

Indicator 

Normal 

operation 
(state 1) 

North ℎ = 0 Winter 𝑚 < 3 

Complex 

operation 
(state 2) 

South ℎ ≥ 1 Summer 𝑚 ≥ 3 

Once the blocks were characterized, and the states of the 
elements were stablished, we determined the different 
performance states for each block. These were defined by the 
amount of component failures that lead to the block failure and 
settled according to expert knowledge. For delay, capacity and 
environmental impact blocks, the following operational states 
were considered: (S1) Optimal (all parameters in correct or 
optimal states); (S2) Correct (only one parameter in an incorrect 
state); and (S3) Incorrect (two or more parameters in incorrect 
states). For the complexity block we considered two states: (S1) 
Correct (one or less parameters in complex states) and (S2) 
Complex (two or more parameters in complex states). 

The combination of the blocks’ states results in 54 possible 
different states for the global model. This amount of states 
difficulties the appraisal of the system reliability performance. 
Therefore, to reduce this number, we used clustering techniques 
to group states for the global model (associating those states 
which provide similar operational outcomes). Particularly, we 
used the Fuzzy c-Means clustering algorithm implemented in 
MATLAB [65]. The Silhouette criterion gives us the optimal 
number of clusters. The Silhouette value for each point is a 
measure of how similar that point is to points in its own cluster, 
when compared to points in other clusters. The Silhouette value 
for the 𝑖-th point, 𝑆𝑖, is defined as [66]: 

𝑆𝑖 =
(𝑏𝑖 − 𝑎𝑖)

max(𝑎𝑖 , 𝑏𝑖)
 (11) 

where 𝑎𝑖is the average distance from the 𝑖-th point to other 
points in the same cluster (𝑖) and 𝑏𝑖 is the minimum average 
distance from the 𝑖-th point to points in a different cluster, 
minimized over clusters. The Silhouette value ranges from -1 to 
1. A high value indicates that 𝑖 is well-matched to its own cluster 
and poorly-matched to neighboring clusters. According to the 
Silhouette criterion the best option is to distribute the system 
states in 7 clusters (see Figure 7). 

Once the groups of states (operational clusters) were 
obtained, the next step was to assign a performance rate to each 
Cluster, to order them. We applied the following criterion to 
weight the influence of each state inside the Cluster: 

𝑅 = 
𝑛1 + 0.5 ∗ 𝑛2

𝑛3
 (12) 

where 𝑛1 is the number of optimal states (states S1), 𝑛2 is 

the number of correct states (states S2) and 𝑛3 is the number of 
incorrect states (states S3) for each Cluster. TABLE III shows the 
performance rates of the different performance Clusters. 

 

Figure 7. Silhouette value for the chosen number of clusters. 



TABLE III. PERFORMANCE RATES FOR THE OPERATIONAL 

CLUSTERS 

R 
Cluster 

1 2 3 4 5 6 7 

Rate 0.4659 0.5833 0.6500 0.6458 0.7396 0.8333 0.8958 

D. Reliability indicators and model functionalities 

This section defines the performance indicators used to 
describe the system’s operational performance after a number of 
steps (arrival operations) [9]: (i) the mean instantaneous 
performance (En), which represents the performance expectation 
at a given step; (ii) the mean instantaneous performance 
deficiency (Dn), which represents the system performance 
deviation from a given demand (𝑤), at a given step; and (iii) the 
instantaneous availability (An), which represents the probability 
of finding the system in an acceptable state at a given step. These 
indicators are related to the fact that in systems with weighted 
components, each component may contribute differently to the 
performance of the system. Therefore, the system's 
working/failure principle depends on the total performance of 
working/failed components [67]. 

𝑬𝒏 = ∑𝑔𝑘𝑝𝑘(𝑛)

𝑁

𝑘=1

 (13) 

where 𝑁 is the total number of states, 𝑔𝑘 is the performance 
rate (service level) associated to state 𝑘 and 𝑝𝑘(𝑛) is the 
probability of the system being in state 𝑘 at step 𝑛. 

𝑫𝒏 =∑𝑝𝑖(𝑛)max (𝑤 − 𝑔𝑖; 0)

𝑁

𝑖=1

 (14) 

where 𝑁 is the total number of states, 𝑝𝑖(𝑛) is the probability 
of the system being in state 𝑖 at step 𝑛, 𝑤 is the expected 
performance rate for the system and 𝑔𝑖 is the actual performance 
rate associated with state 𝑘. 

𝑨𝒏 =∑𝑝𝑖(𝑛)

𝐾

𝑖=1

 (15) 

where 𝑘 is the total number of states with acceptable 
performance rates and 𝑝𝑖(𝑛) is the probability of the system 
being in state 𝑖 at the step 𝑛. 

If we apply these definitions to the values of the stationary 
distribution, we can obtain the asymptotic values in the long 
term (𝐸∞, 𝐷∞, 𝐴∞). 

E. System dynamics 

The system dynamics methodology models the dynamical 
behavior of a system over time (or over operational steps in our 
case), by analyzing the relationships between the different 
elements of the system. As mentioned above, an MSS has 
different levels of reliability. Therefore, the system and its 
components can transit to various performance states during its 
functioning periods. The MSS transits from higher performance 
states to lower states with failure rate λ, transits from lower states 
to higher states with repair rate μ and maintains the same state 
with stabilization rate γ [10]. The probability of being in each 
state (j) at step n for component i (Pij(n)) is obtained from 
Chapman-Kolmogorov equations [68]: 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 𝑑𝑃𝑖0(𝑛)

𝑑𝑛
=∑𝜆𝑗0

𝑖 𝑃𝑖𝑗(𝑛) −∑𝜇0𝑗
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𝑀
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⋮
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 (16) 

where λ𝑗𝑘
𝑖  and 𝜇𝑗𝑘

𝑖  are the failure and repair rates from state 

j to state k for component i respectively; and γ𝑘
𝑖  is the 

stabilization rate (transition probabilities as depicted in the 
example of Figure 4). In addition, Equation (4) must be fulfilled 
at any operational step, and the initial conditions have to be 
apprised with regard to the starting operation for the airport. 

V. RESULTS 

A. Transition matrix for the airport operational system 

The transition matrix of the global system is depicted in 
TABLE IV. This matrix represents the one-step transition 
probabilities between system states – Clusters (C). The system 
tends to move towards Cluster 7 for every initial state, except for 
Clusters 2 and 5, for which the system tends to stay in the same 
cluster. This means that the airport system shows a tendency 
towards the state with a highest performance rate (C7); i.e. the 
airport system is repairable. 

TABLE IV. TRANSITION MATRIX P FOR THE GLOBAL SYSTEM 

 C 1 C 2 C 3 C 4 C 5 C 6 C 7 

C 1 0,117 0,058 0,088 0,258 0,050 0,093 0,335 

C 2 0,072 0,414 0,062 0,022 0,381 0,011 0,039 

C 3 0,096 0,047 0,103 0,224 0,056 0,085 0,389 

C 4 0,074 0,005 0,059 0,318 0,004 0,112 0,427 

C 5 0,074 0,384 0,074 0,023 0,400 0,009 0,037 

C 6 0,067 0,006 0,060 0,292 0,004 0,120 0,452 

C 7 0,063 0,004 0,066 0,271 0,005 0,114 0,478 

Given a particular initial state (operational conditions) and 
the number of steps, the transition matrix allows us to locate the 
airport system in the most probable operational cluster. This 
reliability model illustrates the system evolution and provides a 
framework to detect the need of corrective measures. For the 
model construction and testing, data was divided into two partial 
datasets. The first one was used to train and validate the model, 
with 80% of the total number of observations (building and 
cross-validation sample); while the remaining 20% (test sample) 



was used to test the generalization of the model. Therefore, the 
process is as follows: (i) randomly split the initial dataset into 
construction/building and testing sets; (ii) perform cross-
validation on the construction set to fit the model (k-fold with 
k=10) [69]; and (iii) test if results are generalizable, using a test 
set, which is completely separated from model development. 
Both the train and the error scores present an average value of 
10%, i.e., our model predicts new observations as well as it fits 
the original dataset. Therefore, we are not overfitting the model 
and results can be generalizable. By assessing the importance of 
each block on the system’s operational behavior, we obtain that 
delayed operations and situations when processes need 
additional time (delay and environmental blocks) reduce the 
airport ability to maintain optimal performance rates. 
Consequently, delays are major drivers for airport dynamics and 
reduce the system ability to recover itself. 

B. Steady state behaviour 

To describe the system’s operational response and evolution, 
we appraised a particular scenario, as an example of the model 
applicability. We analyzed the system behavior when the initial 

state is (𝑃0 = [
1

7
,
1

7
,
1

7
,
1

7
,
1

7
,
1

7
,
1

7
]), and hence it is equally 

probable to find the airport operating in all the Clusters (random 
initial operational state). The system reaches the steady state in 
30 steps – arrival operations (with a maximum error of the 
estimation of 0.151%). The stationary state vector is as follows: 

𝑋 = [0.0733, 0.0525, 0.0679, 0.2551, 0.0513, 0.0998, 0.4002]. 

Therefore, the most probable outcome for the steady state 

behavior of the system is Cluster 7 (40.02%), which shows a 

reliable nature of the system. The values for the stationary 

distribution of the performance indicators are: 75.32% for the 

mean performance (𝐸∞), 0.25% for the mean performance 

deficiency (𝐷∞) and 87.42% for the mean availability (𝐴∞). We 

have considered C4, C5, C6 and C7 as the Clusters with 

acceptable performance rates and 𝑤 = 50% as the expected 

performance rate for the system. The Markov chain for the 

airport operational dynamics (see TABLE IV) is irreducible (it is 

possible to get to any state from any state) and aperiodic (any 

return to the previous state can occur in just one transition step). 

A Markov chain is ergodic if it is both irreducible and aperiodic 

[8], [52], [70]. By the Perron-Frobenius Theorem [71], ergodic 

Markov chains have unique limiting distributions; i.e., they 

have a unique stationary distribution to which every initial 

distribution converges. Therefore, the stationary distribution is 

a long-term behavior indicator of the system. 

C. Evolution of performance indicators and state probability 

Figure 8 shows the evolution of: (a) the probability of the 
states, (b) the mean instantaneous performance (En); (c) the 
mean instantaneous performance deficiency (Dn); and (d) the 
mean instantaneous availability (An) towards the steady state 
(stationary distribution). These graphs characterize the system 
behavior. The system is repairable, as it increases its 
performance and reduce its deficiency over time (with steps). 
Availability is a performance criterion for repairable systems 
that accounts for both the reliability and maintainability 
properties of a system. It is defined as the probability that the 
system is operating properly when it is requested for use. In the 
case of the airport system, it evolves towards a value of 87.42%. 

  

  

Figure 8. Evolution of (a) states’ probability; (b) En; (c) Dn; and (d) An. 

VI. CONCLUSIONS & FUTURE WORK 

This paper develops a reliability analysis of the airport transit 
view process. In this analysis, we use a Multistate system 
approach, through a Markov-Chain model. Four main elements 
of the system are used to appraise its behavior: delay, capacity, 
environment and complexity, with different partial variables. 
Performance thresholds and states were assigned according to 
operational targets, data distributions and expert knowledge. 
Moreover, the global system states were clustered to reflect 
similar operational characteristics. The application of the model 
to a case of study of 160,460 turnaround operations (registered 
at 2016) is used to describe the system operational behavior. The 
performance indicators allow us to characterize the system’s 
dynamics and obtain predictions of its most likely evolution. 
Results show that the airport system tends to a stationary 
distribution with the highest level of performance achievable, 
reaching an availability of 87.42%. Therefore, the system is 
repairable. Delays are major drivers for airport performance 
dynamics and reduce the ability of the system to recover itself. 
This reliability model represents a framework to test different 
‘what-if’ scenarios and to reduce uncertainty by categorizing 
different behavior patterns. Therefore, it allows us to predict 
how probable is for the system to enter a degraded state and 
highlights the system’s ability to maintain performance (or 
recover tolerable rates) under varying conditions. This approach 
marks an evolution from the traditional corrective view 
regarding reliability analysis (act when the system is degraded) 
to a predictive perspective (act when the system is providing 
signs of malfunction, before it reaches degradation). The model 
allows both a comprehensive view of the airport system and a 
holistic and performance-based management of the day of 
operations, enabled by predictions for the future system states. 

Future work will focus on improving the accuracy of the 
model (more complete testing data and methodological 
enhancements – like weighting the parameters’ influence when 
defining block states), and on comparing the results when the 
methodology is applied to other airports (generalization of the 
case study). We also need to analyze potential response 
strategies/measures (how specific actions impact the airport 
system state) and consider other performance areas as safety and 
financial results. 
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