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Abstract—This paper studies the trajectory generation prob-
lem for multiple aircraft in converging and intersecting arrival
routes in the presence of a multi-cell storm in development.
Storm avoidance constraints are enforced by approximating
the cells of the storm as moving and size-changing ellipsoids.
The problem is solved using nonlinear model predictive control
based on hybrid optimal control with logical constraints in
disjunctive form. The evolution of the storm is tackled using
the nonlinear model predictive control scheme, which iteratively
re-plans the trajectories as a new estimation of the state of the
storm is available. Logical constraints in disjunctive form arise
in modelling passage through waypoints and storm avoidance
constraints. An embedding approach is employed to transform
these logical constraints in disjunctive form into inequality and
equality constraints which involve only continuous auxiliary
variables. In this way, the hybrid optimal control problem
is converted into a smooth optimal control problem, thereby
reducing the computational complexity of finding the solution.

Index Terms—4D Trajectory Generation, Storm Avoidance, Air
Traffic Management, Hybrid Optimal Control, Nonlinear Model
Predictive Control.

I. INTRODUCTION

In this paper, the trajectory generation problem is studied for
multiple aircraft in converging and intersecting arrival routes
in the presence of a multi-cell storm in development. Thus,
besides storm avoidance constraints, operational constraints
are also taken into account and a Nonlinear Model Predictive
Control (NMPC) scheme based on hybrid optimal control with
logical constraints in disjunctive form has been employed.

Forecasting with precision the birth and evolution of convec-
tive weather phenomena at pre-tactical timescales (1-3 hours
before departure) is not an easy task, which makes it hard
for flight dispatchers to plan flights to avoid them. Although
some meteorological conditions, which are required for storm
formation, can be forecasted in advance, the specific location
and timing of convective storms is difficult to determine. As
a consequence, both storm forecasting and avoidance take
place at short timescales, mainly at execution stage, that is,
during flight. Storm prediction is usually given in the form of
deterministic nowcast such as the Rapidly Developing Thun-
derstorms (RDT), which is one of the meteorological products
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of the Satellite Application Facility on support to Nowcasting
and Very Short-Range Forecasting (NWCSAF) consortium1.
The RDT system characterizes thunderstorm activity providing
images every 15 minutes with a horizontal resolution of 3 km.
It identifies convective cells and describes them as polygons on
a latitude-longitude map. It contains the identified convective
storms, along with some of their features such as perimeter,
direction of motion and speed and the cloud top pressure
(the latter, needed to characterize the height of the storm).
It also provides a description of the phase of the convective
cell: triggering, triggering from split, growing, mature and
decaying. These parameters are then employed to predict the
evolution of the storm over a short time horizon and corrected
as soon as a new observation becomes available. Thus, the
RTD-based forecast can be regarded as a moving horizon
estimation, for which a well-suited scheme for trajectory
generation is the Model Predictive Control (MPC) scheme [1].

In this NMPC setting, the optimal trajectories for the
aircraft are calculated taking into account the prediction of
the future behaviour of the storm over a certain time horizon,
based on measurements obtained at a certain time instant. Due
to disturbances and modelling prediction errors, the behaviour
of the storm will be different from the predicted behaviour
and the trajectories of the aircraft will deviate from the planned
trajectories. In order to incorporate some feedback mechanism
to correct these mismatches, the planned trajectories will be
flown in open-loop until the next prediction of the storm
becomes available. Then, the trajectory planning problem is
solved again in a receding spatial and temporal horizon. For
this reason, this control paradigm is also referred to as moving
horizon control or receding horizon control. The presence of a
feedback mechanism in this trajectory planning scheme, makes
it substantially different from the open-loop trajectory planning
methods and therefore, it has been herein called trajectory
generation.

This study can be classified into the category of Continuous
Descent Operations (CDO) [2]. During CDO, aircraft descend
from the cruise altitude to the final approach fix at or near idle
thrust without level segments at low altitude, minimizing the
need for high thrust levels to remain at a constant altitude

1http://www.nwcsaf.org/



and reducing the environmental impact. Actually, the term
CDO makes reference to the different techniques to maximize
operational efficiency and, at the same time, fulfilling local
air space requirements and constraints. These operations are
known as Continuous Descent Arrivals, Optimized Profile
Descents (OPDs), Tailored Arrivals, 3D Path Arrival Man-
agement, and Continuous Descent Approaches (CDA). In
particular, an OPD is a descent profile normally associated
with a Standard Terminal Arrival Route (STAR) and designed
to allow maximum use of a CDO. Planning CDOs is one
of the functions of the so called Arrival Managers (AMANs)
whose purpose is to ensure an optimal sequencing and spacing
of arrival traffic [3]. In this work, the problem of optimal
sequencing of arrival traffic will be studied taking into account
a multi-cell storm in development in the relevant airspace.

In most of the previous approaches to optimal aircraft
trajectory planning in the presence of storms in development
[4]–[8], a cell discretisation of the 3D or 4D space in which the
problem is represented is performed. In these approaches, the
problem is often studied in the en-route portion of the flight
and the model of the aircraft is oversimplified. In general,
a kinematic model of a unicycle with upper bounds on the
turning rate is used to represent aircraft. This implies that
the actual performance of the aircraft involved is not taken
into account and this fact does not guarantee the dynamic
feasibility of the resulting trajectories. Moreover, the solution
method is based on a discrete search, which represents a
further approximation of the problem whose nature is indeed
continuous.

This paper is structured as follows. In Sec. II, the general
optimal control problem for multiple dynamical systems is
stated and the closed-loop NMPC approach based on open-
loop direct collocation for its resolution is described. In
Sec. III, the aircraft equations of motion and the flight envelope
constraints are stated. In Sec. IV, the general approach to
model logical constraints is presented, which is then partic-
ularized to model storm avoidance constraints and waypoint
constraints. In Sec. V, the results of the application of the
proposed method to solve a trajectory generation problem for
multiple aircraft with logical constraints in disjunctive form are
reported and discussed. Finally, in Sec. VI, some conclusions
are drawn.

II. OPTIMAL CONTROL APPROACH

A. Nonlinear Model Predictive Control

As mentioned above, the aircraft trajectory generation prob-
lem considered in this paper has been tackled using a NMPC
approach, which is a well-known technique that provides
optimal feedback control of the studied dynamical system. In
our NMPC setting, a finite horizon open-loop optimal control
problem (see Sect II-B) at each time step is solved. Then,
starting from the reached state, only the first control input of
the optimal sequence is implemented. This strategy is repeated
turning the open-loop path planning into a feedback control
scheme. In this way, within each iteration, a locally optimal
segment of trajectory moving towards the target is computed,

obtaining a sequence of short trajectories, thus reducing the
computational load.

B. Open-Loop Optimal Control

The multi-aircraft open-loop flight-planning problem con-
sidered in this work can be regarded as a multi-trajectory
optimization problem, in which the motion of each aircraft
has been modeled as a differential-algebraic dynamic system

Σp =

{fp : X p×Up×Rnsp → Rnxp , gp : X p×Up×Rnsp → Rnzp},

for p = 1, 2, . . . , Np, where fp describes the right-hand side
of the differential equation

ẋp(t) = fp(xp(t), up(t), sp)

and gp describes the algebraic constraints

0 = gp(xp(t), up(t), sp),

where X p ⊆ Rnpx and Up ⊆ Rnpu are the state and control sets,
respectively, xp(t) ∈ Rnpx is a npx-dimensional state variable,
up(t) ∈ Rnpu is a npu-dimensional control input, and sp ∈ Rnps
is a vector of parameters.

Since this multi-aircraft flight-planning problem also in-
volves operative performances and flight envelope conditions
for multiple aircraft, as well as the optimization of a specified
performance index, the multi-trajectory optimization problem
can be formulated as an OCP of a set of dynamic systems in
which the goal is to find the trajectories and the corresponding
control inputs that steer the states of the systems between
two configurations, satisfying a set of constraints on the
state and/or control variables while minimizing an objective
functional.

Therefore, the open-loop optimal control problem consid-
ered in this work can be stated as follows:

min J(x(t), u(t), s, t) =
Np∑
p=1

Φ(tpF , x
p(tpF ))+

Np∑
p=1

∫ tpF

tpI

Lp(xp(t), up(t), sp, t)dt, (1a)

subject to:
ẋ(t) = f(x(t), u(t), s, t), (1b)
0 = g(x(t), u(t), s, t), (1c)
φl ≤ φ(x(t), u(t), s, t) ≤ φu, (1d)
x(tI) = xI , (1e)
ψ(x(tF )) = 0, (1f)

where

x = [x1, x2, . . . , xNp ]T , u = [u1, u2, . . . , uNp ]T ,

s = [s1, s2, . . . , sNp ]T ,

and tpF denote de final time for aircraft p = 1, 2, . . . , Np. The
objective function

J : Rnx × Rnu × Rns × [tI , tF ]→ R



is given in Bolza form. It is expressed as a combination of a
Mayer term

Np∑
p=1

Φ(tpF , x
p(tpF ))

and a Lagrange term
Np∑
p=1

∫ tpF

tpI

Lp(xp(t), up(t), sp, t)dt.

Functions
Φp : [tpI , t

p
F ]× Rnxp → R

and
Lp : Rnxp × Rnup × Rnzp × [tpI , t

p
F ]→ R

are assumed to be twice differentiable. Function f is assumed
to be piecewise Lipschitz continuous within the time interval
[tI , tF ], and the derivative of the algebraic right-hand side
function g with respect to z, that is,

∂g

∂z
∈ Rnz×nz

is assumed to be regular within the time interval [tI , tF ].
Vector xI ∈ Rnx represents the initial conditions given at
the initial time tI and function

ψ : Rnx → Rnψ

provides the terminal conditions at the final time tF , and
it is assumed to be twice differentiable. The system must
also satisfy algebraic path constraints within the time interval
[tI , tF ] given by the vector function

φ : Rnx × Rnu × Rnz → Rnφ ,

with lower bound φl ∈ Rnφ and upper bound φu ∈ Rnφ .
Function φ is assumed to be twice differentiable.

In the objective function (1a), the Lagrange term represents
a running cost, whereas the Mayer terms represent a terminal
cost. A usual Lagrange objective function is to minimize
the total amount of energy consumed during the maneuver.
A typical Mayer objective function is to minimize the final
time. Eq. (1b) and Eq. (1c) represent the differential-algebraic
equation system that governs the motion of the dynamical
system, e.g., the aircraft. Equation (1d) models the physical
limits of performance of the dynamical system, typically
expressed as upper and lower bounds on both states and control
variables. Eq. (1e) and Eq. (1f) denote the boundary (initial
and final, respectively) conditions of the process in which the
system is involved. Note that Eq. (1c) and Eq. (1d) will also
include the logical constraints that model storm avoidance and
operational constraints as described in Section IV, which are
the main interest of our study.

Hence, the optimal control problem (1a) - (1f) consists
in finding an admissible control u∗(t) such that the set of
differential-algebraic subsystems follows an admissible tra-
jectory (x∗(t), u∗(t), s∗) between the initial and final state
that minimizes the performance index J(t, x(t), u(t), s, t). The
final time, tF , may be fixed or free.

C. Direct Collocation Transcription of the Optimal Control
Problem

A direct numerical method has been employed to transcribe
the OCP into a NLP problem. More specifically, a Hermite-
Simpson direct collocation method [9] has been used. The
time interval [tI , tF ] is subdivided into N subintervals of equal
length ∆t, whose endpoints are

{t0, t1, . . . , tN}, (2)

with t0 = tI and tN = tF . In each subinterval [ti, ti+1],
i = 0, . . . , N − 1, the Hermite-Simpson numerical integration
scheme is used.

The set of constraints of the resulting NLP problem includes
the Hermite-Simpson system constraints that correspond to the
differential constraint (1b) and the discretized versions of the
other constraints of the optimal control problem. They include
the algebraic constraints (1c), the state and control envelope
constraints (1d), and the boundary conditions (1e) and (1f).
The unknowns of the NLP problem are the values of the state
and the control variables at the endpoints of each subinterval
[ti, ti+1], i = 0, . . . , N − 1.

D. Closed-Loop Optimal Control

Following the idea depicted in Sect II-A and the open-loop
model described in Sect II-B, the practical implementation of
the closed-loop procedure can be summarized as follows:
(i) Consider de length interval ∆t and the horizon length N ,

and let k = 1.
(ii) Solve the open-loop OPC (1a) - (1f) over the horizon

[tk−1, tk−1 +N∆t] with initial state x(tk−1) and obtain
the control sequence {u(tk), u(tk+1), . . . , u(tk+N )}.

(iii) Apply the control input u(tk−1) for the time interval
[tk−1, tk−1+∆t] to the system in order to compute x(tk),
and set x(tk) as the initial condition for the next iteration
of the NMPC scheme.

(iv) Let tk = tk−1 + ∆t and k = k+ 1, and repeat steps (ii)
and (iii) until the target is reached.

As a consequence, the closed-loop procedure (i) − (iv)
provides a sequence of NLP problems. For this resulting series
of NLP problems to be solved, the NLP interior point nonlin-
ear solver IPOPT is one of the most suitable ones because
it handles properly large-scale sparse nonconvex problems,
with a large number of equality and inequality constraints.
It implements an interior point line search filter method and
can be used to solve general NLP problems. Moreover, it is
open source. The mathematical details of the IPOPT algorithm
can be found in [10]. Source and binary files are available at
the Computational Infrastructure for Operations Research web
site2.

III. AIRCRAFT MODEL DESCRIPTION

A. Equations of Motion

A common three-degree-of-freedom dynamic model has
been used which describes the point variable-mass motion

2https://www.coin-or.org/



of the aircraft over an spherical Earth model. In particular,
a symmetric flight has been considered. Thus, it has been
assumed that there is no sideslip and all forces lie in the plane
of symmetry of aircraft. The following equations of motion of
the aircraft has been considered:

V̇ (t) =
T (t)−D(he(t), V (t), CL(t))−m(t) · g · sin γ(t)

m(t)

χ̇(t) =
L(he(t), V (t), CL(t)) · sinµ(t)

m(t) · V (t) · cos γ(t)

γ̇(t) =
L(he(t), V (t), CL(t)) · cosµ(t)−m(t) · g · cos γ(t)

m(t) · V (t)

λ̇e(t) =
V (t) · cos γ(t) · cosχ(t) + Vwindλe

R · cos θe(t)
(3)

θ̇e(t) =
V (t) · cos γ(t) · sinχ(t) + Vwindθe

R
ḣe(t) = V (t) · sin γ(t)

ṁ(t) = −T (t) · η(V (t))

The three dynamic equations in (3) are expressed
in an aircraft-attached reference frame (xw, yw, zw)
and the three kinematic equations are expressed in a
ground based reference frame (xe, ye, ze).The states
of the system (3) are V, χ, γ, λe, θe, he and m. Thus,
x(t) = (V (t), χ(t), γ(t), λe(t), θe(t), he(t),m(t)). State
variables V, χ and γ refer to the true airspeed, heading
angle, and flight path angle, respectively. State variables
λe, θe and he refer to the aircraft three-dimensional (3D)
position, longitude, latitude and altitude, respectively. The
aircraft position in two dimensions (xe, ye) is approximated
as xe = λe · (R + he) · cos θe and ye = θe · (R + he).
Finally, state variable m refers to the aircraft mass. The
controls inputs are the bank angle µ, the engine thrust T ,
and the lift coefficient CL. Thus, u(t) = (T (t), µ(t), CL(t)).
Parameter R is the radius of Earth, η is the speed-dependent
fuel efficiency coefficient, and Vwindλe and Vwindθe are de
wind speed in the λe and θe components, respectively. Lift,
L = CLSq̂, and drag, D = CDSq̂, are the components of the
aerodynamic force. Parameter S is the reference wing surface
area and q̂ = 1

2ρV
2 is the dynamic pressure. A parabolic

drag polar CD = CD0 +KC2
L, and an International Standard

Atmosphere (ISA) model are assumed. The lift coefficient
CL is a known function of the angle of attack α and the
Mach number.

Note that differential equations in (3) take the form of
(1b) of the continuous optimal control problem stated in
Section II-B.

B. Flight Envelope Constraints

Flight envelope constraints are derived from the geometry of
the aircraft, structural limitations, engine power, and aerody-
namic characteristics. The performance limitations model and

the parameters has been obtained from the Base of Aircraft
Data (BADA), version 3.14 [11]:

0 ≤ he(t) ≤ min[hM0, hu(t)], γmin ≤ γ(t) ≤ γmax,
M(t) ≤MM0, mmin ≤ m(t) ≤ mmax,

V̇ (t) ≤ āl, CvVs(t) ≤ V (t) ≤ VMo, (4)
γ̇(t)V (t) ≤ ān, 0.1 ≤ CL(t) ≤ CLmax ,

µ(t) ≤ µ̄, Tmin(t) ≤ T (t) ≤ Tmax(t)

In (4), hM0 is the maximum reachable altitude and hu(t) is
the maximum operative altitude at a given mass (it increases
as fuel is burned). M(t) is the Mach number and MM0

is
the maximum operating Mach number. Cv is the minimum
speed coefficient, Vs(t) is the stall speed, VM0

is the maximum
operating calibrated airspeed (CAS) and ān and āl are, respec-
tively, the maximum normal and longitudinal accelerations for
civilian aircraft. Finally, Tmin(t) and Tmax(t) correspond to
the minimum and maximum available thrust, respectively, and
µ̄ corresponds to the maximum bank angle due to structural
limitations.

Note that inequality constraints in (4) take the form of
(1d) of the continuous optimal control problem stated in
Section II-B.

IV. LOGICAL CONSTRAINTS MODELING

In this section, the approach proposed in [12] has been
followed, in which an extension of the embedding optimal
control technique stated in [13] and developed in [14] has
been proposed. The embedding technique has been introduced
in [13], [14] to transform hybrid optimal control problems, in
which the discrete aspect of the system arises from switches in
the dynamic equations, into traditional smooth optimal control
problems. It has been adapted in [12] to deal with logical
(discrete) components which also might appear as constraints.

It has been shown in [15] that every Boolean expression can
be transformed into Conjunctive Normal Form (CNF). Thus,
it has been assumed that any logical constraint considered in
this study can be written as a CNF expression

Q1 ∧Q2 ∧ . . . ∧Qn, (5)

where
Qi = P 1

i ∨ P 2
i ∨ . . . ∨ P

mi
i . (6)

Proposition P ji is either Xj
i or ¬Xj

i . Term Xj
i is a literal that

can be either True or False and ¬ represents the negation
or logical complement operator. Term Xj

i is used to represent
statements such as “longitud λe ≤ 40”. Therefore, P ji takes
the form

P ji ≡ {g
j
i (x(t)) ≤ 0}, (7)

where gji : Rnx → R is assumed to be a C1 function.
In order to include the logical constraint (5) into a smooth

continuous optimal control problem formulation, it must be
converted into a set of equality or inequality constraints in
which binary variables are not considered. In this way, the
combinatorial complexity of integer programming is avoided.



Transcribing the conjunction in (5) is straightforward since
it is equivalent to the following expression

∀i ∈ {1, 2, . . . , n} : Di. (8)

Thus, taking into account (6), the logical expression (5) can
be represented as

∀i ∈ {1, 2, . . . , n} : P 1
i ∨ P 2

i ∨ . . . ∨ P
mi
i . (9)

For the transcription of the disjunctions into a set of inequality
constraints, a continuos variable βji ∈ [0, 1] is defined and
related to each P ji in (7). Thus, (9) can be expressed as

∀i ∈ {1, 2, . . . , n} : βji · g
j
i (x(t)) ≤ 0

and 0 ≤ βji ≤ 1 (10)

and
mi∑
j=1

βji = 1.

It is immediate to check that if βji = 0 in the first term in (10),
then constraint gji (x(t)) ≤ 0 is not fulfilled. On the contrary,
if 0 < βji ≤ 1 then βji · g

j
i (x(t)) ≤ 0 is in fact gji (x(t)) ≤ 0,

and thus constraint gji (x(t)) ≤ 0 is enforced. Finally, the last
term in (10) guarantees that at least one of the propositions
P ji holds.

Note that, as expected, equality and inequality constraints in
(10) take the form of (1c) and (1d), respectively, of the tradi-
tional open-loop continuous optimal control problem stated in
Section II-B. In the following subsections, the application of
this technique to storm avoidance and aircraft flying through
waypoints modelling will be presented in detail.

A. Storm Avoidance Constraint
The model of the cells of the storm has been based on the

use of ellipsoids. More specifically, each cell of the storm
has been modelled as a moving obstacle in the 3D space
enveloped by an ellipsoid. This simple approach allows us to
specify each cell by giving only the coordinates of one moving
point in the three dimensional environment. In this way, the
storm avoidance problem is tackled like an obstacle avoidance
problem, in which for each aircraft a safety distance-based
separation between each aircraft and the centre point of the
cell is guaranteed in the horizontal or vertical directions.

Let (λi, θi, hi) and (λCi , θCi , hCi) be the positions of a
single aircraft and the centre point of cell C at the endpoint ti
of the discretization, respectively. Let the safety distance-based
separation in the λ − θ and h directions at every endpoint ti
be denoted by dλθi and dhi , respectively. Note that changing
the size of safety distances dλθi and dhi allows size-changing
cells to be modelled. Then, the storm avoidance constraints
can be expressed as

∀i ∈ {1, 2, . . . , N} : 2R atan2
(√

ζi,
√

1− ζi
)
≥ dλθi

or |hi − hCi | ≥ dhi , (11)

where the haversine formula has been consider for the distance
in the λ− θ direction with

ζi = sin2

(
θi − θCi

2

)
+ cos θi cos θCi sin2

(
λi − λCi

2

)
.

The set of constraints (11) can be rewritten as

∀i ∈ {1, 2, . . . , N} : 2R atan2
(√

ζi,
√

1− ζi
)
≥ dλθi

or hi − hCi ≥ dhi . (12)

Following the technique described above, new variables νji ∈
[0, 1] for i = 1, 2, . . . , N, j = 1, 2 satisfying condition

2∑
j=1

νji = 1

are introduced, and Eq. (12) can be transformed into

∀i ∈ {1, 2, . . . , N} :

ν1i

(
2R atan2

(√
ζi,
√

1− ζi
)
− dλθi

)
≥ 0

and ν2i (hi − hCi − dhi) ≥ 0 (13)
and 0 ≤ νji ≤ 1, j = 1, 2

and
2∑
j=1

νji = 1.

The last constraint in (13) ensures that at least one of the
constraints in (12) is fulfilled, that is, the aircraft and the storm
are guaranteed to be a safe distance apart. Moreover, since
this embedded logical constraint approach is quite general,
any other storm avoidance model described in terms of Eq.
(6) can be considered.

B. Waypoint Constraints

The design of the waypoints has been based on the use of
cuboids. More specifically, a cuboid centered at each waypoint
has been defined, in such a way that passage constrains
through waypoints have been modeled as passage constrains
through cuboids.

Let (λWl
, θWl

, hWl
) and (λWu

, θWu
, hWu

) be the positions
of opposite corners of a cuboid surrounding a single way-
point. Flying by this waypoint (that is, passing through the
corresponding cuboid) involves that at every endpoint ti of
the subintervals of the discretization (2), the position of the
aircraft (λi, θi, hi) must remain inside it. In terms of logical
constraints, this condition can be expressed as

∀i ∈ {1, 2, . . . , N − 1} : λWl
− λi ≤ 0

and λi − λWu ≤ 0

and θWl
− θi ≤ 0 (14)

and θi − θWu ≤ 0

and hWl
− hi ≤ 0

and hi − hWu ≤ 0.

Note that, on the one hand, constraints (14) are enforced at
every point of the discretization except for the initial and final
points, t0 and tN , since there is no a priori knowledge about
when the aircraft is going to fly by the waypoint. On the other
hand, these constraints obviously make sense only when the
aircraft is closed enough to the waypoint.

To overcome this drawback a second auxiliary cuboid is
considered to modelled freeflight mode of the aircraft. Let



λmin, θmin, hmin, λmax, θmax and hmax be the minimum and
maximum values of the state variables λ, θ and h, respectively.
In terms of logical constraints, the freeflight mode condition
can be expressed as

∀i ∈ {1, 2, . . . , N − 1} : λmin − λi ≤ 0

and λi − λmax ≤ 0

and θmin − θi ≤ 0 (15)
and θi − θmax ≤ 0

and hmin − hi ≤ 0

and hi − hmax ≤ 0.

Then, the transcription into a logical disjunction to select along
the whole trajectory between flying by the Waypoint Mode
(WM) or Freeflight Mode (FM), namely WM ∨ FM, can be
expressed as

∀i ∈ {1, 2, . . . , N − 1} : WMi

or FMi, (16)

where WMi and FMi denote if at discretization instant i the
aircraft is in waypoint mode or freeflight mode, respectively.

Once again, following the technique described above, if we
define new variables κ1i , κ

2
i ∈ [0, 1] satisfying condition

κ1i + κ2i = 1, for all i = 1, 2, . . . , N − 1,

Eq. (16) can be transformed into

∀i ∈ {1, 2, . . . , N − 1} :

κ1i (λWl
− λi) ≤ 0 and κ2i (λmin − λi) ≤ 0

and κ1i (λi − λWu) ≤ 0 and κ2i (λi − λmax) ≤ 0

and κ1i (θWl
− θi) ≤ 0 and κ2i (θmin − θi) ≤ 0

and κ1i (θi − θWu) ≤ 0 and κ2i (θi − θmax) ≤ 0 (17)
and κ1i (hWl

− hi) ≤ 0 and κ2i (hmin − hi) ≤ 0

and κ1i (hi − hWu) ≤ 0 and κ2i (hi − hmax) ≤ 0

and 0 ≤ κji ≤ 1, j = 1, 2

and
2∑
j=1

κji = 1.

The last constraint in (17) ensures that at least one of the
conditions in (16) is fulfilled, which means that at each
discretization instant i the aircraft flies in freeflight mode
or waypoint mode. Note that, depending on the performance
index (1a) considered in the optimal control problem, two
related undesired issues could potentially arise.

On the one hand, the optimal solution could provide a
trajectory in which the aircraft flies in freeflight mode for each
discretization instant i. Therefore, in order to force the aircraft
to actually fly by the waypoint, a penalization term must also
be added to the numerical transcription of the performance
index (1a). The use of this penalization term, which is set forth
to encode the desired control objectives, implies that the nu-
merical solution of the optimal control problem must combine

the usual collocation technique describe in Section II-C with
a penalty function methodology. In particular, in this work,
the well-known continuation method has been implemented
following a similar approach to [16]. For waypoint modeling
the penalization term takes the form

c1

N−1∑
i=1

κ1i + c2

N−1∑
i=1

κ2i , (18)

where c1 and c2 are suitable constants determined by the
continuation method. In the case of the minimization of a
performance index like (1a), a large enough value c2 such that
c2 � c1 > 0, which penalizes the freeflight mode, guarantees
that the aircraft actually flies by the waypoint.

On the other hand, the optimal solution could provide a
trajectory in which the aircraft flies by the waypoint more
than once. This situation can be easily avoided introducing in
the model the following simple constraint

N−1∑
i=1

κ1i ≤ c3, (19)

where c3 ∈ {1, 2, . . . , N − 1} is a suitable constant. In the
context of the problem considered in this work, to include the
penalty term (18) in the objective functional, a small value of
c3 is enough to avoid this potential undesired issue.

Note that the waypoint constraint modelling introduced
above can be straightforwardly extended to multi-waypoint
and multi-aircraft cases. Moreover, since the employed logical
constraint modelling technique is quite general, any other
waypoint constraint described in terms of Eq. (6) can be
modeled.

V. NUMERICAL RESULTS

To show the effectiveness of the methodology described in
Section IV, a numerical experiment has been carried out. In
particular, the minimum-time STAR-based CDO of three air-
craft along converging routes has been studied. Following this
STAR procedure, in principle, the three aircraft are assumed
to pass through two waypoints. However, the experiment has
been intentionally designed in such a way that a cell of
the storm also passes through the second waypoint when an
aircraft is approaching it. A decision making process has been
devised which attending to safety reasons, in case of temporal
coincidence between a cell of the storm and an aircraft at
a waypoint, avoiding the cell of the storm is assumed to be
preferable than crossing the waypoint.

The numerical experiment involves Airbus A-320 BADA
3.14 aircraft models, in which the performance index is the
sum of the duration of the flights of the three aircraft. A
constant crosswind has been considered along with a multi-cell
storm in development whose cells grow in dimension, move,
split and merge.



Fig. 1. Chart of the Adolfo Suárez Madrid-Barajas (LEMD/MAD) STAR
10-2A1 printed from JEPPESEN.

TABLE I
BOUNDARY CONDITIONS FOR THE STAR BASED CDO

Symbol Unit Aircraft 1 Aircraft 2 Aircraft 3
hI m 7400 7000 7200
hF m 3350 3350 3350
θI deg 39.526 39.116 39.000
θF deg 40.575 40.575 40.575
λI deg -5.327 -4.448 -3.325
λF deg -3.422 -3.422 -3.422
VI m/s 130 130 130
VF m/s 110 110 110
µI deg 0 0 0
γI deg 0 0 0
χI deg 356 294 240
mI kg 65000 65000 65000

In the proposed STAR procedure, the lateral path followed
by the aircraft has been assumed to be specified in a navigation
chart. In particular, the boundary conditions of the state

variables have been selected from the chart of the Adolfo
Suárez Madrid-Barajas (LEMD/MAD) TMA shown in Fig. 1.
The initial position of Aircraft 1, Aircraft 2, and Aircraft 3
are supposed to be coincident with the ROLDO, SOTUK and
MORAL waypoints, respectively. Aircraft are constrained to
pass through TODNO and RESBI waypoints and their common
final position is assumed to be the LALPI waypoint. For
the setting of the cuboids centered at the given waypoints
the modeling technique defined in (14) has been used. In
particular, the cuboid centered at TODNO waypoint has been
defined by the two corners (39.560◦,−4.24◦, 5400 m) and
(39.640◦,−4.160◦, 6000 m) whereas the cuboid centered
at RESBI waypoint has been defined by the two corners
(40.400◦,−4.150◦, 4200 m) and (40.480◦,−4.070◦, 4800 m).

A constant crosswind of 30 m/s westbound has been con-
sidered together with a multi-cell storm in development as
shown in 2 and 3. Cell 1 grows in dimension and moves
straight in the same direction as the wind but with a constant
speed of 18.5 m/s without splitting. Cell 2 is the result of
merging of two other cells. It grows in dimension and moves
first straight in the same direction as the wind and then it
changes direction. Cell 3 grows in dimension and moves
straight in the same direction as the wind but with a constant
speed of 18.5 m/s splitting in two different cells which move
in different directions. Moreover, Cell 2 passes through the
RESBI waypoint from right side to left side in steady level.
The experiment has been designed in such a way that there
is a potential interference between a cell of the storm and the
aircraft at RESBI waypoint. Cells have been modelled as a
growing ellipsoids, as explained in Section IV-A. In general,
the cell growth can be modeled by increasing both the safety
distances dλθi and dhi . In this specific experiment, only in the
dλθi distance has been increased from 7000 m to 10000 m.

The initial mass of the three aircraft has been assumed equal
to the maximum landing weight of the aircraft. The specific
boundary conditions of the aircraft state variables are given in
Table I.

In Fig. 2, the 3D view of the paths obtained in the solution
are represented in thin lines whereas in Fig. 3 and Fig. 4 the
horizontal and vertical profiles are represented.

The mass consumption is represented in Fig. 5, in which
the solution with waypoint and storm avoid constraints is
represented. The final mass and time given by the solution
of the corresponding OCP are reported for each aircraft in the
second row of Table II.

In principle, the three aircraft are assumed to pass through
both waypoints and, at the same time, they must avoid the
storm. However, as it can be seen in Fig. 2, only the aircraft
coming from MORAL waypoint is able to avoid the storm
and reach both waypoints TODNO and RESBI. The other two
aircraft also avoid the storm but they only reach the TODNO
waypoint. This is due to the fact that the performance index
includes in this case, besides the minimization of the duration
of the flights, a penalization term associated to the waypoints
constraints in such a way that, as explained above, the storm
constraint is always preferable for safety reasons.



TABLE II
RESULTS OF STAR BASED CDO WITH WAYPOINT AND STORM AVOID

CONSTRAINTS

Aircraft origin Final time, s Final mass, kg
ROLDO 1941 63888
SOTUK 1742 64003
MORAL 2382 63638

Fig. 2. 3D view of the aircraft trajectories with waypoint and storm avoidance
constraints.
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Fig. 3. Horizontal profile of the aircraft trajectories with waypoint and storm
avoidance constraints.

VI. CONCLUSIONS

In this paper, the trajectory generation problem has been
studied for multiple aircraft in converging and intersect-
ing arrival routes within the Adolfo Suárez Madrid-Barajas
(LEMD/MAD) TMA in the presence of a multi-cell storm in
development. The storm avoidance constraints have been en-
forced by approximating the cells of the storm as moving and
size-changing ellipsoids, and the resulting problem has been
solved by using nonlinear model predictive control based on
hybrid optimal control with logical constraints in disjunctive
form. The logical constraints in disjunctive form have been
transformed into inequality and equality constraints which

500 1000 1500 2000
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Altitude, m
ROLDO 1941 s

SOTUK 1742 s

MORAL 2382 s

Fig. 4. Vertical profile of the aircraft trajectories with waypoint and storm
avoidance constraints.
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Fig. 5. Mass consumption the aircraft trajectories with waypoint and storm
avoidance constraints.

involves only continuous auxiliary variables. In this way, the
optimal control problem with logical constraints has been
converted into a smooth optimal control problem which has
been solved using standard techniques. The numerical results
show the effectiveness of the proposed technique.
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