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Abstract—In this paper, an iterative learning control method is
used to improve precision in aircraft trajectory tracking in which,
given a departure procedure, the dynamical model of an aircraft
and a trajectory to be followed, the problem consists in defining
an iterative learning control scheme which is able to improve the
precision of the aircraft in following the trajectory taking into
account the deviations suffered by previous flights. It is assumed
that all the flights are operated with the same aircraft model and
that they successively follow the same trajectory with short time-
based separation and therefore are subject to similar recurrent
disturbances. In the iterative learning control scheme used in this
paper, the control action consists in generating at each iteration
a new reference trajectory for the aircraft which compensates for
recurrent disturbances. Thus, it can be applied to systems with
underlying controllers for trajectory tracking, such as aircraft.
In this case, the feedback trajectory tracking control is intended
to reduce non-repetitive disturbances while the iterative learning
control is intended to reject repetitive disturbances. The iterative
learning control problem is solved in two steps: disturbance
estimation and aircraft reference trajectory update. Both steps
rely on a nominal model of the aircraft in which input and state
constraints are explicitly taken into account. Continuous climb
operations, defined within a standard instrumental departure, are
considered in the simulations. The result show the effectiveness of
the method which is able to reduce the trajectory tracking error
due to recurrent disturbances in a few iterations, thus improving

their predictability. Higher predictability of aircraft trajectories
would simplify both management and control of air traffic,
would improve the capacity of the air traffic management system
and would allow a better exploitation of the infrastructures.
Greater predictability of aircraft trajectories would also allow
airlines to define and follow trajectories with a smaller number
of alterations. This would result in a reduction of costs and
emissions.

Index Terms—Aircraft trajectory tracking, iterative learning
control, continuous climb operations.

I. INTRODUCTION

The future operational concept of the Single European

Sky ATM Research1 (SESAR) and the other initiatives to

increase the efficiency and sustainability of air transportation,

is based on four-dimensional (4D) trajectories which result

This work has been partially supported by the grant number TRA2017-
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1https://www.sesarju.eu/

from the integration of time into three-dimensional (3D)

aircraft trajectories herein referred to as paths. This means that

any delay must be regarded as a deviation from the planned

trajectory as much as a spatial deviation from the planned

path. In trajectory-based operations, aircraft will be able to

follow optimized trajectories based on the preferences of the

airlines, with the obligation to precisely fulfill the arrival times

at the waypoints that define them. Achieving precision in

tracking planned trajectories is difficult due to the multiple

random factors that affect the flight of an aircraft, such as the

weather conditions. Deviations from the planned trajectories

can neither be predicted accurately nor compensated by usual

aircraft trajectory tracking controllers, which in general use

a feedback control scheme and are limited by the causality

of this control method that compensates for disturbances

only after they occur [1]. These limitations are addressed

in this paper by a learning control approach which is able

to use information from previous flights that followed the

same path and infer the correct control action to improve

precision in trajectory tracking of subsequent flights. More

specifically, the Iterative Learning Control (ILC) paradigm has

been considered in this paper to improve the predictability

of aircraft 4D trajectories, that is, the compliance of actual

trajectories with the planned ones. In this paradigm, the control

action consists in generating a new reference trajectory for

the aircraft which compensates for recurrent disturbances.

Improving predictability of 4D trajectories is of special im-

portance in terminal maneuvering areas (TMAs), which are

the controlled airspaces that surround one or more aerodromes.

Due to the numerous arrival and departure routes they contain,

they generally have a high density and are therefore more

sensitive to 4D trajectories’ spatial or temporal deviations.

Furthermore, busy TMAs represent the ideal environment to

implement ILC, since many aircraft follow the same routes

with short temporal separation and therefore are likely to be

subject to similar recurrent disturbances.

ILC is based on the idea that the performance of a control

system that executes the same task multiple times can be

improved by learning from previous executions. In particu-

lar, precision in the execution of a task can be improved



by incorporating error information into the control law for

subsequent iterations. In doing so, accurate performance can

be achieved with low transient tracking error despite recurrent

disturbances. ILC paradigm emerged from industrial robotics

applications to improve trajectory tracking precision of robot

manipulators in repetitive tasks [2]. It has been widely ap-

plied to improve precision in trajectory tracking over the

last three decades and recently has been applied to precise

trajectory tracking of aerial robots [3]. In [4], the main

results in ILC analysis and design are surveyed. Stability,

performance, learning transient behavior, and robustness in

ILC are discussed and the most popular design techniques

are described. They include PD-type, plant inversion methods,

H∞ methods and quadratically optimal design. Extensions

to time-varying, continuous-time, multivariable, and nonlinear

systems are outlined. Several textbooks on ILC are available,

such as [5], which treats both ILC for linear and nonlinear

systems, and [6], which focuses on real time applications.

In this paper, the possibility of applying the ILC paradigm

to improve precision in aircraft trajectory tracking has been

investigated. However, in this context, additional difficulties

arise, since consecutive flights are carried out by different

aircraft, so different dynamical systems perform each iteration,

whereas basic ILC scheme requires the system dynamics to be

repetition-invariant. Furthermore, consecutive flights along the

same path follow in general different trajectories, so knowl-

edge acquired by some aircraft following some trajectories

must be transferred to other aircraft to follow other trajectories.

Due to their complexity, these problems, called knowledge

transfer among dynamical systems and among trajectories,

are not addressed in this paper and will be subject of future

research.

To implement the ILC algorithm to improve precision in

trajectory tracking, information about intended and actually

flown trajectories by other aircraft in the relevant airspace

is needed, which is assumed to be available. Although it is

currently not so, this information will be handled in the future

Air Traffic Management (ATM) system through the System

Wide Information Management (SWIM). This infrastructure

will be available by 2030, when the International Civil Avi-

ation Organization (ICAO) expects the concept of SWIM to

be worldwide deployed. The purpose of SWIM, which is part

of the ICAO Global Air Navigation Plan [7], is to harmonize

the exchange of aeronautical, weather and flight information

for all airspace users and stakeholders.

Thus, the problem considered in this paper can be stated as

follows. Given a departure procedure, the dynamical model

of an aircraft and a trajectory to be followed compliant

with the procedure, define an ILC scheme which is able to

improve the precision of the aircraft in following the trajectory

taking into account the deviations suffered by other flights

operated with the same aircraft model, assuming that all the

flights successively follow the same trajectory with short time-

based separation and therefore are subject to similar recurrent

disturbances.

In particular, the ILC paradigm has been studied for Con-

tinuous Climb Operations (CCOs) in which the execution

of a vertical flight profile optimized to the performance of

aircraft is allowed, leading to significant reduction of fuel

consumption and environmental benefits in terms of noise and

emissions reduction. This case is of special interest because for

an effective CCO implementation, accurate trajectory tracking

control schemes must be employed to avoid potential conflicts

between the arriving and departing aircraft together with

appropriate airspace design and effective Air Traffic Control

(ATC) procedures. In general, CCOs are part of a Standard

Instrument Departure (SID) procedure [8].

Due to the obvious difficulty in implementing an ILC algo-

rithm for accurate trajectory tracking using real commercial

aircraft, the experiments whose results are reported in this

paper have been carried out in a simulated environment. A

realistic scenario has been built in the MATLAB/Simulink

platform using commercial aircraft data from the Base of

Aircraft Data (BADA), which is an Aircraft Performance

Model (APM) developed and maintained by EUROCON-

TROL2 with the collaboration of aircraft manufacturers and

airlines, specifically designed for simulation and prediction

of aircraft trajectories for research and operations in ATM.

The BADA APM has two components: model specifications,

which provide the theoretical models used to calculate aircraft

performance parameters, and data sets, which give the aircraft-

specific coefficients. There are two families of the BADA

APM, based on the same modeling approach and with the

same components: BADA Family 3 and BADA Family 4. The

latest release of the first one has been used in this paper [9].

The trajectories to be followed have been generated using

optimal control techniques. This approach permits the actual

dynamical model of the aircraft to be taken into account,

which ensures the feasibility of the planned trajectories. The

resulting optimal control problems have been solved using

DIDO, a MATLAB application based on the pseudospectral

method developed by Elissar Global3. This application, besides

the optimal control and the corresponding optimal trajectory,

returns the Hamiltonian, costates, path covectors, and endpoint

covectors. This information, together with classical tools such

as Pontryagin’s Maximum Principle, is essential to verify the

optimality of the numerical results.

In this paper the optimization-based ILC method presented

in [3] has been applied to aircraft trajectory tracking. In this

method, the ILC problem is solved in two steps: disturbance

estimation and aircraft control input update. Both steps rely

on a nominal model of the aircraft in which input and

state constraints are explicitly taken into account. An optimal

estimator is used to guess the recurrent disturbance affecting

the flight of an aircraft along a trajectory, and optimization

techniques are employed to compute the control input for

the following aircraft which optimally compensates for the

recurrent disturbances in tracking the same trajectory. The

ILC method has been implemented in Simulink, a graphical

2https://www-test.eurocontrol.int/services/bada
3http://www.elissarglobal.com/industry/products/



programming environment for modeling and simulating dy-

namical systems which, like MATLAB, has been developed

by MathWorks4.

An interesting aspect of this ILC method is that it can

be made non intrusive with respect to the trajectory tracking

control system of the aircraft by calculating, at each iteration,

a reference trajectory for the following aircraft rather than

a control input. Thus, it can be applied to systems with

underlying feedback controllers for trajectory tracking, such as

aircraft. The feedback trajectory tracking control is intended

to reduce non-repetitive disturbances while the ILC is intended

to reject repetitive disturbances.

In [3], an ILC approach has been applied to precise quad-

copter trajectory tracking. It has been shown that trajectory

tracking of aerial robots can be achieved by pure feed-forward

adaptation of the input signal and that the accuracy of the

trajectory tracking is limited by the level of non-repetitive

disturbances. This work can be viewed as an extension of the

results presented in [10], where a least-squares based learning

rule was proposed to perform aggressive maneuvers with

quadcopters which consist in steering these systems quickly

from one state to another. Other ILC paradigms have been

applied to trajectory tracking for Unmanned Aerial Vehicles

UAVs. See for example [11] and references therein.

To the best knowledge of the authors, ILC has not been

applied yet to precise aircraft trajectory tracking. Hence,

its introduction would be an innovative solution to increase

predictability of trajectories in the future trajectory-based op-

erations paradigm. Higher predictability of trajectories would

simplify both management and control of air traffic, would

improve the capacity of the air traffic management system and

would allow a better exploitation of the infrastructures. Greater

predictability of trajectories would also allow airlines to define

and follow trajectories with a smaller number of alterations.

This would result in a reduction in costs and emissions.

The general ILC scheme is presented in Section II. A model

of the aircraft dynamics is derived in Section III and the

method for generating feasible aircraft reference trajectories is

presented in Section IV. The experimental setup is described

in Section V and the results of the application of the ILC

algorithm to aircraft trajectory tracking in Section VI. Finally,

Section VII contains the conclusions.

II. ITERATIVE LEARNING

In this section, following [3], the ILC method implemented

in this paper for precise aircraft trajectory tracking will be

introduced. The starting point of the learning algorithm is a

time-varying nonlinear model of a real dynamic system:

ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t),
(1)

where u(t) ∈ R
nu is the control input, x(t) ∈ R

nx is the

state, and y(t) ∈ R
ny is the output, and f and g are assumed

to be continuously differentiable in x and u. Constraints on

4https://es.mathworks.com/

the input u(t) and the state x(t), and their time derivatives are

represented by

Z q(t) � qmax, (2)

where

q(t) =

[
x(t), u(t), ẋ(t), u̇(t), . . . ,

dm

dtm
x(t),

dm

dtm
u(t)

]
(3)

and qmax ∈ R
nq . The inequality is defined component-wise

and nq is the total number of constraints, Z is a constant matrix

of appropriate dimensions.

The goal of the presented learning algorithm is to precisely

track a feasible predefined output trajectory y∗(t) over a finite

time interval t ∈ T = [t0, tf ], with tf < ∞. The desired

output trajectory y∗(t) is here the result of solving an optimal

control problem based on the system dynamics (1).

The system’s behavior (1) can be represented as a linear

time-varying system

˙̃x(t) = A(t)x̃(t) +B(t)ũ(t)

˙̃y(t) = C(t)x̃(t) +D(t)ũ(t), t ∈ T ,
(4)

where the time-dependent matrices A(t), B(t), C(t), D(t) are

the corresponding Jacobian matrices of the nonlinear functions

f and g with respect to x and u. The triple (ũ(t), x̃(t), ỹ(t))
represent small deviations from the desired trajectory and its

corresponding state and input (x∗(t), u∗(t), y∗(t)),

ũ(t) = u(t)− u∗(t),

x̃(t) = x(t)− x∗(t), (5)

ỹ(t) = y(t)− y∗(t).

In a real system, measurements are only available at

fixed time intervals, therefore a discrete-time representation

is needed, which results in the following linear, time-varying

difference equations,

x̃(k + 1) = AD(k)x̃(k) +BD(k)ũ(k)

ỹ(k) = CD(k)x̃(k) +DD(k)ũ(k),
(6)

where k ∈ K = {0, 1, ..., N − 1} , N < ∞ represents the

discrete-time index. The desired trajectory is represented by a

N -sample sequence

(u∗(k), x∗(k + 1), y∗(k + 1)), k ∈ K, (7)

with given initial state x∗(0). The input and state constraints

(2) are similarly transformed

Zq̃(k) � qmax(k), (8)

where q̃(k) is the deviation of q(k) from the corresponding

nominal values q∗(k) defined analogously to (5), and dis-

cretized.



A. Lifted system representation

It is useful to replace the model described above by a lifted

vector representation, mapping the finite input time series

ũ(k), k ∈ K into the corresponding output time series ỹ(k),
k ∈ K for each trial [12]. The deviations with respect to the

desired trajectory (7) are then

u = [ũ(0), ũ(1), . . . , ũ(N − 1)]
T ∈ R

Nnu

x = [x̃(1), x̃(2), . . . , x̃(N)]
T ∈ R

Nnx

y = [ỹ(1), ỹ(2), . . . , ỹ(N)]
T ∈ R

Nny .

(9)

Using this notation, the linear system (6) can be described as

x = Fu+ d0

y = Gx+Hu,
(10)

The lifted matrix F ∈ R
Nnx×Nnu is composed of the matrices

F(l,m) ∈ R
nx×nu , 1 ≤ l,m ≤ N , that is

F =



F(1,1) . . . F(1,N)

...
. . .

...

F(N,1) . . . F(N,N)


 , (11)

where

F (l,m) =





AD(l − 1) . . . AD(m)BD(m− 1) if m < l

BD(m− 1) if m = l

0 if m > l.

Matrices G and H are block-diagonal and analogously defined

by

G(l,m) =

{
CD(l) if l = m

0 otherwise

and

H(l,m) =

{
DD(l) if l = m

0 otherwise,

respectively, where, G(l,m) ∈ R
ny×nx and H(l,m) ∈ R

ny×nu .

Vector d0 contains the free response of the system (6) to the
initial deviation x̃(0) = x̃0 ∈ R

nx ,

d
0 =



(AD(0)x̃0)
T
, (AD(1)AD(0)x̃0)

T
, . . . ,

(

N−1
∏

i=0

AD(i)x̃0

)T




T

.

B. Disturbance estimation

In order to take into account the repetitive nature of the

problem setting, the system (10) is written as

xj = Fuj + dj

yj = Gxj +Huj,
(12)

where the subscript j indicates the jth execution of the

desired task and dj represents the repetitive disturbance along

the reference trajectory, which shows only slight random

changes, ωj , between iterations. Taking into account process

and measurement noise, captured in the random variable µj ,

the evolution of the learning over consecutive trials can be

represented as a Kalman filter model [13]

dj = dj−1 + ωj−1

yj = Gdj + (GF +H)uj + µj ,
(13)

where both stochastic zero-mean Gaussian white noise vari-

ables, ωj ∼ N (0,Ωj) and µj ∼ N (0,Mj), are trial-

uncorrelated and assumed to be independent. Matrices Ωj and

Mj represent the noise covariances and can be characterized

as diagonal matrices.

The Kalman filter estimates the current error dj taking into

account the output signals y0, y1, . . . , yj from previous trials.

Given the initial values of the error estimate, d̂0 and the

error covariance matrix, P0 = E[(d0 − d̂0)(d0 − d̂0)
T ], the

disturbance estimate is calculated as

d̂j = d̂j−1 +Kj

(
yj −Gd̂j−1 − (GF +H)uj

)
, (14)

where Kj is the optimal Kalman gain

Kj = (Pj−1 +Ωj−1)G
T
(
G (Pj−1 +Ωj−1)G

T +Mj

)−1
.

C. Input update

The learning update consists in deriving a model-based

update rule that computes a new control input uj+1 ∈ R
Nnu in

response to the estimated disturbance d̂j , that is, minimizing

the deviation from the nominal trajectory in the next trial.

Since this deviation xj+1 is unknown, the expected value of

xj+1 given all past measurements is considered,

E [xj+1|y1, y2, . . . , yj ] = Fuj+1 + d̂j . (15)

The update rule can be expressed by the following opti-

mization problem:

min
uj+1

‖ Fuj+1 + d̂j ‖ℓ +α ‖ Duj+1 ‖ℓ

subject to Luj+1 ≤ qmax,
(16)

where constraints (8) are explicitly taken into account, and

α ≥ 0 and the matrix D have the objective of penalizing the

input or approximations of its derivatives in order to enforce

the smoothness of the optimal problem solution. The vector

norm ℓ, with ℓ ∈ {1, 2,∞}, of the minimization problem (16)

affects the result and convergence of the learning algorithm

and should be chosen in accordance with the performance

objectives.

The update law defined in (16) can be formulated as a

standard convex optimization problem of the form

min
z

(
1

2
zTV z + vT z

)

subject to Wz ≤ w and η1 ≤ z ≤ η2,

(17)

where z ∈ R
nz represents the vector of decision variables.

Vectors v, w and matrices V,W have appropriate dimensions.

A scaling of the original signals u(t), x(t), y(t) in (1) is

essential to guarantee reasonable results in the optimization



problem. The scaling, exemplarily shown on the system’s state

x(t), reads as

xs = Sxx, Sx ∈ R
Nnx×Nnx (18)

with xs representing the scaled version of a lifted state vector

x and Sx being the corresponding scaling matrix, usually rep-

resented by a diagonal matrix. Additionally, a state weighting

matrix may be useful to give greater importance to some of

the state variables over the rest.

As mentioned in the introduction, one of the advantages of

the iterative learning algorithm is its non intrusiveness with

respect to the aircraft’s existing trajectory tracking controller,

since a new reference trajectory can be provided to the

following aircraft rather than a control input. Once the updated

input uj+1 is calculated in (16), the new reference trajectory

is obtained by introducing this input into the lifted model,

dismissing the disturbances except for the initial deviation

error

xN = xN + xd, with xN = Fuj+1 + d0j+1

yN = yN + yd, with yN = GxN +Huj+1,
(19)

where xN ∈ R
Nnx is the new reference state variable lifted

vector, yN ∈ R
Nny is the new reference output lifted vector,

and xd and yd are the lifted vectors of the desired state and

output, respectively

xd = [x∗(1), x∗(2), . . . , x∗(N)]T ∈ R
Nnx

yd = [y∗(1), y∗(2), . . . , y∗(N)]
T ∈ R

Nny .
(20)

III. AIRCRAFT DYNAMICS

In this section, the dynamic model of the aircraft used in

the simulated environment will be described.

A. Equations of Motion

A common three-degree-of-freedom dynamic model has

been used which describes the point variable-mass motion

of the aircraft over a non-rotating flat Earth model [14]. In

particular, a symmetric flight has been considered. Thus, it

has been assumed that there is no sideslip and all forces lie in

the plane of symmetry of the aircraft. The following equations

of motion of the aircraft have been considered:

V̇ (t) =
T (t)−D(he(t), V (t), CL(t))−m(t) · g · sin γ(t)

m(t)

χ̇(t) =
L(he(t), V (t), CL(t)) · sinµ(t)

m(t) · V (t) · cos γ(t)

γ̇(t) =
L(he(t), V (t), CL(t)) · cosµ(t)−m(t) · g · cos γ(t)

m(t) · V (t)

ẋe(t) = V (t) · cos γ(t) · cosχ(t) (21)

ẏe(t) = V (t) · cos γ(t) · sinχ(t)

ḣe(t) = V (t) · sin γ(t)

ṁ(t) = −T (t) · η(V (t)).

The three dynamic equations in (21) are expressed in an

aircraft-attached reference frame, the wind axes (xw , yw, zw),

xe

xw

yeyw

χ
T

D

(a) Top view

ye

yw

Lze
zw

µ

mg

(b) Front view

xe

xw

T

L

D

zezw

γ

mg

(c) Lateral view

Fig. 1. Aircraft state and forces.

and the three kinematic equations are expressed in a ground

based reference frame, the Earth reference frame (xe, ye, ze),
as shown in Fig. 1.

The states of the system (21) are the true airspeed, V ,

the heading angle, χ, the flight path angle, γ, the posi-

tion, xe, ye, he, and the aircraft mass, m. Thus, x(t) =
(V (t), χ(t), γ(t), λe(t), θe(t), he(t),m(t)). The control inputs

are the bank angle, µ, the engine thrust, T , and the lift

coefficient, CL. Thus, u(t) = (T (t), µ(t), CL(t)).
Parameter η is the speed-dependent fuel efficiency coef-

ficient. Lift, L = CLSq̂, and drag, D = CDSq̂, are the

components of the aerodynamic force. Parameter S is the

reference wing surface area and q̂ = 1
2ρV

2 is the dynamic

pressure. A parabolic drag polar CD = CD0 +KC2
L, and an

International Standard Atmosphere (ISA) model are assumed.

The lift coefficient CL is a known function of the angle of

attack α and the Mach number.

B. Flight Envelope Constraints

Flight envelope constraints are derived from the geometry of

the aircraft, structural limitations, engine power, and aerody-

namic characteristics. The performance limitations model and

the parameters have been obtained from BADA.

0 ≤ he(t) ≤ min[hM0, hu(t)], γmin ≤ γ(t) ≤ γmax,

M(t) ≤ MM0, mmin ≤ m(t) ≤ mmax,

V̇ (t) ≤ āl, CvVs(t) ≤ V (t) ≤ VMo,

γ̇(t)V (t) ≤ ān, 0 ≤ CL(t) ≤ CLmax
,

Tmin(t) ≤ T (t) ≤ Tmax(t), µ(t) ≤ µ̄. (22)

In (22), hM0 is the maximum operational altitude and

hu(t) is the maximum operative altitude at a given mass (it

increases as fuel is burned). M(t) is the Mach number and

MM0
is the maximum operating Mach number. Cv is the

minimum speed coefficient, Vs(t) is the stall speed, VM0
is

the maximum operating Calibrated Airspeed (CAS) and ān
and āl are, respectively, the maximum normal and longitu-

dinal accelerations for civilian aircraft. Finally, Tmin(t) and

Tmax(t) correspond to the minimum and maximum available

thrust, respectively, and µ̄ corresponds to the maximum bank

angle due to structural limitations.

C. Longitudinal dynamics

In this work, ILC is used for precise trajectory tracking of

the vertical profile of a CCO. Therefore, the motion of the



aircraft is limited to a vertical plane, i.e., with constant course

and thus constant heading angle χ. Without loss of generality,

we assume that the heading angle is zero, that is χ = 0. We

also suppose that the aircraft performs a leveled wing flight,

thus the bank angle is zero, that is µ = 0.

The state variables are then

x(t) = (V (t), χ(t), γ(t), λe(t), θe(t), he(t),m(t))

and the control variables,

u(t) = (T (t), CL(t)).

The equations of motion are reduced to:

V̇ (t) =
T (t)−D(he(t), V (t), CL(t)) −m(t) · g · sin γ(t)

m(t)

γ̇(t) =
L(he(t), V (t), CL(t))−m(t) · g · cos γ(t)

m(t) · V (t)

ẋe(t) = V (t) · cos γ(t) (23)

ḣe(t) = V (t) · sin γ(t)

ṁ(t) = −T (t) · η(V (t)).

The flight envelope constraints remain the same as in (22),

except the one referring to the bank angle, since it is assumed

to be zero.

IV. TRAJECTORY PLANNING

In this section, the method to generate a reference trajectory

to be followed will be described.

As said before, in this paper, the ILC paradigm is applied

to follow a CCO trajectory in the the vertical plane generated

using an optimal control technique in which fuel consumption

has been minimized. In [8], ICAO defines CCO as “an aircraft

operating technique enabled by airspace design, procedure

design and facilitation by ATC, allowing the execution of a

flight profile optimized to the performance of the aircraft”.

They also enumerate some advantages of CCO, such as

more fuel efficient operations, reduction in both flight crew

and controller workload through the design of procedures

requiring less ATC intervention, reduction in the number of

required radio transmissions, cost savings and environmental

benefits through reduced fuel burn, potentially aircraft noise

mitigation through thrust and height optimization, and poten-

tial authorization of operations where noise limitations would

otherwise result in operations being curtailed or restricted. On

the other hand, precise trajectory tracking is essential to avoid

potential conflict between traffic flows and ensure that safety

and capacity are not compromised.

A feasible state trajectory with its corresponding nominal

input is the starting point of the iterative learning algorithm.

The trajectory is generated via the MATLAB application

DIDO using a nominal model of an Airbus A320 aircraft.

The input to DIDO is the problem formulation in a structured

format, including system dynamics, constraints and cost func-

tion. Besides the optimal control and the resulting trajectory,

DIDO automatically outputs the Hamiltonian, costates, path

Fig. 2. SID PINAR1U. Source: Spanish AIP service. Not for operational use.

covectors, and endpoint covectors for the verification of the

solution. A CCO associated with a SID procedure has been

considered. Therefore, airspace constraints that represent the

passage through the waypoints that define the SID are in-

troduced in the trajectory generation problem together with

the flight envelope constraints. The boundary conditions for

the state variables have been selected according to a realistic

flight from Adolfo Suárez Madrid-Barajas (LEMD) airport.

The trajectory generation starts up to 1000 m after takeoff

and ends at 10000 m, when the aircraft reaches cruise level.

Initial velocity and path angle have been selected according

to standard values.

The selected SID procedure is Madrid Barajas PINAR1U

shown in Fig. 2. The definition of the SID can be found in the

Spanish Aeronautical Information Publication (AIP) service5,

managed by ENAIRE, where the SID is textually described as

follows: “To MD050 on heading 143◦M at 2600 ft or above,

turn left. To MD051 at 5700 ft or above, turn left. To RBO at

13000 ft or above, turn right. To PINAR at 13000 ft or above”.

TABLE I
COORDINATES OF WAYPOINTS AND NAVAIDS OF THE SID PINAR1U.

SOURCE: SPANISH AIP SERVICE.

Point Type Latitude Longitude

MD050 RNAV waypoint 40
◦
25

′
54.0220

′′N 003
◦
29

′
37.3611

′′W
MD051 RNAV waypoint 40

◦
22

′
15.4740

′′N 003
◦
19

′
44.9769

′′W
RBO DVOR/DME navaid 40◦51′14′′N 003◦14′47′′W
PINAR RNAV waypoint 40◦58′49.0620′′N 002◦35′56.9980′′W

Three of the points that define the SID are Area Navigation

(RNAV) waypoints whereas one of them is a DVOR/DME

Navigational Aid (NAVAID). The geographical coordinates of

these points are listed in Table I.

5https://ais.enaire.es/AIP/



V. EXPERIMENTAL SETUP

In this section, the simulated environment in which the

experiments have been carried out will be described. It is

composed by:

• a realistic flight simulator,

• an estimator of the disturbances acting on the aircraft,

and

• an ILC controller.

In order to test the proposed learning scheme, a 3-DOF

longitudinal model of an Airbus A320 aircraft has been

implemented in Simulink, a widely used software in aircraft

simulation [15]. The input variables are the thrust and the

lift coefficient, u = (T,CL), and the vector of state variables

x = (V, γ, xe, he,m), where V is the true airspeed, γ is the

flight path angle, xe and he are the horizontal position and the

height, and m is the aircraft mass. We assume that all states

can be measured. Noise is introduced in the model in order

to simulate weather perturbations, model uncertainties as well

as measurement noise. Therefore, a Kalman filter has been

employed to estimate the disturbances acting on the aircraft

as described in Section II-B.

The ILC algorithm, which has been implemented in MAT-

LAB, can be summarized as follows.

• Initialization. First, the desired trajectory, y∗ = x∗,

and the corresponding input, u∗, are loaded from a file

provided by the optimal control software DIDO. As said

in Section IV, the desired trajectory to be followed has

been calculated using a nominal model of the aircraft

without taking into account perturbations. This model

does not coincide with the aircraft model used in the flight

simulator, which is more realistic, containing perturba-

tions. Then, settings and parameter values of the learning

algorithm are introduced in the main program, and the

lifted-domain representation and the Kalman gains are

computed. To test the robustness of the ILC controller to

modeling errors, the aircraft parameters entered here are

slightly different from those used in the flight simulator

and in trajectory planning. The optimization problem is

now set up.

• j-th iteration. Using the most recent feed-forward input

generated by the ILC algorithm, the corresponding trajec-

tory of the aircraft is generated by the flight simulator and

the tracking error between desired and actual trajectories

is estimated.

• j + 1-th iteration. Based on the tracking error estimated

after the j-th iteration, the simulated aircraft is set to

the initial position and the update step of the learning

algorithm is executed, which computes a new reference

trajectory to be tracked in the j + 1-th iteration.

VI. RESULTS

In this section, the results of the application of the ILC

scheme to precise aircraft trajectory tracking in CCOs will be

reported. As said before, although the ILC algorithm is able to
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Fig. 3. Evolution of the trajectory xe − he over iterations.
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Fig. 4. Evolution of the lift coefficient over iterations.

tackle 4D trajectories, in this section, for the sake of clarity,

only the corresponding 3D paths will be reported.

The desired path associated with the desired trajectory of the

aircraft to perform a CCO, obtained in the trajectory planning

phase described in Section IV, is shown in dashed black line in

Fig. 3. In the first iteration, the corresponding input is applied

to the first aircraft and the resulting trajectory is generated by

the flight simulator described in Section V.

Due to modeling and disturbance errors considered in the

flight simulator, the resulting path falls far below the desired

one, initiating the cruise phase more than 1000 m below

the planned cruise height. The ILC scheme rapidly learns

from the first executions achieving a very precise tracking of

the designed CCO trajectory after only three iterations. This

means that using the ILC scheme, the third aircraft will be

able to compensate for the recurring disturbances and follow

the desired trajectory with high precision.
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Fig. 6. Reference path associated with the reference trajectory to be provided
to the aircraft in the seventh iteration of the ILC algorithm to precisely track
the desired trajectory.

As shown in Fig. 4, the lift coefficient input converges

after few iterations, and similarly does the thrust. Despite the

convergence of the input, both the trajectory and the input vary

over iterations due to non-repetitive disturbances, which would

be compensated by the feedback trajectory tracking controller

of the aircraft.

The state weighted error in Fig. 5 allows the learning

performance to be evaluated over iterations. It is calculated

as:

ew,j =‖ Syj ‖2, (24)

where S is the weighted scaling matrix of the state variables

and yj is the measured output vector. As expected, since

the ILC scheme is intended to compensate for repetitive

disturbances, the weighted state error converges to the system

noise level, and not to zero, due to non-repetitive disturbances.

In Fig. 6 is depicted the reference path associated with

the reference trajectory to be provided to the aircraft in the

seventh iteration of the ILC algorithm to precisely track the

desired trajectory. It is an example of the non-intrusiveness of

this control paradigm with respect to the underlying aircraft

feedback controller for trajectory tracking by calculating, at

each iteration, a reference trajectory for the following aircraft

rather than a control input.

VII. CONCLUSIONS

In this paper an optimization-based iterative learning ap-

proach has been applied to precise aircraft trajectory tracking.

In this method, optimality is pursued in both the estimation of

the recurring disturbance and in the calculation of the input

update, which optimally compensates for the disturbance. The

approach has been successfully applied to trajectory tracking

of the simulation of commercial aircraft in continuous climb

operations. The flight of an Airbus A320 aircraft in the vertical

plane has been modeled assuming constant course and leveled

wing flight and International Standard Atmosphere conditions.

Weather perturbations, model uncertainties and measurement

noise have been introduced in the model. These noise signals

vary from iteration to iteration and are assumed to be trial-

uncorrelated sequences of zero-mean Gaussian white noise. It

has been shown that precision in aircraft trajectory tracking

can be improved by pure feed-forward adaptation of the

control input. Extending this approach to flights not restricted

to the vertical plane and applying it to other flight procedures

are subjects of current research.
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de Madrid. She worked for Airbus Defence and Space, developing training
and operational documentation and providing operational support for in-
service aircraft. Her research focuses on iterative learning control applied
to commercial aircraft trajectory tracking.

Alberto Olivares is a Professor of Statistics and Vector Calculus at the
Universidad Rey Juan Carlos in Madrid, Spain. He received his MSc degree
in Mathematics and his BSc degree in Statistics from the Universidad de
Salamanca, Spain, and his PhD degree in Mathematical Engineering from
the Universidad Rey Juan Carlos. He worked with the Athens University of
Economics and Business. His research interests include statistical learning,
stochastic hybrid optimal control and model predictive control with applica-
tions to biomedicine, robotics, aeronautics and astronautics.

Ernesto Staffetti is a Professor of Statistics and Control Systems at the
Universidad Rey Juan Carlos in Madrid, Spain. He received his MSc degree
in Automation Engineering from the Università degli Studi di Roma “La
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