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Abstract—In this paper a set of new performance indicators (PIs) 
aiming to capture the environmental impact of aircraft operations 
is proposed. Its contribution is threefold: optimal trajectories are 
computed to compare them with historical trajectories and derive 
several flight efficiency PIs; a family of fuel-based PIs is proposed, 
where fuel is estimated only from surveillance trajectory datasets 
not requiring confidential data; and different PIs and variants are 
proposed aiming to decouple and to identify different sources of 
environmental inefficiencies, distinguishing those that could be 
attributed to the different layers of air traffic management (ATM), 
and those attributable to the airspace users (AUs). A case study is 
presented for two different days, where flight inefficiency was 
assessed with the proposed PIs for all traffic crossing the FABEC 
airspace during a 24h period. Main results show that average fuel 
inefficiencies that could be attributable to ATM are around 250 kg 
(7.8%) when a full free route without en-route charges scenario at 
maximum range operations is considered as reference for the 
optimal trajectories. AUs induced fuel inefficiencies (due to flying 
faster than the maximum range speed) have a mean around 100 
kg (3%). It is also concluded that fuel inefficiencies in the vertical 
and horizontal trajectory domains have a similar contribution to 
the overall flight inefficiency. Yet, horizontal inefficiencies are 
higher at strategic level, while are negative at tactical level for the 
great majority of flights.  

Keywords- flight efficiency; ATM performance; post-ops; 
trajectory optimization; environmental impact; fuel estimation 

I. INTRODUCTION 
Air traffic management (ATM) affects the environment, 

with more or less impact, depending on when, how far, how 
high, how fast and how efficiently aircraft can fly [1]. This 
influences how much fuel aircraft burn, the level of greenhouse 
and other gases emitted from their engines, and how much noise 
they emit. The environmental performance of aviation has 
improved significantly since the 1960s. Yet, with global traffic 
expected to increase in the following years, the challenge is 
meeting this expected growth while minimizing its 
environmental impact. 

Several agencies and programs world-wide are setting 
ambitious environmental targets for future ATM paradigms, 
such as SESAR in Europe and NextGen in the United States. For 
example, one of the main political goals of SESAR 2020 in the 

environment area is to contribute with a 10% of CO2 reduction. 
This target supposes reducing burned fuel by 250 to 500 kg per 
flight by 2035, which corresponds to 0.8 to 1.6 tons of CO2 
emissions per flight [2]. Besides setting these ambitious targets, 
environmental performance (and ATM performance in general) 
shall be continuously monitored in order to identify areas of 
improvement; to validate new technological or procedural 
concepts or solutions; or to compare the actual measured 
performance against these high-level targets.   

In this context, the International Civil Aviation Organization 
(ICAO) launched in 2003 a worldwide initiative to ensure that 
the future global ATM system is performance based [3,4]. 
Worldwide support to the ICAO initiative is also given by 
CANSO (Civil Air Navigation Services Organization) [5]. In 
line with these initiatives, current ATM performance assessment 
is addressed in Europe through the Single European Sky (SES) 
Performance Scheme, which establishes an agreed 
methodological framework for performance targeting, 
measuring, baselining and benchmarking in ATM [6]. In [7], a 
comprehensive review is given, comparing the performance 
frameworks proposed by ICAO, CANSO, the SES performance 
scheme, performance monitoring activities at Eurocontrol, and 
the SESAR 2020 performance framework; identifying over 150 
performance indicators (PIs) for performance management and 
monitoring in 11 different key performance areas. Similarly, in 
NextGen numerous PIs have also been proposed to measure the 
performance of the program deployment [8,9].  

This paper focus on PIs aiming to capture environmental 
inefficiencies from historical flight records coming from 
surveillance (and flight planning) datasets. Current indicators 
implemented by the SES performance scheme and CANSO, for 
instance, compare the trip distance of planned and actual routes 
with great circle distances (orthodromic trajectories). In this 
way, only the horizontal track of the trajectory is considered, 
neglecting the effects of vertical (and speed) flight inefficiencies 
on the environment. Furthermore, the best route (from an 
environment point of view) might be different from the 
orthodromic trajectory in realistic weather conditions (namely 
wind fields), in such a way a longer ground distance might 
represent a shorter air distance (taking advantage of tail wind). 
Furthermore, planned trajectories by airspace users (AUs) 
cannot either be taken as “reference” for the best 



environmentally friendly flights, since AUs might prioritize 
shorter trip times at the expense of higher fuel consumption or, 
as reported in [10], longer routes to avoid some airspaces with 
higher en-route charges, for instance.  

The contribution of this paper is threefold. First of all, 
optimal trajectories (from the environment point of view) are 
used as references to derive flight efficiency PIs, instead of using 
orthodromic or AU submitted trajectories.  

Secondly, a wide family of PIs to measure fuel inefficiencies 
is proposed, aiming at better capturing the environmental impact 
of operations. The main challenge of this approach is the need 
for fuel consumption figures, which might be unavailable for 
most ATM performance monitoring agencies, at least to conduct 
generalized and/or recurrent assessments. Typical data sources 
for flown trajectories come from surveillance datasets, such as 
radar tracks or automatic dependent surveillance broadcast 
(ADS-B) records. Concerning planned trajectories, these are 
typically reconstructed from air traffic services (ATS) flight 
plans submitted by the AUs. In both cases, trajectory datasets 
basically contain aircraft 3D positions (and ground speed 
depending on the source) at given time stamps, and fuel must be 
inferred from this limited information.  

Finally, we also propose several PIs with the objective to 
isolate and capture different sources or components of the  
environmental inefficiencies.  

II. STATE OF THE ART AND LITERATURE REVIEW 
Current PIs implemented by the SES performance scheme, 

CANSO and the FAA (Federal Aviation Administration) use 
orthodromic trajectories as reference trajectories to derive flight 
inefficiency indicators [7, 11]. Thus, trajectory inefficiencies in 
the vertical domain are not captured, and as commented before, 
an orthodromic trajectory is not necessarily optimal from a fuel  
consumption (and emissions) point of view.  

Eurocontrol proposes in [12] to assess (strategic) en-route 
vertical flight efficiency by analyzing the maximum altitude 
found in the flight plan, an approach that could lead to 
underestimations of the vertical flight inefficiency because there 
can be lower (non-optimal) cruise segments before or after the 
moment the maximum altitude is reached. Aiming to overcome 
this issue, NATS proposed a new metric called 3-Dimensional 
Inefficiency Score (3Di Score), where the reference trajectory is 
still based on the orthodromic track with an unimpeded climb 
phase to the AU requested flight level, followed by an 
unimpeded descent [13]. A similar approach is presented in [14], 
discussing on the different causes of flight inefficiency too. In 
both cases, Eurocontrol’s Base for Aircraft Data (BADA) [15] 
was used to derive fuel figures, nominal speed schedules and 
nominal take-off weights.  

 Focusing in terminal operations, a harmonized vertical 
profile analysis algorithm, between the FAA and Eurocontrol, is 
reported in [16] to address vertical flight efficiency in climbs and 
descents, where level-off segments are identified. A similar 
approach was taken in [17]. There, efficiency was computed by 
comparing the fuel needed to fly the observed level segments to 
the scenario where these segments were removed. Fuel figures 
were roughly estimated with BADA tables.  

The SESAR 2020 Performance Framework [1], in turn, 
proposes to directly measure fuel inefficiency, defining PIs such 
as FEFF1 (average fuel burn per flight); FEFF8 (average en-
route horizontal deviation fuel burn); and FEFF9 (average en-
route vertical deviation fuel burn). These PIs have the purpose 
to support the validation of certain SESAR solutions by 
comparing reference and solution scenarios. These scenarios, 
however, are in general simulated or synthesized (pre-
operational assessments) and therefore, fuel figures are already 
an output of the simulation tools used for these validations.  

Ref. [18] proposes some flight efficiency indicators aiming 
at measuring the fuel differences between the executed  
trajectories (i.e. post-operational analysis) and an optimal 
trajectory reference. A first indicator considers the vertical 
component of the flight on top of the orthodromic trajectory, 
similar to the 3Di Score.  A second indicator optimizes only the 
vertical profile with maximum range conditions, while fixing the 
horizontal track of the historic trajectories. Finally, a third 
indicator takes the initial flight plan issued by the AU as optimal 
reference. Case studies, however, were restricted to only 45 
illustrative flights in 6 different routes. BADA models were 
considered too, with some assumptions on the take-off mass 
based on BADA default tables.  

Extending this previous work, in [19] fuel and aircraft mass 
are directly estimated from ADS-B records addressing the 
challenge to estimate fuel from the observed trajectory without 
requiring confidential or sensitive data from the AUs (such as 
the take-off mass of the aircraft, cost index, etc.). Some fuel 
figures are used to derive total AU cost-efficiency indicators and 
a case study with approximately 1500 trajectories is presented.  

A similar approach is taken in [20], where the importance of 
this (optimal) reference trajectory is discussed when assessing 
different conceptual inefficiencies. Thus, by changing this 
reference, [20] decouples the contributions of the ATM 
strategic, pre-tactical and tactical layers to flight (in)efficiency. 

As commented before, it is worth noting that inefficiencies 
for the AU are not necessarily the same inefficiencies for the 
environment, since AUs might wish to fly trajectories that are 
non-optimal, from a fuel consumption point of view [10, 21, 22].  

 The indicators proposed in this paper extend the SESAR 
2020 indicators to their use in post-operational analysis, in line 
with [19], but focusing on the environmental inefficiencies. 4-
dimensional (4D) weather optimal trajectories are used as 
reference to build these indicators and, by changing these 
references we are able to separate those inefficiencies that can 
be attributed to the different layers of ATM (in line with [20]); 
decoupling horizontal and vertical fuel inefficiencies; making an 
initial assessment of those inefficiencies attributable to the AU 
when cruising at speeds higher than the maximum range speed; 
and assessing results with different optimal references in order 
to change what is the utopian goal for maximum efficiency.  

III. PROPOSED INDICATORS 
Two families of PIs are proposed in this paper to assess 

inefficiencies from post-operational data: distance-based and 
fuel-based indicators.   For each family,  several  PIs are defined, 
aiming to capture different sources of inefficiency.



 
Figure 1 Methodology to compute the environmental Performance Indicators (PIs) 

A. Overall Methodology 
The methodology used to compute these indicators is 

illustrated in Fig. 1. Two types of historical trajectories are used. 
The nomenclature proposed in the SESAR trajectory based 
operations (TBO) concept has been adopted in this paper [23]: 

• the RBT (reference business trajectory), which is the 
trajectory that has been agreed to fly by all concerned 
stakeholders after the negotiation process with the 
Network Manager, applying (if necessary) air traffic 
flow management (ATFM) regulations; and  

• the executed RBT, or actual flown trajectory, which 
contains updates at tactical level on the RBT (if any), for 
instance due to air traffic control (ATC) interventions.   

Trip distance and fuel must be estimated from these 
historical trajectory datasets, which typically  contains  only 
position  and altitude reports at different time stamps (coming 
from surveillance or flight planning repositories). Distance 
estimation is straightforward, but fuel estimation is a complex 
issue and a trajectory reconstruction is needed before the PIs can 
be computed (A trajectories in Fig. 1). Several techniques are  
proposed in the literature, such as in [20, 24, 25], which require 
additionally an aircraft performance model (such as specific fuel 
consumption parameters and aerodynamic coefficients); and the 
historical weather conditions encountered by the flight. 

These reconstructed trajectories are then compared with 
optimal trajectories specifically computed by an independent 
module (B trajectories in Fig. 1), which is also requiring from 
the same weather data and aircraft performance models. This 
trajectory optimization engine requires as well an estimation of 

                                                
1 The CI is a weighting parameter used by the AU at the flight planning stage 

that relates the cost of time with the cost of fuel. CI=0 implies fuel minimization 
(maximum range operations); while the higher the CI is, the more importance to 
reduce trip time is given, at the expense of burning more fuel. 

the landing mass for each flight, besides the origin/destination 
airports and aircraft type information, directly taken from the 
historical trajectory dataset. As it will be explained below, 
different optimization criteria and/or constraints can be 
configured in this module, leading consequently to different 
optimal trajectories as outputs of this module. For example, the 
optimal trajectory can be computed assuming a full free route 
airspace, or constrained to current ATS routes. It can be 
computed assuming maximum range operations (i.e. minimizing 
fuel), or by fixing the cost index (CI)1 selected by the AU. In this 
case, the CI shall also be estimated, as depicted in Fig.1. 
Machine learning tools or model-based approaches similar to the 
mass estimation techniques cited above could be used.  

Finally, this optimal trajectory can also be computed by 
fixing the horizontal track followed by the RBT or the executed 
trajectory, capturing in this way, only horizontal inefficiencies. 

Regarding aircraft performance, Eurocontrol’s BADA 
version 4.x is a good candidate, since it covers at present the 
70% of aircraft types in the European Civil Aviation Conference 
(ECAC) area and provides more accurate fuel models than 
previous releases (modelling, for instance, the compressibility 
effects of the air in the aerodynamic drag)[15]. Concerning 
meteorology, historical wind fields and, to a lesser extent, 
temperature profiles, are required. This information is typically 
available in public data bases, such as the North-American 
National Oceanic and Atmospheric Administration (NOAA).  

Wrapping up, by combining, on the one hand, the 
reconstruction of historical trajectories (A); and on the other 
hand, the different optimal trajectory references (B), a wide set 

The CI is manually entered into the flight management system of the aircraft 
by the pilot and affects not only the aircraft speed (higher CIs will lead to higher 
speeds), but also the vertical trajectory profile (higher CIs will lead to shallower 
climbs and lower cruise altitudes) [21]. 

 



of different PIs can be computed, capturing in this way, different 
sources and components of distance or fuel inefficiencies.  

B. Capturing Inefficiencies due to Different ATM Layers 
In line with [20], in this paper we will identify inefficiencies 

attributable to the tactical layer of the ATM; and those caused 
by the strategic and/or pre-tactical (ATFM) layer. In current 
operations, tactical inefficiencies mainly include path stretching 
from ATC (or vectoring); airborne holding; tactical altitude 
changes; level-offs; etc. Strategic inefficiencies might include 
the effects of following structured ATS routes; constraining the 
flight according to flight level allocation and orientation 
schemes; avoidance of no-fly (restricted/military) zones; 
observing restrictions in the flight planning such as the RAD 
(route availability document) in Europe; etc. Pre-tactical 
inefficiencies, in turn, might include pre-tactical re-routings or 
flight level capping (besides ATFM delay, which from an 
environmental point of view, has a negligible impact).  

In the future TBO paradigm, however, the proposed 
methodology would allow to better decouple the sources of 
flight inefficiency across the whole trajectory life-cycle. Thus, 
tactical inefficiency indicators will capture the effects of 
updating and revising the RBT. By comparing the first submitted 
SBT (shared business trajectory) and the RBT we would be able 
to better isolate inefficiencies due to the pre-tactical phase (i.e. 
the negotiation phase with the Network Manager to solve 
demand and capacity imbalances). Then, by focusing on the first 
submitted SBT, we would be able to capture strategic 
inefficacies plus all those attributable to the AU, when planning 
non-optimal trajectories (from the environment point of view).  

In this context, it is worth noting that the inefficiencies in the 
first submitted SBT cannot all be attributed to the AU, since they 
might be forced to plan trajectories by using the ATS route 
network and/or observing the RAD, for instance. Yet, some 
inefficiencies originate indeed on some AUs decisions, such for 
example planning longer routes to save higher en-route charges 
[10], or avoid congestion [22]; or by simply flying at speeds 
higher than the minimum fuel speed [21].  

C. Distance-based Performance Indicators 
These indicators have the advantage that they are easier to 

compute if compared to fuel-based indicators. Yet, they cannot 
capture inefficiencies in the vertical domain of the trajectory. 
The indicators proposed here, however, represent already a step 
beyond current state-of-the-art methodologies used in post-
operational contexts, which compare the actual/planned flown 
distances with the great circle distance between origin and 
destination airports2. Instead, the actual/planned trip distance is 
compared with the distance measured on the optimal trajectory, 
which  takes into account weather conditions and, in general, is 
different from the orthodromic trajectory. 

Equations (1-3) mathematically express the three proposed 
PIs, which capture the horizontal track inefficiencies for a given 
flight. Then, several aggregate or statistical values can be 
provided, such as the total inefficiency; the mean or median 

                                                
2 More precisely, SES performance scheme indicators, exclude the segments 

of the trajectory within a 40NM radius around the origin and destination airports. 

inefficiencies; the distribution quartiles, etc. ∆"# is the Total 
route inefficiency (i.e. Distance inefficiency) caused by all ATM 
layers; ∆"$ captures only the inefficiencies due to the strategic 
(and pre-tactical) ATM layers; while ∆"% captures the ATM 
inefficiencies in the horizontal track caused only to tactical 
interventions. "& corresponds to the flown distance of the 
executed trajectory (i.e. the actual trip distance); "'(# is the 
flown distance of the RBT (i.e. the planned trip distance); and 
"∗ is the flown distance coming from the optimal trajectory for 
that particular flight (B trajectory in Fig. 1). 

∆"# = |"& − "∗| 
∆"$ = |"'(# − "∗| 
∆"% = ∆"# − ∆"$ 

(1) 

(2) 

(3) 

As commented before, weather conditions can move the 
optimal route from the shortest ground path between origin and 
destination airports. Thus,  the actual flown distance might be 
eventually shorter than the optimal route, and for this reason the 
absolute value is taken to construct the ∆"# and ∆"$ indicators. 
In other words, shortening a route beyond the optimal route 
distance will be also accounted as a (positive) route inefficiency.  

It should be noted that although ∆"# and ∆"$ will always be 
zero or positive,  ∆"% can be negative since the ATM tactical 
layer (i.e. ATC instructions) might reduce the inefficiency of the 
executed trajectory if compared with the inefficiency measured 
over the RBT. In other words, ATC instructions, such as directs, 
might contribute to fly closer to the optimal trajectory.  

D. Fuel-based Performance Indicators 
In line with the FEFF indicators proposed in the SESAR 

2020 Performance Framework [1], several fuel-based PIs are 
proposed here, aiming at a twofold objective. Firstly, to take into 
account the vertical (and speed) profiles of the trajectory when 
accounting for flight inefficiencies, aspects almost neglected 
with the distance-based indicators presented above. Secondly, 
fuel consumption provides a more direct proxy of CO2 
emissions, being the relation between fuel and CO2 linear [26]; 
and consequently, directly matching with the high-level 
environmental aspirations of ICAO, SESAR and NexGen 
programs. Note that if an emissions model (other than CO2) were 
available, these indicators could also be enhanced to derive more 
generic and comprehensive emissions figures. 

It is worth noting that even if aircraft speed is not directly 
changed by any ATM constraint; changing the vertical profile of 
the trajectory (by enforcing, for instance, a given rate of climb, 
a sub-optimal cruise altitude, etc.) might indirectly change its 
speed profile too. For example, if an aircraft is cruising lower 
than its optimal altitude, the original planned speed (at the 
optimal altitude) will no longer be optimal for the new altitude. 
The AU will then probably change the planned speed to improve 
its operation at this new (and non-optimal) altitude. Similarly,   
any   speed  restriction   imposed   to  the AU  when planning or 
executing the   trajectory   will lead to   a change   in the  vertical 

They also show results in percentages of flight efficiency, taking into account the 
route length. Results are aggregated across several days.  



 
Figure 2. Breakdown of the different sources of fuel inefficiency 

profile of the trajectory, especially affecting rates of climb  and 
descent and even the selected cruise altitude. Thus, since vertical 
and speed profiles are intimately related, they are both 
considered at the same time and captured by the same indicator. 

Nine fuel-based PIs are proposed in this paper, as expressed 
by Equations (4-12). Similar to the distance-based indicators, 
presented before, these indicators capture individual 
inefficiencies for each particular flight. Then, several aggregate 
or statistical values can be provided depending on the 
performance assessment characteristics and the desired 
granularity of the results. 

∆-# = 	-/& − -∗ 
∆-#0 = -&∗ − -∗ 

∆-#1 = 	∆-# − ∆-#0 

∆-$ = 	-/'(# − -∗ 
∆-$0 = -'(#∗ − -∗ 
∆-$1 =	∆-$ − ∆-$0 

∆-% = 	-/& − -/'(# 

∆-%0 = -&∗ − -'(#∗  

∆-%1 = 	∆-% − ∆-%0 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

∆-#  is the Total fuel inefficiency caused by all ATM layers, 
computed as the difference of the estimated fuel of the executed 
trajectory (-/&) and the fuel of the optimal trajectory for that 
particular flight (-∗).  ∆-#0 captures the fuel inefficiency due to 
all ATM layers only in the horizontal domain, regardless of how 
(in)efficient the vertical/speed trajectory profile was. This is 
achieved by comparing the fuel consumption of the best 

trajectory one could fly if following the executed route (i.e., 
optimizing the vertical/speed profile while fixing as constraint 
in the optimization process the executed route, -&∗); and the fuel 
consumption of the optimal 4D trajectory. ∆-#1, in turn, captures 
the fuel inefficiencies due to all ATM layers only in the 
vertical/speed domain, regardless of how (in)efficient the 
horizontal trajectory was.  

Similarly, ∆-$ and ∆-% are the PIs capturing the total fuel 
inefficiency of, respectively, the strategic and tactical layers of 
the ATM; ∆-$0 and ∆-%0 are the PIs capturing the fuel 
inefficiency in the horizontal trajectory of, respectively, the 
strategic and tactical layers; and ∆-$1 and ∆-%1 are the PIs 
capturing the fuel inefficiency in the vertical/speed profiles of, 
respectively, the strategic and tactical layers..  

As seen in (7-9) strategic inefficiencies can be computed by 
estimating the fuel consumption of the RBT trajectory (-/'(#) 
and/or the fuel consumption of the best trajectory one could fly 
if following the RBT route (-'(#∗ ), i.e., optimizing the 
vertical/speed profile while fixing as constraint the RBT route. 
Since the RBT is used for these indicators (and not the first 
submitted SBT), these indicators also capture the inefficiencies 
due to ATFM measures, if any (see the discussion in III.B).   

Like with the distance-based PIs, some of the fuel-based 
indicators could take a negative value. Namely, ∆-%, meaning 
that the estimated fuel of the executed trajectory is lower than 
the RBT estimated fuel (due to ATC interventions); ∆-%0, 
meaning that ATC interventions have brought the executed route 
closer to the optimal route; and ∆-%1, meaning that these tactical 
interventions have brought the executed vertical/speed profiles 
closer to the profiles of the optimal 4D trajectory.  

Fig. 2 displays the breakdown of the fuel inefficiencies for 
the executed and the RBT (A trajectories depicted in Fig. 1), 



along with their relation with the proposed PIs. Besides the fuel 
optimal trajectory, this figure also shows the two additional 
reference trajectories that are needed to construct some of the 
indicators presented above (B trajectories depicted in Fig. 1). 

E. Main Assumptions and Limitations 
The accuracy of the PIs will significantly depend on the 

quality and representativeness of historical trajectories. It is 
expected that radar tracks can provide the highest position 
accuracy and data reliability. ADS-B records could provide 
good results as well, as discussed in [19], although some 
trajectories might be incomplete due to poor ADS-B coverage. 
Eurocontrol’s DDR2 database is also a possible alternative, 
although not as accurate as previous two, since tactical changes 
in the trajectory are only reflected when flight deviations from 
the filed flight plan exceed some pre-defined thresholds[27]. 
Thus, not all tactical interventions on the trajectory are captured 
in DDR2 files.  

The quality of aircraft performance models is also an aspect 
to consider, especially for the fuel-based PIs. Yet, if the same 
models are used to estimate fuel consumption from historical 
tracks and to compute the optimal trajectories serving as 
reference (trajectories A and B in Fig. 1), model inaccuracies will 
be common and, to some extent, some error components could 
cancel in the final indicator, especially when it is expressed in 
relative terms. Nevertheless, a very important source of error in 
all these indicators will be in the estimation of the mass of the 
aircraft, which is required either to estimate fuel consumption 
from historical data, but also to generate optimal trajectories as 
seen in Fig. 1. Similarly, the error in the estimation of the CI 
from historical tracks (needed to construct some indicators as it 
will be seen below) will also affect the accuracy of these PIs.  

The quality of the weather model will also affect the quality 
of the results. Moreover, differences between the models used to 
build the PIs (historical weather realizations) and the actual 
models used by AUs to plan their trajectories (weather forecasts) 
might lead to some additional inefficiencies in the indicators, 
which can be erroneously attributable to ATM. In this context, 
and as it will be seen in Section V.B, it is not always obvious to 
decouple the inefficiencies caused by the ATM and those 
inefficiencies that could be attributable to the AUs.  

It is out of the scope of this paper to assess the sensitivity of 
the results to these different sources of error, which is a very 
necessary work to be done in the future in order to increase the 
maturity level of the proposed methodology.  

IV. CASE STUDY SETUP 
Two sets of 24h of historical flown and planned trajectories 

were analyzed. These correspond to July 28th 2016 (high 
demand) and February 20th 2017 (low demand). Historic 
trajectory data were extracted from Eurocontrol’s DDR2 
database using two different sources:  

• a trajectory reconstruction based on the last filed flight 
plan submitted by the AU (DDR2 M1 file); and  

                                                
3 FABEC is the functional airspace block (FAB) of central Europe, 

comprising the airspace of Belgium, France, Germany, Luxembourg, the 

• a trajectory reconstruction obtained from the correlation 
of different surveillance data coming from the 
Eurocontrol member states (DDR2 M3 file).  

These sets of trajectories are, respectively referred as RBT 
and executed trajectory, according to the terminology used in 
this paper, although the full TBO concept has not yet been 
deployed in Europe.   

The assessments shown in this paper considered all 
trajectories that had the origin and destination airports within the 
ECAC area and that crossed the FABEC3 airspace at some point 
within the 24h period assessed. Only turbojet aircraft were 
considered and any flight with a requested cruise flight level 
below FL195 was also discarded.  

Input files were given in the so6 format, which mainly 
contains the 3D coordinates of the trajectory at different 
timestamps, plus some basic information on the aircraft type, 
callsign and origin/destination airports. No other information on 
the trajectory is given, such as the speed, aircraft mass, CI (cost 
index) or fuel usage.  

In order to construct all fuel-based PIs, an adaptation of the 
algorithm proposed in [24] was implemented to estimate the fuel 
consumption of the trajectories found in these DDR2 files. 
Briefly, this algorithm estimates the engine thrust that would be 
required to fit the observed trajectory acceleration and assuming 
an aircraft point-mass model. Once the thrust at each position (or 
segment) is known, the fuel flow can be computed by using an 
aircraft performance model. Eurocontrol’s BADA version 4.1 
was used in this paper. In order to estimate this thrust, the 
aerodynamic drag, the true airspeed, and the mass of the aircraft 
are needed. Regarding drag, the model given BADA v4.1 was 
taken.  True airspeed was estimated from the recorded aircraft 
positions in the DDR2 file after applying a Savitzky-Golay filter 
and by using the historical wind fields taken from the GFS 
(global forecast service) models provided by the NOAA.  

Finally, the aircraft mass at the destination airport was 
assumed to be the 90% of the maximum landing mass for that 
particular aircraft type, which is an educated guess based on the 
reported payload data, such as for example, the statistics 
provided by the European Low Fares Airline Association 
(ELFA). Then, a backwards integration was performed to derive 
the mass at the different points of the trajectory. In the future, 
this mass estimation could be improved by implementing mass 
estimation algorithms, such as those proposed in [25], or based 
in heuristics, as done for instance in [20]. 

Regarding the different optimal trajectories needed to 
construct all proposed PIs (B trajectories in Fig. 1), DYNAMO 
was used [28]. This tool, developed by UPC, is a 4D trajectory 
prediction and optimization engine capable to rapidly compute 
trajectories using realistic and accurate weather and aircraft 
performance data. DYNAMO is based on an aircraft point-mass 
model and is highly flexible and configurable, allowing the user 
to specify a great variety of constraints and objective functions. 
DYNAMO’s  design   allows  for  real-time  applications  and/or   

Netherlands and Switzerland. Traffic crossing FABEC roughly represents half 
of the overall traffic crossing the whole ECAC area.  



  
a) 24h FABEC on Jul 28th 2016 b) 24h FABEC on Feb 20th 2017 

Figure 3: Distance-based flight inefficiencies for the two days of study (Optimal trajectory reference assuming a full free-route airspace, no en-route charges, 
flight level allocation and orientation schemes, and maximum range operations) 

  
a) 24h FABEC on Jul 28th 2016 b) 24h FABEC on Feb 20th 2017 

Figure 4: Fuel-based flight inefficiencies for the two days of study (Optimal trajectory reference assuming a full free-route airspace, no en-route charges, flight 
level allocation and orientation schemes, and maximum range operations)

TABLE I.  RESULTS WITH DISTANCE-BASED INDICATORS  

Performance  
Indicatora 

Jul 28th 2016 Feb 20th 2017 

Average  median average median 

NM % NM % NM % NM % 
∆"# 50  9.6  45  7.7  45  10.1 40  8.2 

∆"$ 59 11.4 54  9.2 56  12.4 51  10.0 

∆"% -10 -1.5 -7  -1.1 -12  -1.9 -9  -1.4 

TABLE II.  RESULTS WITH FUEL-BASED INDICATORS  

Performance  
Indicatora 

Jul 28th 2016 Feb 20th 2017 

Average  median average median 

kg % kg % kg % kg % 

∆-#  408 13.8 350 11.5 371 14.1 305 11.6 

∆-#0  213 7.1 178 5.8 207 8.0 178 6.6 

∆-#1 192 6.3 157 4.9 160 5.6 115 4.2 
∆-$  412 13.8 356 11.7 411 15.4 345 13.1 

∆-$0  251 8.4 210 6.8 252 9.6 213 7.9 

∆-$1 158 5.0 129 4.0 155 5.4 115 4.2 

∆-%  -6 0.1 -7 -0.2 -40 -1.0 -36 -1.3 

∆-%0  -37 -1.1 -25 -0.8 -45 -1.3 -29  -1.0 

∆-%1 34 9.1 25 17.2 6 16.4 3 20.6 
a. Optimal trajectory reference assuming a full free-route airspace, no en-route charges, flight 

level allocation and orientation schemes, and maximum range operations 

when a large set of trajectories needs to be rapidly generated for 
simulation   or  benchmarking   purposes,  such  as   in this  paper.  

In this context, DYNAMO was used in a distributed manner 
embedded into a software and hardware architecture taking 
advantage of high performance computing concepts. Optimal 
trajectories computed in this paper also used BADA v4.1 and 
NOAA datasets. 

V. RESULTS 
This section presents some illustrative results assessing post-

operational data with all the indicators proposed in section III 
and the case study described in section IV. 

A. Flight Inefficiencies with Respect to Full Free-routing, no 
En-route Charges, Flight Levels and Cost Index Zero 
For the following results, the optimal trajectory used as 

reference (B trajectories in Fig. 1) is computed assuming a full 
free-route airspace from origin to destination airports, imposing 
current flight level allocation and orientation schemes, assuning 
and airspace without en-route charges and imposing maximum 
range operations (i.e. setting the cost index to zero).  

As commented in Section III, the proposed PIs are computed 
for each individual flight. This section presents, for each PI, the  



  
a) 24h FABEC on Jul 28th 2016 b) 24h FABEC on Feb 20th 2017 

Figure 5: Distance-based flight inefficiencies for the two days of study using different references for the optimal trajectory (with CI=0) 

  
a) 24h FABEC on Jul 28th 2016 b) 24h FABEC on Feb 20th 2017 
Figure 6: Total fuel-based flight inefficiencies for the two days of study using different references for the optimal trajectory 

average, the median and the first and third quartiles of the two 
analyzed datasets. Among these statistical indicators the  
median, which lies  at  the midpoint of  the frequency distribution 
of the observed values, will be taken for main analysis and 
comparison. The reason is because the median is more robust to 
both skewness and outliers (e.g. few flights with very high or 
low values of a particular indicator can easily increase or 
decrease the average value). 

1) Distance-based flight inefficiencies are shown in Fig. 3 and 
Table I. The total inefficiency has a median around 42 NM 
(around 8% in relative terms if compared with the total route 
extension), mostly due to the strategic part of the ATM (the fact 
that airspace users are still forced to use a structured ATS en-
route network). The average values are higher, due to the fact 
that few flights experience high route inefficiencies. We also 
observe how the tactical layer introduces, for most of the flights, 
a “negative inefficiency”, meaning that the ATC contributes to 
reduce route extension by short-cutting the planned trajectory. 
For this tactical layer, the inefficiency has a median around -8 
NM (around -1.2% in relative terms).  

2) Fuel-based flight inefficiencies are shown in Fig. 4 and 
Table II, using the nine fuel-based PIs. The total inefficiency has 
a median around 350 kg for the summer day and 305 kg for  the  
winter one  (around  11%   in  relative  terms if  compared with 
the total fuel burnt) mostly due to the strategic part of the ATM, 
as we already observed with the distance-based indicators. 

The average values are higher than the median (around 400 
kg, representing the 14% in relative terms), due to the fact that 
few flights experience high route inefficiencies. Here, the effects 
of ATC tactical interventions, which can lead to “negative 
inefficiencies”, are also observed: for the summer case study the 
median is -7 kg (0.2%) and for the winter case study the median 
is -36 kg (1.3%).  

According to Fig. 4, strategic inefficiencies on the route (i.e. 
the effects of route restrictions, structured route networks, 
potential ATFM re-routings, etc.) are clearly above strategic 
inefficiencies on the vertical profile (i.e. the impossibility to fly 
at the optimal planned altitudes). At tactical level, however, we 
see that route inefficiencies are, in general, negative, meaning 
the ATC is actually shortcutting most of the flights, while we 
still have some positive (on average) vertical flight inefficiency. 
It is interesting to observe, however, that the tactical layer also 
contributes to reduce vertical fuel inefficiency of around the 
40% of the flights. 

B. Flight Inefficiencies with Different Optimal References 
In this section, the same PIs presented before are computed 

again but changing the objective function and/or optimization 
constraints when computing the optimal trajectory references (B 
trajectories in Fig. 1). Five different optimal trajectory 
references have been analyzed: 



1. assuming a full free-route airspace, current flight level 
allocation and orientation schemes, and maximum 
range operations (CI=0), which is the case presented in 
previous section IV.B (FR CI-0); 

2. assuming a full free-route airspace, continuous cruise 
climbs,  and CI=0 (FR CCC CI-0);  

3. assuming a full free-route airspace, current flight level 
allocation and orientation schemes, and using the CI 
estimated from the executed trajectory (FR CI-AU); 

4. constraining the trajectory to the current structured ATS 
en-route network, current flight level allocation and 
orientation schemes,   and CI=0 (SR CI-0); and 

5. constraining the trajectory to the current structured ATS 
en-route network, current flight level allocation and 
orientation schemes, and using the CI estimated from 
the executed trajectory (SR CI-AU).  

For all previous five baselines, the optimal trajectory was 
computed assuming no en-route charges.  

1) Distance-based flight inefficiencies are shown in Fig. 5, 
where two of the previously defined trajectory references are 
compared: FR CI-0 and SR CI-0. The results for the two days of 
study are very similar. The ATM strategic environmental 
inefficiency goes from a median of around 52 NM (10%), if a 
full free-route case is considered, to a median of only 18 NM 
(3%) when the optimal trajectories are restricted to follow 
current ATS routes. This clearly shows the impact that this 
structured route network has on the trip distance. 

Yet, even if the optimal trajectory is constrained to ATS 
routes, some distance inefficiency is still observed. This might 
be caused by the AUs not planning their trajectories by using the 
best route sequence in the network, or when AUs want to avoid 
higher en-route charges [10] or areas typically congested [22]. It 
should be noted that part of these inefficiencies can also be 
caused by differences between the weather (and aircraft 
performance) model used when computing the optimal 
trajectories (see Fig. 1), and those used by the AU when planning 
their trajectories.  

The total inefficiency values show even smaller figures due 
to the ATC tactical layer, which helps in general to reduce these 
inefficiencies as discussed in previous section.  

2) Total fuel-based flight inefficiencies are shown in Fig. 6, 
where the five previously defined trajectory references are 
compared. As expected (and already noticed in Fig. 5), 
inefficiencies for the cases where the optimal trajectory is 
constrained to ATS routes (SR CI-0 and SR CI-AU) are lower if 
compared with the references assuming full free-route 
operations. For maximum range operations (CI=0) the median 
of the total inefficiency goes from 350 kg (11%) to around 200 
kg (6.3%) for the summer day (a similar trend is observed for 
the winter day).  

Interestingly, allowing for continuous cruise climbs does not 
practically change the inefficiency values, meaning that for these 
Case Studies the benefits of flying continuous cruise climbs are 
negligible, providing the aircraft can fly at their optimal 
(constant) cruise altitudes, which is not always the case as 
observed before.  

The SR CI-0, FR CI-0 and FR CCC CI-0 references all three 
consider that the optimal trajectory is flown at maximum range 
operations (CI=0), since this is the operational condition that 
minimizes fuel consumption. Yet, the decision to fly slower or 
faster mainly resides on the AU, who selects the best cruising 
speeds (i.e. the CI) according to their cost-break down structure 
and business models. For this reason, it would be unfair to 
attribute to the ATM system all the environmental inefficiencies 
commented so far, since some of these inefficiencies are a 
consequence of the AU flying faster than the minimum fuel 
consumption speed.  

This is what SR CI-AU and FR CI-AU references try to 
capture. As observed in Fig. 6, the inefficiencies that could be 
attributable to ATM go down to approximately 250 kg (7.8%) if 
a full free-route scenario is considered for the reference 
trajectories (instead of 350 kg – 11%), or 97 kg (3.0%) if the 
structured route network is considered (instead of 200 kg – 
6.3%). In other words, AU’s induced fuel inefficiencies (due to 
flying faster than the maximum range speed) have an average 
inefficiency around 100 kg (representing approximately a 3%). 

Like in previous case, inefficiencies captured by the SR CI-
AU indicator are explained by discrepancies between the 
optimization tool used here, and those used by the AU at the 
moment of planning their flights, which could have different 
nature: different weather forecasts, an inappropriate mass and/or 
CI estimation trajectory reconstruction tool, or different aircraft 
performance models (see Fig. 1). As commented before, 
however, they could also be as consequence of the AU planning 
consciously or unconsciously a non-optimal route. 

VI. CONCLUSION 
A performance-driven air traffic management (ATM) is 

central to ATM modernization programs worldwide. Besides the 
effort that is still required to harmonize some of the existing 
performance frameworks, there is also a need to further enhance 
the existing processes, outcomes, and performance indicators 
(PIs). An important contribution of this paper is that state-of-the-
art fuel-based PIs used in pre-operational validation exercises 
have been extended for post-operational analysis, assessing in 
this way performance from historical surveillance data and 
submitted flight plans databases.  

In this context, this paper has shown how advanced 
parameter estimation and trajectory optimization techniques can 
be used to build advanced PIs aiming to capture the 
environmental impact of aircraft trajectories, in terms of distance 
and fuel inefficiencies. A trajectory optimization process can 
result in different outcomes,  depending on how the optimization 
objective(s) and optimization constraints are configured. 
Exploiting this idea, and using different input trajectories taken 
at different stages of the trajectory life-cycle several different 
indicators are built. It has been shown how the proposed 
methodology can be used to separate the different sources of 
flight inefficiency, either at trajectory level (vertical/horizontal 
inefficiency) or by capturing the contribution of different ATM 
layers separately.  

The proposed distance-based PIs are easier to compute, but 
cannot capture all components of the flight inefficiency, 
although they already represent a step beyond current state-of-



the-art indicators for post-operational analysis. The proposed 
fuel-based PIs, in turn, are subject to several uncertainty sources, 
such as uncertainty in the weather data, aircraft performance, 
estimation of mass, estimation of the cost index, etc. Further 
work is necessary to quantify and characterize these sources of 
error and assess the PIs sensitivity to these errors.  

In the next years, the advent of new methodologies and tools 
based on the combination of data science, machine learning and 
model-based simulations will be a key enabler to further 
improve the ideas presented in this paper.  
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