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Linköping University, Norrköping, Sweden
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Abstract—Eye-Tracking experiments have proven to be of great
assistance in understanding human computer interaction across
many fields. Most eye-tracking experiments are non-intrusive
and so do not affect the behaviour of the subject. Such
experiments usually last for just a few minutes and so the spatio-
temporal data generated by the eye-tracker is quite easy to
analyze using simple visualization techniques such as heat maps
and animation. Eye tracking experiments in air traffic control,
or maritime or driving simulators can, however, last for several
hours and the analysis of such long duration data becomes much
more complex. We have developed an analysis pipeline, where
we identify visual spatial areas of attention over a user interface
using clustering and hierarchical cluster merging techniques. We
have tested this technique on eye tracking datasets generated
by air traffic controllers working with Swedish air navigation
services, where each eye tracking experiment lasted for ∼90
minutes. We found that our method is interactive and effective
in identification of interesting patterns of visual attention that
would have been very difficult to locate using manual analysis.

Keywords—Remote tower, Eye tracking, Spatio-temporal clus-
tering

I. INTRODUCTION

Eye tracking technology has been available for several
decades but in the last 20 years has become much more widely
used due to the drop in price of the underlying technologies,
such as high speed digital cameras and capacious high speed
storage in computers. As a result eye-tracking studies are
now very common across a wide range of areas from user
behaviour analysis to system design and even in film and
advertising studies [1]. Most of these studies, however, look
at quite short duration scenarios lasting, at most, a few
minutes. Even in the case of films, where the duration of
the viewing may be hours, the studies can focus on each
scene independently and so the duration of each study lasts
for only a few seconds. In such a context, the analysis of the
eye-tracking data (typically eye gaze position in the scene
sampled as x,y coordinates at, often, hundreds of samples
per second) is not very challenging. Analysts typically use

simple visualization techniques such as heat maps to identify
regions of frequent gaze, and linear movements (saccades) to
study patterns of eye movement across the display. Combined
with interactive windowing of the total duration of the study
and limited animation techniques, user behaviour over time
can be identified easily.

Recently we have undertaken a number of eye tracking
studies, in collaboration with colleagues at Linköping Uni-
versity and Luftfartsverket (Sweden’s National Air Traffic
Agency), where the eye gaze points for the whole working
period of Air Traffic Controllers (ATCOs) are recorded, with
each recording typically lasting for around 90 minutes. The
studies were primarily aimed at the training process of ATCOs
where there is a desire to understand the activities of trainees
and to improve the effectiveness of the training process. In
such a long scenario of 90 minutes, it becomes much more
complex to analyse the eye-tracking data, since the patterns of
behaviour are both very complex and can change significantly
over a longer period. Variations in the working scenario,
such as traffic flows, weather conditions, or exterior lighting
conditions, combine to affect the way in which a controller
operates. Analysing this data manually can require days or
even weeks of painstaking work by researchers to identify
the changes in behaviour and to identify the causes of those
changes within the scenarios. While the effort is very large,
and all expected behaviours can usually be found, there is
also an issue in such an analysis that the researchers are
never certain that they have found all of the changes since
unanticipated changes may be overlooked due to the long
duration of the data.

Driven by the need for such long duration eye-tracking
studies we have taken methods that we are developing for
the analysis of general multivariate temporal data sets and
reworked them to address this specific application in order to
increase both the speed and, hopefully, the accuracy of the
analysis of these data. Our methods are based around a com-
bination of new clustering techniques and some redesigned



interactive visualization methods which provide immediate
and complete access to even these long duration studies.
Initial studies, described later in this paper, have shown
that many features can be quickly observed, explored and
then compared with the logs of the scenarios to identify the
possible causes of the behavioural anomalies. The methods
also allow a simple visual comparison of multiple subjects
performing the same scenario to identify anomalies peculiar
to a single subject, or to compare single subjects between two
different scenarios to identify common behaviour between
them. Since beginning this work we have received significant
interest in the methods from other application areas where
long duration eye-tracking studies are used, such as road
traffic and aircraft pilot studies of cockpit behaviour and
there exist similar difficulties in the analysis of the large and
complex behavioural data.

This paper builds on two previous publications: a concept
paper presented at BELIV2016 [2], and a technology paper
which was presented at the IEEE VAST conference in Berlin,
2018 [3]. Consequently we emphasize the results of the
studies in this work and the effectiveness of the methods with
specific reference to the application area of Air Traffic Con-
trol, while referring the reader to the IEEE VAST publication
for a more thorough description of the technical details.

II. RELATED WORK

As mentioned above there is little related work in this area
since long duration eye-tracking experiments of this kind are
relatively rare, but there is some related work with which ours
can be compared. The straightforward approach to identify
Areas of Attention (AoAs) is to divide the scene into prede-
fined grids, or use manually defined AoAs and assign labels to
those eye points that fall under them [4]. Pre-defining AoAs
without taking into account the underlying characteristics of
the eye tracking can fail to capture the features that are
inherently unique to every eye tracking dataset. In order to
overcome this problem, clustering methods such as Mean-
shift [5], Gaussian mixture models [6] have been used to
perform clustering on the entire data set, but the local AoAs
in a scene get saturated into very few clusters (AoAs) in
case of very long duration eye tracking experiments. Some
of the methods use image processing algorithms [7], [8] to
look for features or objects in the display to which eye gaze
can be attached to allow for the identification of AoAs which
move over time following an optical flow in the display. One
such method is that of the ISeeCube tools described in [9]
which are used to analyze gaze in a changing display such
as that in a video where objects can be expected to move
and so AoAs move with them. Our approach is to identify
spatial AoAs as they evolve over time rather than relying on
object movement to guide them. A state of the art study on
analysis and visualization of spatio-temporal eye tracking data
is thoroughly discussed in [10]–[13].

Other approaches, such as those described in [14] and [15],
work in multi-target environments like that seen in ATC and
use the objects to analyse the gaze movements over time.
This is related to our work but presumes that only objects
are the carriers of attention, overlooking the regions of the
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Figure 1: Eye tracking data is divided into overlapping
time windows and fixation clusters are identified at level
0. Adjacent pair of time windows from level 0 are merged
using a hierarchical merging process until only one time
window remains. At each level of the hierarchy, the parallel
computation is performed across the time windows to achieve
efficient computation.

display which may contain no moving objects can also be
AoAs at different times during a long and evolving scenario.
Our method, being untied from object movement, relies on
no such features to convey the changing attention of the user
over time.

Methods such as McClung et. al [16] search for circular,
linear and mixed type scanning patterns in eye gaze data
collected from ATCOs. Statistical analysis of eye gaze data
such as distribution of fixation count, fixation duration and
saccadic velocity were used in Wang et. al [17] to study eye
gaze patterns of ATCOs in order to understand the scanning
patterns used to acquire situational awareness during their
work. These approaches can provide useful short-duration
knowledge but is not as representative of the evolutionary
change which occurs in the basic attention of the subject
during an eye-tracking study as our method provides. While
the methods described may have significant benefit for some
problems in this area, our approach addresses a more basic
need: to understand the changes in user attention over time
and how the AoAs appear, disappear and recur over time
without being tied to the presence of moving objects.

III. METHODOLOGY

The data produced in our studies is in the form of 2D gaze
coordinates across the display and acquired at 60 samples per
second. For the 90 minute scenario involved some ∼320K
samples are acquired for a single user. Errors due to occlusion,
head movement out of range and other measurement issues
mean that about 10% of the samples can be discarded thereby
leaving behind ∼290K samples to be analysed. It is a large
computational problem to analyze eye movements from many
users but not intractable. We begin with a description of the
hierarchical clustering technique that we use to find the AoAs
in the eye-tracking data before considering the interactive
visualization methods that we have found beneficial for their
exploration.

A. Hierarchical Clustering of Eye-tracking Data

We begin with a clustering technique applied to the raw
eye tracking data. Clustering all the data over the whole
measurement scenario as a single step would be self-defeating
as the entire data set is so cluttered that few areas of



(a) level 0 (b) level 1 (c) level 2 (d) level 5 (e) level 8
Figure 2: The cluster hierarchy from (a) level-0, clusters found in the raw data, to the highest merged level, (e) level-8. The
merging of the lower level clusters into the higher level AoAs can clearly be seen in the progression from left to right.

attention can be found and those that are found provide little
meaningful information. It would also present a significant
computational task. Instead, we cluster the data in a series
of time windows of a user-specified duration. The windows
are also allowed to overlap by a user-defined percentage. The
duration of each window and of the overlap are chosen to
match the study being carried out. In the case of our studies
in ATC, individual tasks are typically around thirty seconds
in duration so we use a window size of one minute and a
50% overlap to ensure that no single action by the controller
goes unrecorded. The individual windows thus contain up to
3600 data points.

Level-0: clustering. The gaze points within each window
can be clustered using the method developed by Zahn [18],
where a minimum spanning tree (MST) is computed from the
delaunay triangulation of the eye gaze points. The weight of
the edges of the MST corresponds to the euclidean distance
between two gaze-points and by removing the inconsistent
edges in the tree, the MST can be split into multiple subgraphs
that correspond to fixation clusters over an AoA. Thus,
clusters of spatially proximate points are found. We also apply
a filter which removes clusters with very few points (typically
5 although this can be varied), since these small clusters have
a very short gaze duration that can be associated with a task
and hence, can be regarded as noise. The result is a set of
clusters, with start and end times, for each overlapping time
window that represent an AoA associated with single tasks
being conducted by the test subject. We refer to this set of
clusters as the level-0 clustering and the original eye-tracking
data can be then discarded as we do not refer to it again
during the analysis phase, unless we wish to modify the level-
0 time windows and restart the whole analysis. This cluster
computation step can be processed in parallel on suitable
hardware to speedup the analysis.

Level-1: cluster merging. The fixation clusters found at
level-0 are generally of too high a resolution to be helpful
since several of them may refer to a single action being carried
out by the subject. We resolve this by examining the clusters
found in each adjacent pair of windows to explore which of
them are very closely associated. An adjaceny matrix is com-
puted using the clusters from adjacent pair of time windows
where for every pair of clusters we measure their association
using a cost-function based on the degree of overlap of the
clusters. From the adjaceny matrix, minimum spanning tree
sub-graphs are calculated, where each sub-graph corresponds
to connected fixation clusters. By removing inconsistent edges

(a) (b)

Figure 3: The areas of attention generated by an ATCO
looking at their radar screen. (a) shows the AoAs using a 2D
representation, where the temporal distribution is not visible
while (b) uses a 3D space time cube display to allow clear
visibility of the changes in the AoAs over time.

from the sub-graphs, highly connected clusters can be merged
together into a single Area of Attention. The inconsistent
edges from the sub-graphs are removed in the same way as for
level-0, as discussed above using the Zahn’s [18] algorithm.
This edge deletion process can also be controlled by a user
according to a user-defined selection parameter. This approach
provides flexibility to an analyst to control the degree of
merging among neighbouring AoAs. This merging produces
the level-1 clusters or level-1 AoAs (regions of the display
where the subject makes extended gaze fixations) which can
be seen in Figure 2(b). These AoAs are associated with a
new set of overlapping time windows at level-1, as can be
seen in Figure 1. The merging process can again be easily
parallelized for every pair of time-windows.

Hierarchical cluster merging. This merging of AoA sets
from adjacent time windows can be repeated in a hierarchical
fashion, as seen in Figure 1 until a level is reached where
there remains only a single window. For our 90 minute data
sets, with a one minute time window at level 0, this produces
nine levels in the hierarchy. An analyst can freely navigate
through the hierarchy with no recomputation required and so
find levels which show specific behaviours. Subsets of time
windows across the data, at any level of the hierarchy, can
also be examined to compare behaviour across the duration
of the study and identify changes.

B. Visualization Techniques

The AoAs found through the clustering technique can be
examined, at any desired level, using a simple 2D display,
as in the various sub-figures of figure 2, but with such
long duration studies being considered this often produces



Figure 4: The experimental setup used in our case study consists of six screens making up the simulated tower view with
three supporting screens placed on the desk. The six cameras of the SmartEye eye tracking system can be seen strategically
positioned around the subject’s workstation.

a cluttered display which is difficult to interpret and where
it is hard to recognize change over time and so identify the
source of the behavioural change. Instead, we have used a
three dimensional representation of the AoAs, known as a
‘space-time cube’ [19], [20], which was originally developed
to examine the movements of individuals or populations over
time. In this display a 2D ‘map’ is presented at the base of a
cuboid frame, and the temporal data then displayed above it
with time going upwards, away from the map surface. As a
static display this is often ineffective as spatial relationships
can be lost between temporally separated points but, when
interactive rotation is permitted the analyst can generally
identify the spatial relationships present and draw meaning
from them. An example can be seen in Figure 3(b).

To enhance the space-time cube and make it even easier
to identify spatial relationships, we are able to exploit the
hierarchical clustering approach to make it even clearer. The
AoAs found at the higher levels of the hierarchy are spatially
proximate, having been formed by merging those at the lower
levels based on their degree of overlap. Thus, we can use
colour information from the higher level AoAs, to recolour
those found at the lower levels right down to level-0 if
required. Several AoAs which are separated in time at, for
example, level-3 may inherit the same colour information
from a single AoA into which they have been merged at level-
8. Their spatial proximity is thus made much more clear in the
3D representation and so the data is more easily interpreted.
Examples can be seen in Figures 3(a) & (b) where the colour
information (labels) from level-8, the highest level, have been
propagated down to level-4 so groups of AoAs at that level
will appear with the same colour because they are spatially
proximate but temporally disparate.

IV. CASE STUDIES

The system developed is designed to enable the analyst to
more easily explore long-duration eye-tracking recordings in
complex recording environments. In this section, we present
a number of practical examples of how the visualization tool

can be used with real data sets recorded using experienced
controllers performing standard training scenarios. The spe-
cific use cases described in this section illustrate how the tool
can be used to perform:

1) An overall analysis of a single recorded session.
2) Comparison between a number of different controllers.
3) Analysis of visual attention during specifically selected

events, such as single landings or simultaneous aircraft
activity in two remotely controlled airports.

The specific data sets have been recorded within a virtual
tower environment (see Figure 4) using a set of scenarios
run through an air traffic simulator. In each scenario, the
controller is operating on two airfields simultaneously, with
varying levels of traffic over time and with weather and
other events predefined within the scenarios. The ATCO has
standard radar, strip and VCS (Voice Com System) displays
on the desk in front of them and the two airfields are visible
through six large displays arranged in a semicircle in front
of the controller. This is referred to as the ‘out-the-window’
(OTW) view. The six large displays show both airfields
simultaneously, three being used for each. Each airfield also
uses a ‘picture-in-picture’ view within the OTW view, from
a ‘Point-Tilt-Zoom’ (PTZ) camera under the ATCOs control.
The PTZ was, in all cases, used to display a magnified view
of the approach end of the runway and remained unchanged
throughout the simulation. The radar and strip displays each
include information for both airfields simultaneously. The
SmartEye gaze tracking system used in these experiments
used six cameras, arranged around the controller, providing
a wide field of view and so a comfortably large recording
volume. Thus, the controller was able to move in a quite
natural manner during the recording sessions but was required
to remain seated.

The recorded data is in the form of separate screen coordi-
nates for each of the display screens at which the controller
may be looking. Consequently, the data is preprocessed before
analysis to create a single volume of data which includes the
data from each of the individual screens. The base (top-down)
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Figure 5: Screen setup: First airport - (a) to (c), Second airport - (d) to (f), Radar screen for both airports - (g), Flightstrips
for both airports - (h), Voice Com System - (i)

view of the preprocessed data can be seen in Figure 5 with
the tower OTW views (a-c and d-f), the radar (g), strips (h)
and VCS (i) remapped into a single ’screen-time’ volume.

In this work, we distinguish between the notions of areas of
interest and of areas of attention. Areas of interest (AoIs) are
specific areas that contain items or instruments of analytical
interest, such as the e-strip area, the PTZ camera and so
on. AoIs are pre-defined by the analyst. Areas of attention
(AoAs) are areas to which the operator actually pays attention,
as captured by the eye tracker, and then identified by our
analysis tools. Typically the AoAs are at considerably higher
resolution than the anticipated AoIs. The identified AoAs can
then help the analyst to refine the AoIs.

Each of the cases presented here, together with the cor-
responding analyses, have been reviewed by a professional
ATCO.

A. Case 1: Overall analysis of a training session

Figure 6 shows the identified AoAs for one ATCO and the
AoIs, at the screen level, as predefined by the analyst. The X
and Y axes correspond to the 2D-coordinates of gaze points
during the entire 90 minute session. We can immediately see
a clear correspondence between the AoAs and AoIs for the
controller carrying out the tasks of the scenario. For example
the AoAs in the radar views are neatly divided between AoIs
corresponding to the two airports being controlled. The same
can be seen for the flight strip display.

Several AoIs can be naturally associated with the flight strip
tool (e-strip) such as the areas for apron, taxiway (TWY),
runway (RWY), and control zone (CTR), visible in Figure 8.
Observation of AoAs over the flight strips on Figure 8 leads

to two conclusions. Firstly, we see a strong correspondence
between the different AoIs and the AoAs on the flight strips.
Secondly, the ATCO paid much more attention to the flight
strips of the left airport compared to the right airport.

On the OTW view for both airports in Figure 6, we see
an accumulation of AoAs at both ends of the runway, with
fewer AoAs in the middle of each runway. This indicates
that the ATCO pays most attention to the ends of the runway,
while the center part of the runway is only glanced at more
sporadically. This is also what one could expect from ATCO
work. We can thus use this overarching picture to determine
whether the ATCOs are working roughly as expected, or not.
We see no clear deviations from our expectations in this case.

We can also observe several AoAs on the PTZ camera, for
each airport, indicating that the ATCO has paid attention to
this camera. However, Figure 6 gives no information about
when the ATCO looked at the PTZ camera. This information
can be obtained by showing the time component through
the space-time cube display, as shown in Figure 7. Time
is associated with the vertical axis. For the left airport, for
example, we observe that the ATCO paid attention to the PTZ
camera regularly, when a lot of attention was also focused at
the approach end of the runway, and also at the end of the
session although little attention was paid to the runway at that
time (see annotated Figure 7).

It should also be noted that, while the single images in-
cluded in this paper may appear cluttered due to the complex
nature of the data being displayed, by rotating the 3D-view,
as seen in Figure 7, the three dimensions (X , Y , and t) of
the AoAs are visible and the user can minimize occlusion of

Figure 6: 2D ‘top-down’ view with AoIs. The two tower (OTW) views along the top. The two radar displays, the two strips
displays and the VCS display are arranged along the bottom.



Figure 7: ATCO-B side view: AoA over PTZ camera over time

Figure 8: Flight strips: Top view.

specific AoAs in which they are interested, for example the
series of purple instances denoting the AoA over the PTZ
camera.

It is possible to further enhance the data analysis by adding
the trajectories of moving objects (such as aircraft) with
indication of specific events (such as touch down), as shown
in Figure 10. In this figure, we can clearly see that the
“empty” part of the display on the right side corresponds
to a time period without traffic. We also observe that there
is a correspondence between the attention put on both ends
of the runway and the existence of moving objects. These
observations can certainly be useful to assess whether the
ATCO is roughly working as intended.

B. Case 2: Comparison between different controllers

In this case we consider the comparison of the actions of a
number of different controllers, in this case four, performing
the same scenario. This comparison allows the analyst to
explore the variation in behaviour by different controllers
under similar circumstances. The dual remote tower scenario
is predefined and incorporates a variety events over time
including the arrival of new approaching flights and scheduled
departures, variations in visibility due to weather, and ground
vehicle movements. These events are initiated at the same
times in each run of the simulation but there can be some
variation as a result of different behaviour by the various
ATCOs–perhaps routing an aircraft slightly earlier or later.

Comparing the four examples shown in Figure 9, we can
see the fundamental behaviour is very similar, driven by

the conditions imposed by the scenario and the regulations
and guidelines with which the four ATCOs comply, with
all informational elements (radar, estrips, VCS and tower
views) being monitored, however, the overall behaviour of
each controller is very different. ATCO-C, whose areas of
attention are shown in figure 9(c), has a significantly more
sparse series of AoAs than the others, with a lot of time
where his attention is not on the informational displays at all.
The controller in Figure 9(a) also has a quite sparse sequence
of AoAs but clearly spends far more time focused upon the
radar display than ATCO-C, particularly for the leftmost of
the two airports which has a considerably higher level of
traffic. ATCO-A spends the least time monitoring the OTW
tower views and the most on the radar display as shown by
the large AoAs present over the radar display, shown in pink
in the figure. ATCO-B is similar in behaviour to ATCO-D
but spends even more time on the radar and strips. Clearly
ATCO-C and ATCO-D have a recurring eye gaze attention at
different areas of the OTW screen.

It is thought that the ability to analyse and compare a
number of long-duration recordings of this type will be of
benefit in defining, demonstrating and checking adherence to
‘best practice’ during the training process. It might also be of
value in the process of incident investigation, where the mis-
steps and failures of attention leading to the incident might
be visible when compared with other controllers operating in
similar scenarios. To enhance this it would be beneficial to
be able to directly compare two or more recordings through
a computational comparison and this is being developed but
is currently regarded as future work.

C. Case 3: Event selection

In this case, we illustrate now how the visualization tool
can be used to select and analyse behaviour associated with
specific states (or events) in the dataset. Using a temporal
slider and the 3D view, we can easily filter out data to
show only those data recorded during a specific time period
associated with specific events within a scenario, and so
show only the corresponding visual attention. We also stress
that being able to create temporally filtered views helps the
analyst to cope with occlusion of AoAs on the unfiltered view
showing the whole session.



Figure 9: Four air traffic controllers carrying out the same scenario. Despite all regulations and guidelines being complied with
by these experienced controllers, and no significant differences developing during the studies, the behaviour of each controller
is clearly quite unique. Note that the colours assigned to AoAs differ between the four different displays since they are assigned
during the data analysis phase.

1) Simultaneous aircraft in two monitored airports: As
a first example we choose to focus on a situation with
simultaneous aircraft movements at both airports. On the
overview Figure 11, we see attention (AoAs) corresponding
to all AoIs that require attention for checking a movement:
both PTZ cameras on the OTW, both wind widgets on the
OTW, both radar views, and the flight strips. A smaller AoA
over the radio indicates that some attention was also given
to this instrument while there were simultaneous aircraft in
both airports. On the OTW, we observe that attention is
appropriately allocated to follow each aircraft position, with a
focus on both ends of the runways. This confirms that ATCO’s
attention was appropriately given to the most critical areas.

Figures 14 and 15 show the selected movement in the

right airport. On the former, we can see the AoAs detected
by the tool for the flight strip corresponding to the right
airport, while the latter figure shows the same AoIs with the
time component. For instance, one can clearly observe on
Figure 15, the attention to the flight strips and attention to the
aircraft movement. Attention is also given to the weather tool
before the aircraft is visible. The ATCO looks at PTZ camera
when the aircraft is in the end of the runway and has almost
disappeared from the rightmost screen. Similar conclusions
are valid for the AoAs on the PTZ camera and weather tool
of the left airport, as shown in Figures 12 and 13. We can
also see in this figure that the ATCO focused their attention
on the radar monitor in advance of visual contact with the
aircraft. Hence, using the temporal space time cube, we can

Figure 10: Space time cube with moving objects.



Figure 11: ATCO-D top view: AoAs and aircraft in both airports.

Figure 12: ATCO-D top view: AoAs on left airport.

Figure 13: ATCO-D side view: AoAs on left airport with time
component.

confirm the order of visual attention of the ATCOs while they
monitor the critical parts of the screens during an event.

2) Landing events: From Figure 9(d) we can observe
that ATCO-D has a periodic scanning behaviour at specific
areas of the airport and hence there are multiple AoAs that
are repeatedly active during different time intervals. After
localizing the landing events in the right airport we were
able to observe a strong similarity in the scanning behaviour,
where attention is paid repeatedly at specific areas on the
display and this is highly similar for different landing events
as shown in Figure 16(a)-(c).

3) Scanning behaviour: We can also observe, as seen
in figure 17, that this controller exhibits a strong pattern
of scanning behaviour both during a scheduled departure
(Figure 17(a)) and during a period of no activity on the airport
(Figure 17(b)).

Figure 14: ATCO-D top view: AoAs on right airport.

Figure 15: ATCO-D side view: AoAs on right airport with
time component.

V. DISCUSSION

Using the set of cases that are discussed above, we have
demonstrated our method which is designed to shift the focus
from the Areas of Interest (AoI) that are typically specified
by the analyst and, instead, to explore the Areas of attention
(AoA) which are contained within the data itself. The AoAs
are usually much more focused than the AoIs and so can tell
the analyst more about how the subjects’ attention is focused
while undertaking complex tasks.

The ‘top-down’ (overview) of the AoAs can provide a cer-
tain insight into how the subjects’ attention is being directed
but the 3D view can provide great insight into the frequency
with which different tools and displays are being attended
to as well as when during the scenario the subject regards
them as important. Patterns of behaviour can be observed and
occasions when attention on a tool or region of a display is
absent may be apparent.

The 3D space-time cube allows the very different behaviour
of the individual subjects to be made clear. While their
AoAs may be spatially very similar, when observed with
the temporal element made clear the way in which they are
performing the tasks may be shown to be quite different. It



Figure 16: Similarity in AoAs of an ATCO monitoring different landing simulations.

is hoped that this will allow good and bad behaviours to be
observed and their causes to be identified. In this way, it may
be possible to accelerate the training processes and show the
trainee where failures in attention are leading to errors.

The 3D space time cube display is a powerful tool but
does suffer from cluttering, when many small AoAs have
been identified. While interaction (rotating and zooming the
display, and cropping the data space) can alleviate this, it is
impossible to remove it completely. We are currently explor-
ing other displays to avoid this problem using transparency
and volumetric rendering approaches.

The system currently identifies the AoAs within each sub-
ject’s recorded eye-tracking data and this sometimes makes
cross comparison between users, as seen in our second
example case, quite difficult. We are currently working on

methods to automatically cross-correlate the identified AoAs
between sets of users to make this process simpler and to
allow for automatic measures of similarity and difference to
be extracted from the several data sets.

VI. CONCLUSIONS

The analytical method we have developed and implemented
within an analysis application is a powerful tool for the
extraction of multi-dimensional clusters in temporal data. It is
computationally efficient and can handle the very large data
sets extracted from long duration eye-tracking experiments
with ease. Thus, it is well suited to the analysis of user
attention within the experiments being carried out within the
field of air traffic control research.

The identified AoAs can be explored by the analyst from
an overview level to a very fine grain level, while the unique

Figure 17: Scanning behavior with similar AoAs in the presence and absence of aircraft on the screen.



AoAs identified using their color information, can help an
analyst to identify similar gaze behaviour over time. The 3D
space-time cube allows the analyst to quickly gain visual
insight into the overall behaviour as well as to identify
behavioural patterns and anomalies. Exploring such events is
then easily achieved by selecting small time windows around
specific events and examining them in detail. The unique color
labels of AoAs can be used in future with sequential data
mining algorithms to find repeating patterns and anomalies
in user attention computationally.

The behaviour of small numbers of test subjects can
easily be compared and some similarities and differences in
behaviour can be readily identified. In future work, we will
extend this capability through automatic methods to cross-
correlate and compare the AoAs of different users and how
they are accessed over time. This ability to cross-correlate the
AoAs between subjects will have an additional benefit since
it will permit the identification of a common set of AoAs
within which sequence identification will be possible. Using
this approach, it is to be hoped that common behaviours,
both positive and negative, can be found and used to create
predictors of potential future incidents.
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Linköping University, Sweden where she works with knowl-
edge discovery in multidimensional event-based data. She re-
ceived her PhD in Computer Science in 2010 from Linköping
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