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Abstract—Go-around is an aborted landing of an aircraft that is 
on final approach. In this work, we model the impact of 
separation, airport condition, weather condition, and trajectory 
performance on go-around occurrence. A trajectory-based go-
around detection algorithm has been developed and applied to 
the last three-quarter of JFK arrival flights in 2018. Principal 
component regression (PCR) model, with a retrospective causal 
inference design, has been estimated and further been used in 
counterfactual scenarios to reveal the causal correlations between 
factors of interest and go-around occurrence. Our results suggest 
that airport ceiling and aircraft speed control are the two most 
salient factors in causing go-arounds. 

Keywords-component; go-around; causal analysis; safety; 
logistic regression; principal component regression 

I.  INTRODUCTION 
NextGen in the United States and SESAR in Europe are 

intended to improve Air Traffic Management (ATM) system 
performance through satellite-based navigation and digital data 
communications. Although the National Airspace System 
(NAS) is one of the safest and efficient transportation 
infrastructures, growing air traffic demand and the 
implementation of autonomous NextGen technologies create 
risks to NAS safety and efficiency. Boeing analyzed worldwide 
commercial flights from 1959 to 2017 and found that the 
number of fatalities per year has remained fairly stable. From 
2008 through 2017, 44% of the fatalities and 49% of the 
accidents occurred during the final approach and landing stages, 
comparing to 23% of fatalities and 11% of accidents at the 
cruise stage [1]. 

A common procedure, called go-around, is initiated by 
either the pilot or the controller to abort the landing of an 
aircraft that is on final approach under certain conditions [2]. 
Those conditions include unstabilized approach, sudden change 
of weather condition (e.g., wind shear), obstructions on the 
runway, and aircraft overshoot. From 2012 to 2017, the 
average percent of go-arounds reported by FAA across all Core 
30 airports in US, is 0.3% [2]. While go-around as a risk 
mitigation tool ensures aircrafts safety in the ATM, it is an 
operational anomaly that degrades the system efficiency 
significantly. First of all, although pre-trained, go-around itself 
is a challenging maneuver. Studies have been conducted to 

evaluate the performance of flight crews during an unexpected 
go-around maneuver using survey data [3] and flight simulator 
[4]. Second, the outcome of go-around can be hazardous. 
About 10% of go arounds result in exceeding aircraft 
performance limits, or fuel emergencies [3]. Lastly, go-around 
leads to flight inefficiency, increasing air traffic controller 
workload and passenger delay, and decreasing airport 
throughput. 

In this paper, we estimate models to predict the go-around 
occurrence given factors of interest, and further quantitatively 
understand how these factors contribute to the go-around. To 
be more specific, this paper first proposes an algorithm to 
detect go-around occurrence and applies it to the last three 
quarters of JFK arrival flight track dataset in 2018. Second, we 
derive a set of contributing factors, which includes aircraft 
separation, traffic volume, runway configurations, weather, and 
trajectory performance. Then we build principal component 
regression (PCR) model to use those factors to predict go-
around occurrence. Lastly, we use the estimated model to 
construct counterfactual scenarios to estimate the contributions 
of different factors. The results of our analysis can help identify 
countermeasures to reduce go-arounds, and more generally the 
conditions that give rise to them, which may be considered 
anomalous states that are inherently undesirable. Our research 
may also inform efforts to develop a real-time tool that can 
identify, and perhaps remediate, situations in which there is a 
substantial risk of a go around. Finally, by summarizing 
historical patterns of go-around occurrence, our study can 
augment the limited individual experience of air traffic 
controllers [5]. 

Current literature about go-arounds considers several 
aspects, including go-around decision-making policy, the 
performance of go-around maneuvers [6] and how to optimize 
the go-around operations [7]. Flight Safety Foundation [3] 
developed a psychological survey to examine flight crew go-
around decision-making and the outcome of go-arounds. New 
stabilized approach and go-around guidelines was proposed 
based on the survey results. Four groups of factors are 
considered when designing the stable approach criteria: flight 
path profile (vertical and lateral), configuration (flaps, gear and 
speed brakes), flight energy (rate of descent, speed and thrust), 
and environmental conditions (runway length, runway 
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condition, weather). Ref. [4] added a 3D full-flight pilot 
simulation data to help with the development of go-around 
criteria. They found that the go-around decision point occurs 
above the 100-feet gate, and suggested a 300-feet go-around 
decision gate. They also found that go-around occurrence is 
mostly impacted by the reference speed and localizer 
deviations. Both studies provided insightful guidance for what 
approach variables flight crew usually consider in deciding 
whether to execute a go-around. Owing to the limitation of 
survey and simulation data, additional analysis is needed to 
investigate the interaction effect with other traffic under 
different environmental conditions. 

Recently, aviation researchers have begun applying 
machine learning techniques to detect, understand and predict 
go-arounds using historical flight data. Karboviak et al [8] use 
several airplane parameters to design a go-around detection 
tool to classify approach type for General Aviation flights, with 
an accuracy of 98% tested on 100 student flights. Bro [9] 
collected 2000 hours of General Aviation training flight data 
and trained a neural network to predict whether an approach is 
a landing or go-around event. Low error rates were achieved 
but the cause of go-around event is unknowable. Manikandan 
et al [10] used real commercial flight trajectory data, landing 
airport data, features derived from radar track and weather data, 
and the corresponding closing rates to the nearest aircraft to 
developed an algorithm aiming to discover precursors to go-
around events. They firstly used Markov Decision Process 
framework and Inverse Reinforcement Learning (IRL) to 
generate an expert’s nominal time series trajectory. A precursor 
score was then defined to evaluate a given instant of a time 
series by comparing its utility with the expert’s nominal 
trajectory. Precursors were identified in an unsupervised 
manner, and the threshold for determining whether a precursor 
is strong, was somewhat unreliable.  

There is little work analyzing the potential causes of go-
arounds. Wang et al [11] built a simulation-based method and a 
heuristic method to extract unstabilized approach related 
features from one-month historical commercial flight track data 
and procedure data (runway elevation, glide path angle, etc.). 
The results quantified the deviation portion of each 
unstabilized approach feature violating the stabilized approach 
criteria. The groundspeed change, speed at Final Approach Fix 
(FAF), aircraft weight class and rate of descent were discussed. 
With the same datasets, Ref. [12] used logistic regression 
model to predict unstable approaches. This work reveals 
potential causal factors of go-arounds, but fails to consider 
weather conditions, traffic and other potentially relevant 
features. 

While substantial literature can be found on go-round 
decision making policy, the performance of go-around 
operations, and detection and prediction of go-arounds, there is 
comparatively little work on the causes of go-arounds. 
Previous work has yet to fully comprehensively investigate 
features related to procedure execution, traffic separation, 
weather, airport conditions and trajectory performance (Section 
III). Our work focuses on advancing the knowledge of go-
around incidence, and quantifying the contribution of these 
features on go-around occurrence.  This study also developed 
an algorithm for detecting go-arounds and thus introducing a 

profile of go-around occurrence for the analyzed airport. 
Analysis of causal factors of go-around occurrence will inform 
further prediction work and deeper exploration in the field of 
aviation safety, thus improving flight efficiency and safety. 

The remainder of this paper is organized as follows. In 
Section II, we introduce the data sources and how we utilize 
these datasets for go-around detection and deriving potential 
factors. Section III describes the derivation of different 
categories of features. Section IV presents our methodology 
framework and the model results. In Section V, we conduct a 
counterfactual analysis to quantify the effect of different 
factors. Section VI offers the conclusions and discusses the 
implication and limitation of this study. 

II. DATA AND GO-AROUND DETECTION 

A. Data Sources 
We collect data from two different sources from April 1st 

to December 24th in 2018 at the JFK airport. After data 
cleaning and matching, there are on average 525 arrival flights 
per day in the analyzed airport within the analysis period. 

1) Sherlock data warehourse 
The first dataset is retrieved from the Integrated Flight 

Format (IFF) of the Sherlock Data Warehouse, which is a 
platform for reliable ATM data collection, archiving, 
processing, query, and delivery [13]. IFF dataset records flight 
summary (time, aircraft ID, aircraft type, origin, destination, 
operation type), flight plan (route, Estimated Time of Arrival 
(ETA), etc.), and track points (latitude, longitude, altitude, 
ground speed, course, rate of climb, etc.), which are gathered 
from 76 FAA facilities and formatted by ATAC corporation. 
Arrival trajectories has been filtered to 400 nautical miles 
centered on the analyzed airport for each flight.  

Reduced Data (RD) summary, which includes the 
information of landing runway and time, is also used in this 
study. The RD summary and the IFF data have been processed 
and merged on a daily basis for each flight arriving at JFK.  

2) Airport information 
The second dataset, which comes from the Aviation System 

Performance Metrics (ASPM), provides airport information for 
each quarter hour, including meteorological conditions (i.e., 
IMC and VMC), ceiling (in feet), visibility (in statute miles), 
wind speed (in knots), wind angle (degree), arrival demand 
(counts) and airport runway configuration, which will be used 
to derive features for our analysis (Section III). 

B. Detection of Go-Around Occurrence 
A go-around occurs when a flight aborts the landing on 

final approach, firstly decreasing its altitude and distance to the 
airport, then climbing and flying away from the airport for 
another approach and landing, as shown in the right subplot in 
Figure 1. Our go-around algorithm is presented in the 
following steps. 

(1) Query the track point data from IFF dataset for a given 
flight, and extract the 4D trajectory (time, latitude, 
longitude, altitude), as shown in Figure 2.  



(2) Piecewise linear regression is applied to identify points 
at which the slope of the altitude evolution curve is 
changed. 

(3) Each flight trajectory will be processed and must meet 
the following criteria to be considered as a go-around. 

• The altitude at the start of ascent is no more than a 
default value of 5500 feet. 

• The total altitude gain during the ascent must not be 
less than a default value of 400 feet. 

(4) Define the final approach trajectory endpoint of each 
aircraft. For flights that meet the criteria in (3), the 
final approach trajectory endpoint is the point at which 
the altitude starts increasing; for other flights, it is the 
landing point from RD files. 

(5) Identify the final approach trajectory segment of each 
aircraft, which is a five-minute (Tfinal) trajectory 
segment ending at the final approach endpoint defined 
in Step (4). 

(6) For every 5-minute flight trajectory segment, calculate 
its distance with the all available runways (by 
configuration) using formulas (1), (2) and (3) in [14]. 
Each track point votes for the closest runway line 
segment.  

(7) Identify actual landing runway for each flight using the 
most voted runway from step (6)1. For each track point 
of a given flight, calculate the distance to the 
touchdown zone markings of the corresponding 
landing runway. 

(8) Piecewise linear regression is applied to identify points 
at which the slope of the distance evolution curve is 
changed. 

(9) Each flight trajectory will be processed and must meet 
the following criteria to be considered as a go-around. 

• When a go-around flight is within 1-nautical-mile 
range of the airport, its altitude will not exceed a 
default value of 1500 feet. 

• Go-around must occur within the 10-nautical-mile 
range of the airport, to distinguish go-arounds from 
aircrafts being vectored or in holding patterns. 

• The ascending segment of a go-around trajectory must 
intersect with a 10 nautical-mile-radius cylinder 
centered at the airport. 

 

Figure 1.  Profiles of normal landing flight (left) and go-around flight (right) 

 

Figure 2.  4D trajectory visualization of go-around flight 

We implemented our algorithm and applied it to all JFK 
arrival flights except military flights, general aviation and 
helicopters, and detected 691 go-arounds from April 1st to 
December 24th in 2018. We further validated those go-arounds 
by visualization inspection from Subject-Matter Expert (SME)2 
consultations. We compare the descending profiles of two 
aircrafts – a detected go-around flight and a non-go-around 
flight – in Figure 1. , the altitude and distance to the airport of 
the left normal flight have been declining during the whole 
final approach process. However, the go-around flights on the 
right first descend, then ascents, and descents again for both the 
altitude profile and the distance to airport profile. We also 
present the 4D trajectory of the go-around flight as shown in 
Figure 2.  

III. FEATURE ENGINEERING 
Using data collected in Section II.A, observations are 

obtained for every flight operating during the study period with 
five categories of features. The derivations of these features are 
described in this section. 

A. In-trail Relationship Features 
Separation is defined as the distance, either horizontal or 

vertical, between the leading and trailing aircraft. The 
minimum required separation depends on the relative weight 
class (size) of two aircrafts and the operational environment 
conditions (visibility). Loss of separation occurs whenever 
specified separation minima are breached. Therefore, to capture 
the separation causal effect, four variables are derived from the 
4D trajectory information: 

1) Loss of separation: This variable calculates the 
difference between the minimum required separation (FAA 
standard) and the minimum actual separation between the 
leading and trailing aircraft pair. We expect larger magnitude 
of loss of separation (in nautical miles) increases the 
probability of go-arounds. The algorithm for calculating the 
loss of separation has two steps – finding leading and trailing 
aircraft pair and calculating separations for the aircraft pair. 
The detailed algorithm is illustrated as below. 

 
(1) Group flights with the same (matched) landing runway, 

and sort them in chronological order. 

(2) For each group in step (1), we create a list of tuples where 
each tuple contains two consecutive aircrafts that have 

1. For non-go-around flights which have recorded landing runway in the 
RD files, we use the recorded runway directly. For other flights, which are go-
around flights or miss records in the RD files, the approach landing runway is 
the one that receives most votes from track points in the vector. 

2. SME: Michael Hanowsky (Leigh Fisher Consulting), William Dunlay 
(WJDunlay Consulting), and the authors (University of California, Berkeley).  



been sorted. Within each tuple, if the endpoint time 
difference of the two aircrafts is smaller than 10 minutes, 
then we define them as a leading-trailing aircraft pair. 
Otherwise we remove the trailing flight from the tuple. 

(3) For each flight, we use Discrete Fourier Transform (DFT) 
[19] to find the extrapolated timestamps at which the 
analyzed (trailing) flight reaches certain distance to its 
landing runway (disti, i = 1, 2, …, 10, in nautical mile). 

(4) We use DFT again to extrapolate the locations (latitude, 
longitude, altitude) of both leading and trailing aircrafts at 
the extrapolated timestamps found in (3). 

(5) The distance between every two extrapolated points is 
calculated. An example is shown in Figure 3. For the 
analyzed (trailing) flight labeled in blue with 10-point 
extrapolation, 10 separations (disti, i = 1, 2, … ,10), which 
are the black two-way arrow in Figure 3. will be calculated 
!" = $%&'%   . 

(6) Obtain the separation minima !"   from FAA Wake 
Separation Standards based on the weight class of leading 
and trailing aircrafts. Thus, the loss of separation is 
!"	 = %&'	(0, !+ 	-	!- 	)  , and will be directly employed as 
continuous variables in the model. 

 

Figure 3.  A synthetic example for extrapolation 

2) Speed difference: Following the step (3) in calculating 
the loss of separation, we also obtain the extrapolated speed of 
leading and trailing aircrafts at the same extrpolated 
timestamps. The numerical value of speed difference will be 
directly employed as continuous variables in the model.  

3) Chasing: A dummy variable is created based on the 
extrapolated speeds, and equals to 1 when the analyzed 
(trailing) flight ground speed is greater than the leading flight 
ground speed, indicating the chasing senario during final 
approach. 

4) No leading: We create a dummy variable where 1 
represents no leading aircraft and 0 otherwise. 

B. Airport and Weather Features 
We expected that runway configuration change, arrival 

traffic, airport capacity, visibility, ceiling, and wind condition 
could also trigger a go-around. 

1) Arrival demand: This variable comes directly from the 
ASPM dataset to represent the number of aircrafts intending to 
arrive for the observed 15-minute interval. 

2) Arrival rate: This variable comes directly from the 
ASPM dataset to represent the Airport supplied Arrival Rate 
(AAR) for capacity. 

3) The change of runway configuration: Runway 
configurations are recorded every 15 minutes in the ASPM 
airport information data. For a given flight, this variable is set 
to 1 if the used runway configuration during the observed time 
period is different from either the preceding 15-minute period, 
or the succeeding 15-minute period, and 0 otherwise. 

4) Wind condition: We consider four types of wind speeds 
– headwind, tailwind, crosswind, and variable wind. Since 
headwind is favored during approach, we subtract the 
headwind component from the original wind speed using 
trigonometric calculations with the information of wind speed, 
wind angle and flight corresponding landing runway. For each 
flight, if the wind direction record at the trajectory’s endpoint 
time is “VRB”, then this variable is set to the wind speed 
record. Otherwise, the variable wind speed is set to wind speed 
subtracting the headwind component. 

5) Visibility: Visibility ranges from 0 to 10 statute miles in 
the ASPM dataset. We discretized the visibility variable into 
three categories: [0, 3], [3, 5] and [5, 10]. 

6) Ceiling: Ceiling ranges from 0 to 999 in hundreds of 
feet in the ASPM dataset. Similar to the visibility variable, we 
discretized the ceiling variable into 4 categories: [0, 5), [5, 10), 
[10, 30), [30, 999]. 

7) Meteorological condition: Two types of meteorological 
conditions are considered – VMC and IMC. We convert this 
variable into a dummy variable where 1 represents VMC 
condition and 0 otherwise. 

C. Clustering Effect Features 
From the go-around detection results, we observed that a 

go-around was more likely to occur when leading aircrafts 
initiated go-arounds. Therefore, two variables were derived to 
capture such effect – closest go-around time and go-around 
count. As shown in Figure 4., for each flight (yellow star), the 
closest go-around time is the minimal time interval between its 
approaching time and initiation time of all (other) go-around 
flights (T, in hours). The go-around count is the number of go-
around flights (excluding any go-around by the subject flight) 
within a one-hour time period of the flight of interest. The 
variable value is equal to 3 in Figure 4., no matter whether the 
starred flight is go-around or not. 

 
Figure 4.  Clustering effect features 



D. Trajectory Performance Features 
Figure 5. visualizes some of the metrics which are derived 

from the trajectory information to measure the trajectory 
performance. The solid blue line is the Extended Runway 
Centerline (ERC) of 31R. When a flight, represented as red 
dot in the figure, intercepts the distance arc (e.g. 5nm), the 
flight altitude (in 100 feet), ground speed (in knots), 
perpendicular distance to ERC (in nautical miles), angle with 
ERC (in degree), glideslope angle (in degree, see Figure 6) are 
calculated at this moment. 

 

Figure 5.  Diagram of trajectory performance features 

 

Figure 6.  Diagram of glideslope angle 

 

We also calculate the flight kinetic energy during the 
approach process. However, the traditional kinetic energy 
measurement requires information on aircraft mass. The fuel 
consumption profiles are unavailable at this time. Thus, we use 
the energy height metric [22], which is a function of altitude 
and ground speed, to identify the energy state of each flight.  

	  
!"#"$%& = h)* + 	 (.)

*)2
2% 	(feet)  

 

where, !"#"$%&   is the kinetic energy height in feet, h"#   is 
altitude of aircraft i at d-nautical miles away from the landing 
runway touch down markings, !"#   is the ground speed of aircraft 
i at d-nautical miles away from the landing runway touch down 
markings, g is the gravitational acceleration. This metric only 
uses surveillance data. 

E. Flight-specific Features 
Flight approach performance relies on pilot experience. 

Although flight crew information is not available for this study, 
we categories airline as international and domestic carriers. 
We expect that pilots work for domestic (U.S.) airlines are 
more experienced with landing in JFK airport. Aircraft type is 
also considered by categorizing as narrow body and wide body. 

1) Airline: 1 if the analyzed flight is operated by US 
carriers and 0 otherwise. 

2) Aircraft Type: 1 if the analyzed flight is wide body 
aircraft and 0 otherwise. 

3) Landing runway: There are 8 runways in JFK airport – 
04L, 04R, 22L, 22R, 13L, 13R, 31L, 31R. This variable is set 
to 1 if its corresponding runway is the landing runway of 
analyzed aircraft. The purpose is to capture different landing 
patterns for different runways. 

 
Model must take consideration of which of the features can 

be evaluated at a certain time prior to the go-around occurs. In 
this study, we assume a go-around is executed when its 
altitude starts increasing during the approach based on our 
detection algorithm. All the features – in-trail relationship 
features, airport and weather condition features, clustering 
effect features, trajectory performance features and flight-
specific features, are derived and recorded at the moment 
when the analyzed flight is at 5 nautical miles away from the 
touchdown zone markings of its landing runway. 
Extrapolation technique is also applied to make sure that no 
information from future is included in the 5nm feature space. 
After preprocessing and matching flight trajectories with the 
5nm features, our final dataset has a total of 489 go-around 
occurrences within 0-5 nm (5nm is exclusive) away from the 
airport over 140, 807 observations. The summary of variables 
is presented in TABLE I.  

IV. METHODOLOGY AND MODEL RESULTS 

A. Retrospective Causal Inference Model 
There are three types of causal inference methods – 

randomized control method, prospective method, and 
retrospective method [15]. While the first two methods require 
randomized experimental data, the last method can be applied 
to observational data. Therefore, in this study, we use the 
retrospective method to investigate the causal relations among 
the go-around occurrence and features that described in 
TABLE I.  

B. Logistic Regression Model 
A binary logistic regression model was estimated to relate 

whether a flight initiates a go-around or not with contributing 
factors in TABLE I. In this study, we first estimate a vanilla 
logit model with model specification (1), where V is the utility 
function, !"  ’s are all contributing factors introduced in TABLE 
I. , and βi’s are the associated coefficients. Thus, the probability 
of an aircraft initiating go-around can be written as in equation 
(2), where !"	(%&	 = 1|	*)   indicates the probability of go-
around. 



! = #$ ⋅ &$$∈ℐ                  (1) 

      Pr #$ = 1 ' = (
()*+,	(-0)                 (2)  

TABLE I.  MODEL VARIABLES 

Variable Code Variable Description (per flight) 
Dependent Variable Category 

GA 

1 if flight is detected as a go-around 
occurring within [0, 5) nautical miles to 
the runway touchdown marking zone, 0 
otherwise. 

Detected 

Independent Variable Category 

Loss_of_sep The loss of separation at 5nm to the 
runway touchdown (in nautical miles) 

In-trail 
relationshi
p features 

Speed_diff 
The difference of gound speed between 
leading and trailing aircrafts at 5nm to 
the runway touchdown (in knots) 

Chasing 

1 if the analyzed (trailing) flight ground 
speed is greater than the leaidng flight 
ground speed at 5nm to the runway 
touchdown, 0 otherwise 

No_leading 1 if there is no leading aircraft, 0 
otherwise 

Arr_demand 
The number of intended landing 
aircrafts during the observed 15-minute 
interval (counts) 

Airport 
and 

weather 
features 

Arr_rate Airport supplied Arrival Rate for 
capacity (counts) 

Rwy_change 
1 if the runway configuration is changed 
during the observed 15-minute interval, 
otherwise 0 

Sub-wind Wind speed where the headwind 
component is subtracted (in knots) 

Visibility_i Airport visibility (i = 1,2,3; intervals are 
[0, 3), [3, 5), [5, 10] in miles) 

Ceiling_i 
Airport ceiling (i =1, 2, 3, 4; intervals 
are [0, 5), [5, 10), [10, 30), [30, 999] (in 
100 feet) 

MC “V” for VMC, “I” for IMC operations 

Closest_time 

The minimal time interval between the 
approaching time of this flight and the 
initiation time of all (other) go-arounds 
(in hours) 

Clustering 
effect 

features 
GA_occur_ct 

The number of go-around flights within 
1-hour time period of the flight of 
interest (counts) 

Alt Flight altitude when flight is at 5nm to 
the runway touchdown (in 100 feet) 

Trajectory 
performan
ce features 

Horiz_dist 
Penperdicular distance to the ERC when 
flight is at 5nm to the runway 
touchdown (in nm) 

Speed Flight ground speed when flight is at 
5nm to the runway touchdown (in knots) 

Engergy Kinetic energy height when flight is at 
5nm to the runway touchown (in feet) 

AC_airline 
1 if flight is operated by international 
airline, 0 if flight is operated by US 
carriers 

Flight-
specific 
features AC_Type 1 if aircrafts is wide body, 0 otherwise 

Landing_rwy Dummy variable for landing runway 
 

The estimation results are presented in TABLE II. Model I. 
The majority of coefficients are not significant at 0.05 level, 
and most of which have unexpected signs. For example, the 

estimates for the visibility and ceiling variables suggest that 
flights land on an airport with good visibility and ceiling 
conditions would have a higher probability of go-around, 
which is not plausible in practice. By carefully examining the 
error structures, we find that many independent variables used 
in the model are highly correlated (a.k.a., multicollinearity). 
Therefore, the vanilla logistic regression model fails to give us 
a proper understanding of the causal effect, and techniques 
need to be conducted to de-correlate the original feature vectors. 

C. Principal Component Regression 
To handle the multicollinearity problem, we apply principal 

component analysis (PCA) to de-correlate and reduce the 
dimensionality of the original feature space. To be more 
specific, instead of regressing the dependent variable on the 
explanatory variables directly, the principal components of the 
explanatory variables were used as regressors [16].  

After the preprocessing and mapping procedures shown in 
Section III, our feature space ends up with a dimension of 
(140807, 25), with a categorical data matrix Z1 (140807, 7) and 
a numerical data matrix Z2 (140807, 18). The categorical 
variables are Rwy_change (2 classes), Chasing (2 classes), 
AC_airline (2 classes), AC_body (2 classes), Landing_rwy (8 
classes), MC (2 classes) and No_leading (2 classes), we 
therefore have m = 20 categories. Since the dataset is a mixture 
of categorical and quantitative variables, an appropriate 
treatment of mixed data types, especially the categorical 
variables, is required. In this study, we applied the PCA-mixed 
algorithm introduced by [17] to handle such problem (Step (1), 
(2), (3)). The detailed algorithm is given as follows. 

• Standardize the numerical data matrix !"#   and center 
the categorical data matrix !"#  . 

• Build a numerical data matrix !	 = 	 !$%	 !&')   of 
dimension (140807, 18+20), a diagonal matrix N of the 
weights of the rows, and a diagonal matrix M of the 
weights of the columns. Apply the generalized singular 
value decomposition (GSVD) of Z with the diagonal 
metrics of the weights N and M 

   ! = #Λ%&               (3) 

• The set of factor scores for rows are computed as  

   ! = #Λ.                (4) 

• The columns of F are the principal components that 
serve as inputs to the model. 

• Select the first 19 principal components which explain 
90.4% of the total variance. The number of principal 
components was chosen based on the rule that 
eigenvalue of principal components is greater than 0.6. 
The relationship between selected principal 
components !'   and the independent variables !   can be 
expressed as 

   !’	 = 	%&  ,              (5) 

Where W is a weight matrix of ratio explained of 
independent variables by the selected principal 
components. 



TABLE II.  MODEL ESTIMATION RESULTS 

Observations: 
140, 807 

Go-arounds: 
489 

Dependent Variable: Go-around occurrence 
Parameter Estimate significant level 

(Standard Error) 
Model I: 
Logistic 
model 

Model II: Logistic principal component 
regression model 

Variable Code Coef. PC coef. 
(γ) 

PC 
Loading 

(!  ) 

Variable 
coef. (β) 

Constant -4.857*** 
(0.370) 

-6.386*** 
(0.068) 

  

Arr_rate -0.121 
(0.070) 

PC1 
-0.250*** 
(0.013) 

0.49 -0.032 

Visibility_1 -0.046 
(0.060) 

0.75 -0.100 

Visibility_2 0.029 
(0.074) 

0.83 -0.066 

Visibility_3 -0.204** 
(0.079) 

0.83 -0.062 

Ceiling_1 -0.069 
(0.048) 

0.69 -0.075 

Ceiling_2 0.048 
(0.060) 

0.85 -0.023 

Ceiling_3 0.154 
(0.150) 

0.85 -0.006 

Ceiling_4 -0.126 
(0.079) 

0.64 -0.001 

MC=V -0.767* 
(0.343) 

0.34 -0.025 

Speed -0.120 
(0.219) 

PC2 
0.111*** 
(0.026) 

0.85 0.002 

Energy 0.287 
(0.200) 

0.84 0.0001 

Speed_diff 0.033 
(0.072) 

0.75 0.002 

Chasing -0.020 
(0.155) 

0.49 0.045 

No_leading 0.269 

(0.184) 
-0.90 0.257 

Horiz_dist 0.040 
(0.295) PC3 

-0.77 -0.028 

Rwy_13L -1.629* 
(0.706) 

-1.51 -0.140 

Alt 0.383*** 
(0.050) PC4 0.44 0.156 

AC_airline 0.391** 
(0.134) PC5 

0.131*** 
(0.032) 

1.20 0.376 

AC_body 0.308* 
(0.131) 

1.11 0.422 

Rwy_31R -1.168*** 
(0.239) 

PC6 
0.342*** 

(0.033) 
-1.00 -0.100 

Rwy_22L -0.943*** 
(0.180) PC7 0.84 -0.113 

Arr_demand 0.096* 
(0.040) PC8 

0.377*** 

(0.034) 

0.55 0.023 

Sub_wind 0.203*** 
(0.044) 0.45 0.048 

Rwy_22R -0.781** 
(0.260) PC9 1.00 0.494 

Rwy_change 0.099 
(0.166) 

PC10 
0.328*** 

(0.018) 
1.00 0.299 

Loss_of_sep 0.166*** 
(0.019) 

PC12 
0.102*** 

(0.029) 

0.49 1.258 

Rwy_04L 0.746*** 
(0.168) -1.00 -1.057 

Rwy_31L -1.198*** 
(0.305) 1.00 -0.144 

Closest_time -0.238*** 
(0.071) PC19 

-0.281*** 
(0.040) 

0.40 -0.0009 

GA_occur_ct 0.215*** 
(0.019) -0.43 0.392 

Log Likelihood -2670.0 -2686.1 

            Variables are significant at the 0.1% level***, 1% level**, 5% level*. 

 

• Regress the observed outcomes of go-around 
occurrence y on the selected principal components F’, 
using maximum likelihood estimation to get a vector of 
principal components coefficients γ in the logistic 
regression model (Shown as “PC coef.” In TABLE II. ). 
The 3rd, 4th, 7th, 9th, 11th, 13th, 14th, 15th, 16th, 17th, 18th 
principal components covariates are not significant at 
0.05 level, thus removed from the model. 

• Transform the vector of principal components 
coefficients γ back to the scale of the actual covariates, 
using the eigenvectors corresponding to the selected 
principal components. The final estimated coefficients 
of the actual covariates β will be obtained by 

! = #$%  ,            (6) 

since the regression is 

 !	 = 	$'&	 = '	()*&	) 	= 	',.                 (7) 

• Each original variable will be only associated with one 
principal component according to the PC loadings (!  ), 
which makes the interpretation easier. The PC loadings 
(!  ), the final estimates of the actual covariates (β) and 
the principal components coefficients (γ) of the model 
are shown in TABLE II.   

D. Estimation Results 
The estimation results for the principal component 

regression are summarized as Model II in TABLE II.  Some 
insignificant principal components are removed from the table. 
Original independent variables are presented in the order of its 
loaded principal component. The sign of principal component 
loadings (!  ) shows the direction (principal component) that the 
original independent variable aligned with, and the absolute 
values of loadings show the correlation coefficient between the 
original variables and their aligned principal components. For 
example, principal component 2 (PC2) captures the negative 
effects of all visibility variables. 

We first observe that the vast majority of the principal 
components’ coefficients (!  ) are significant. We then use step 
(6) and (7) from Section IV.C to find the principal component 
that best explains each causal factor (!  ) and further calculate 
its coefficient in the original feature space (!  ).  

For the in-trail relationship features, the loss of separation 
variable (Loss_of_sep) is loaded in the same direction with the 
12th principal component with a correlation of 0.49. The 
coefficient of the 12th principal component is highly significant 
with positive sign and positive loading, indicating positive 
effect of the loss of separation on go-around occurrence. The 
effects of the aircraft ground speed (Speed) and the chasing 



(Chasing) scenario are both captured in principal components 2. 
Too high or too low flight ground speed is associated with go-
around occurrence. The chasing scenario during final approach 
increases the probability of go-arounds. 

For the weather features, we are interested in the signs and 
magnitudes of transformed coefficients (!  ) for airport visibility 
and ceiling. By looking at the coefficients of different 
visibility/ceiling categories, we observe that the increase of 
visibility and ceiling has negative impact on go-around 
occurrence, and this effect is diminishing when the weather 
condition is good in itself. Higher wind speed (Sub_wind) 
increases the likelihood of go-around occurrence. The changes 
of airport runway configuration (Rwy_change) has a significant 
positive impact on go-around occurrence, which could be 
caused by the change of approach pattern, interrupted landing 
procedure, and increased crew workload. The probability of 
go-around occurrence also increases when the airport has high 
arrival demand (Arr_demand), low airport capacity (Arr_rate) 
or under IMC conditions (MC=I).  

For the clustering effect feature, the estimate of the time 
duration to the closest go-around (Closet time) is negative, and 
the estimate of the number of other go-arounds within 1-hour 
time window (GA_occur_ct) is positive. They are both 
significant. This implies that go-arounds tend to occur in 
clusters and that this behavior cannot be fully explained by the 
other variables in the model. 

For the trajectory performance features, flights with high 
altitude (Alt), high ground speed (Speed), and high kinetic 
energy height (Energy) at 5nm to the runway touchdown zone 
would more likely to have go-arounds.   

For the flight-specific features, flights operated by non-
domestic carriers (AC_airline) are more likely to have go-
arounds, which could be caused by language issue or the flight 
crew are not familiar with the airport conditions. Wide body 
(AC_body) aircrafts are more likely to have go-arounds. 

V. COUNTERFACTUAL ANALYSIS 
To further quantify the contributions for different factors 

considered in the Model II, counterfactual scenarios are 
constructed, in which each selected factor is set to the best 
condition at one time. In our final dataset, there are 489 go-
arounds over 140, 807 operations, the baseline go-around rate 
is 0.347%. The scenario value is set to minimize the probability 
of go-around occurrence, which we refer as the best condition. 
Model estimates will be plugged in to predict the 
corresponding go-around probability for each flight, and the 
percentage reduction between the baseline go-around rate and 
the expected go-around rate are calculated, which indicate the 
factor contribution. The percentage reduction is formulated as 

%"#$%&'()* = 	 -.-0-1[-.-0|456]-.-0
                    (8) 

Where !"-$   is the expected go-around rate given the 
current system inputs (0.347%); ![#$-&|( = *]   is the expected 
go-around rate given the factor !   is set to the best condition 
value c. 

TABLE III.  COUNTERFACTUAL ANALYSIS RESULTS 

Variables 
Baseline Go-around Rate: 0.347% 

Baseline 
mean 

Scenario 
value 

Expected 
G-A% %reduction 

Ceiling_1 4.935 5 

0.278% 19.88% 
Ceiling_2 9.254 10 

Ceiling_3 25.003 30 

Ceiling_4 65.254 100 

Speed 162.004 162.004 0.307% 11.53% 

Energy 5267.500 5267.500 0.309% 10.95% 

Horiz_dist 0.940 0 0.314% 9.51% 

Rwy_change 0.081 0 0.320% 7.81% 

Chasing 0.582 0 0.328% 5.48% 

Arr_rate 12.698 15 0.334% 3.75% 

Visibility_1 2.920 3 

0.335%  3.46% Visibility_2 4.681 5 

Visibility_3 4.481 10 

No_leading 0.056 0 0.335% 3.46% 

Speed_diff 18.140 0 0.346% 0.29% 

Arr_demand 10.587 0 0.346% 0.29% 

 

TABLE III. reports the average value of each feature in the 
current dataset (baseline mean), the scenario value that is set to 
minimize the likelihood of go-arounds (scenario value), the 
expected go-around rates calculated with the counterfactual 
dataset, and the percentage of reduction for continuous 
variables. To save space, we only report the variables that can 
be changed and have contribution to the reduction of go-around 
rates. 

Figure 7 reflects the relative importance of each variable on 
the reduction of go-around probability. The airport ceiling and 
aircraft speed control are the two most important factors of go-
around occurrence. Go arounds would decrease by 20% if 
airport ceiling was set to their scenario values. Improving 
visibility and ceiling indicates a clear view for landing, would 
reduce go-around occurrence by about 23%. In real operation 
environment, go-arounds could be initiated because the flight 
crew fail to have a clear visual condition on the runway, and 
the landing environment is not ideal. 

The aircraft speed control, which can be represented by the 
numerical aircraft speed value (Speed) and the Kinetic Energy 
Height (Energy), is also important in reducing go-around 
occurrence. Stable speed control could reduce go-arounds up to 
22% (11.53% + 10.95%). Go-around would decline about 
9.5% if the aircraft is properly aligned with the ERC at 5 
nautical miles away from its landing runway end.  

If there is no change of runway configuration in the 
analyzed airport, go-around rate would potentially decline 
about 7.8%. When the airport capacity is high, go-arounds 
would decline about 3.75%.  



Keeping a safe separation and comfortable following speed 
with the leading aircraft could reduce go-arounds up to 6%. 
While in the absence of leading aircraft, go-arounds would 
decline about 3.5%.  The airspace traffic has minimal effects 
on the go-around reduction. 

0.29%

0.29%

3.46%

3.46%

3.75%

5.48%

7.81%

9.51%

10.95%

11.53%

19.88%

Speed_diff

Arr_demand

Visibility

No_leading

Arr_rate

Chasing

Rwy_change

Horiz_dist

Energy

Speed

Ceiling

% Reduction

 

Figure 7.  The estimated effect of the loss of projected separation 

VI. CONCLUSIONS 
This paper presents a modeling framework that 

incorporates go-around detection, separation analysis, and 
principal component regression (PCR) techniques to 
quantitatively understand what factors in ATM system may 
cause the go-around occurrence. We applied our go-around 
detection algorithm on the JFK arrival flights for the last three 
quarters in 2018, and detected 691 go-arounds (489 go-arounds 
occurred within 0 to 5 nautical miles to the airport).  

Our study is not only in line with research using full-flight 
simulator trials [4] that speed and localizer deviation have 
strong influences on perceived risk and pilot’s go-around 
decision, but also capturing the effects of environmental and 
runway variables on go-around decision. Interviews [20] with 
ATC controllers and pilots state that go-arounds often occur 
when the aircraft is not properly aligned or wind shear 
warnings [21]. However, their focus was on managing a 
singular problem, like descent rate or airspeed control. In this 
study, most aspects of features including in-trail relationship, 
airport and weather condition, trajectory performance, flight-
specific features and go-around clustering effect have been 
derived from various data sources and used as causal factors in 
PCR modeling. The estimation results of the PCR model 
suggest that factors such as the airport visibility and ceiling, 
flight perpendicular distance to the ERC, clustering effect, 
traffic volume, airport capacity, wind condition and loss of 
separations significantly increase the probability of go-around 
occurrence. Counterfactual analysis that based on the results of 
PCR has been conducted to quantify what factors are most 
central in causing go-arounds, and the results suggest that the 
airport ceiling and aircraft speed control are the two greatest 
contributing factors to go-around occurrence. 

This study presents a first step in advancing the knowledge 
of what factors are most salient in triggering go-arounds. Our 
work seeks to provide the evidence-based information of go-
around occurrence, thus helps improve system performance for 

safety alerting and conflict resolution.  A real-time monitoring 
tool is possible for identifying and accessing substantial risk of 
go-arounds for decision making. ATM system would have 
benefit from this study by having better understanding of go-
around occurrence, so that precursory mitigating actions can be 
initiated to prevent the safety and efficiency degradations.  

Lastly, we point out several limitations and future work of 
the current study. The retrospective causal inference provides 
relative weak evidence for a causal link because of the 
difficulty in controlling all causal factors.  Although we have 
captured most of the features in ATM system that are important 
to go-around occurrence, some variables relating to airport 
surface operation, such as runway occupancy time and runway 
incursion, are unavailable at the present time.  

Further research should progress along several lines. First 
of all, our PCR regression model could be improved by 
incorporating a broader range of features. Second, our 
framework could be extended to analyze other types of flight 
anomalies for a larger number of airports. In turn, instead of 
using airport capacity as a causal factor of go-around 
occurrence, study could be extended to analyze the operational 
impact on runway capacity and airport efficiency. Lastly, 
models that focus more explicitly on real-time prediction as 
opposed to causal inference could be investigated. These 
models must take greater consideration of which of the features 
can be evaluated at a certain time prior to the go-around, and 
whether these features can identify flights with sufficiently 
high go-around risk to warrant remedial actions. 
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