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Abstract—Increasing air traffic volume makes en route Traffic 

Management Initiatives (TMIs) more important than ever before. 

The effective execution of en route TMIs depends on accurate 

predictions of airspace demand. Precise forecasts of airspace 

demand require causal models of route choice. Previous research 

shows that obtaining such models is extremely difficult, due to the 

complex nature of the airspace system. In this paper, we test three 

methods for making causal estimates of route utility in the context 

of two en route TMIs – the Airspace Flow Program (AFP) and 

Collaborative Trajectory Options Program (CTOP). The testing 

was done using simulated TMI data. We show that statistical 

models of the behavior of individual flights produce biased 

estimates of route utility. Models based on changes in aggregate 

delay produce better estimates; however, such models are harder 

to implement in practice. Finally, CTOP offers data structures 

that allow us to achieve higher quality airspace demand 

predictions.  

Keywords-Air Traffic Management; AFP; CTOP; Discrete 

Choice Modelling; Demand Prediction; Queueing. 

I. INTRODUCTION  

A.  Background 

1)  En Route Traffic Management Initiatives 
En route traffic management initiatives are programs 

conducted by air traffic management authorities in order to 
balance airspace capacity and demand during instances of heavy 
traffic volume and severe weather. For instance, thunderstorms 
might make some airspace sectors unavailable for entry, which 
reduces the capacity of the airspace. TMIs assume control over 
aircraft that were scheduled to cross impacted sectors of the 
airspace and determine these aircrafts’ departure times and 
routes in a way that balances the capacity of the airspace with 
scheduled demand. 

The focus of this paper is to determine if the existing 
statistical tools allow us to reliably forecast airspace demand 
during en route traffic management initiatives (TMIs), such as 
the Airspace Flow Program (AFP) and Collaborative Trajectory 
Options Program (CTOP). AFP is currently one of the most 
widely used en route TMIs in the US. AFP works in a similar 

way to a Ground Delay Program (GDP): it assigns departure 
delays to aircrafts whose original routes would penetrate a 
certain section of the airspace (Flow Constrained Area or FCA) 
and allows airlines to reroute their flights out of the AFP in order 
to reduce delays. CTOP is a further development of AFP that is 
intended to replace it in the future. In CTOP, flights 
communicate their route preferences to the ATM through so-
called Trajectory Option Sets (TOS). In a TOS, for each 
potential route the aircraft operators assign the so-called 
Relative Trajectory Cost (RTC) - measure of cost of airborne 
delay for a given route measured in terms of departure ground 
delay.  

2)  Problem Statement 
One of the recurring issues in en route TMIs is spillover 

effects. Some TMI-controlled flights receive a departure delay, 
while others reroute around the constrained area. Large 
departure delays result in delay propagation throughout the 
system. The purpose of reroutes is to reduce delay and delay 
propagation. However, rerouted flights may be funneled into 
other regions of the airspace, which may require the creation of 
additional TMIs. Knowing which flights will be delayed and by 
how much, and which reroutes other flights will take, would help 
the Air Traffic Management to better plan for TMI extension, 
staffing, and other planning activities. For example, this 
information can be incorporated into stochastic optimization 
models for capacity rate setting under uncertainty, such as 
Enhanced Stochastic Optimization Model (ESOM) [1][4]. This 
issue will become more significant as air traffic grows, since 
congested airspace will have less capacity available for AFP and 
CTOP reroutes. 

In other words, we would like to be able to predict airspace 
demand to a high degree of accuracy. There are several factors 
that will likely make this challenging. First, airlines do not easily 
disclose their decision-making policies to aviation authorities, 
since these policies contain proprietary information that they 
fear might be used against them by authorities or competitors. 
Second, en route TMIs that control hundreds of flights at the 
same time are relatively rare (< 50 instances per year in the 
United States), which limits the amount of data available to train 
machine learning models that can forecast precise actions that 



aircraft operators may take. As a result, we would like to develop 
a structured model that underlines the decision-making process 
of aircraft operators and allows us to forecast flight-level 
behavior based on the flights' observable attributes, such as 
origin-destination pair, departure time, assigned ground delay 
and flight time, and route choice decisions that were made in the 
past. 

  

Figure 1.  Illustration of Airspace Flow Program with two FCAs (red lines), 
flights that chose shorter paths and reroutes to the north and to the south of 

FCA (green lines). 

3)  Structured Demand Model 
We have developed such a structured model in a previous 

paper [6] where we attempted to estimate a statistical model of 
decision-making in the AFP setting.  In that paper we assumed 
that for a given flight each potential route has utility (or 
disutility) associated with it. The utility of a route is a linear 
function (weighted sum) of the route's airborne delay and ground 
delay: 

𝑈𝑖 = 𝛽1 ∗ 𝐷𝑒𝑙𝑎𝑦 + 𝛽2 ∗ 𝐹𝑙𝑖𝑔ℎ𝑡 𝑇𝑖𝑚𝑒 + 𝜖 (1) 
In this equation 𝑈𝐼 is the random utility term of a given route 

𝑖,  𝛽1𝑎𝑛𝑑 𝛽2 are utility weights associated with AFP delay and 
a route’s flight time respectively, and 𝜖 is the unobserved utility 
term. This approach has been used in multiple other studies that 
are related to modelling of cancellation behavior during a 
Ground Delay Program (GDP) [5][7][8]. 

 Each flight faces two possible route options: to stay on the 
shortest path route and receive a significant departure delay or 
to reroute out of AFP and receive no ground delay in exchange 
for some airborne delay associated with flying a longer route. By 
using observed choices of routes that flights took during AFP we 
can estimate the weights that are associated with airborne delay 
and ground delay in a utility function. This statistical model is 
called Random Utility Model (RUM), because it treats the utility 
as a sum of deterministic (observed) and stochastic (unobserved) 
components.  

The ratio of the estimated weights for airborne and ground 
delays is called the Delay Cost Ratio (DCR). DCR is the 
interpretable component of the model, since it represents the 
tradeoff between the two types of aircraft delay. Most studies 
assume DCR  to vary between 2 and 3[2][3]. For example, this 
means that airlines should be willing to take reroutes that require 
10 minutes of extra flight time in order to avoid 20 to 30 minutes 
of ground departure delay. In the previous paper we found that, 

according to the statistical estimates, DCR are anywhere between 
4.5 and several hundred. We proposed several possible 
explanations for this behavior, such as boundedly rational 
behavior in the presence of uncertainty and the imprecise nature 
of the data. We also could not discount the possibility that 
airlines do have very high DCR values. Finally, we hypothesized 
that airlines’ coordination of actions of flights in the AFP queue 
reduces the apparent sensitivity of flights to ground delay and 
distorts our estimates. In this paper we will focus on this 
hypothesis. 

4) Goal of the paper 

The goal of this paper is to develop and test several DCR 
estimation techniques. We test these techniques on simulated 
data from stylized models of airline behavior in the context of 
AFPs or CTOPs. The models do not reflect all complex 
interaction that are present in the real air transportation system, 
but only some of them, such as the interaction of flights in the 
AFP or CTOP queue. We also assume that the behavior of 
airlines is very simple: the cost function is linear with respect to 
ground delay and flight time, and the airline response to the TMI 
follows a very simple optimization model. The reason we do this 
is that the demand modelling techniques that work on simple 
simulated data have a chance to perform well in real-world data. 
However, if these techniques fail on simplified data, they will 
also fail on real AFP and CTOP data. We can assess the accuracy 
of our techniques, because we set all simulation parameters and 
can compare the outputs of our models to assumed ground-truth 
values. 

In the first part of the paper we test two possible ways of 
estimating DCR from simulated observational data. First, we use 
random utility model and simulated flight-level route choice 
data. Second, we develop and implement a simple method that 
uses aggregate delay data to calculate the upper bound for DCR  
values. In this part of the paper we are aiming to test the 
hypothesis that the coordination between flights in an AFP 
queue does not allow us to reliably estimate cost model 
parameters even for the simplest cost models. Then we proceed 
to create a route cost estimation technique that can be applied to 
forecast demand in the context of CTOP. Finally, we discuss the 
results and provide several consequences that are relevant to the 
practice of Air Traffic Management.  

II. ESTIMATING RELATIVE TRAJECTORY COST 

The purpose of this paper is to explore in depth one of the 
possible explanations of previous results. We hypothesized that 
the unexpectedly small sensitivity of route utility to assigned 
ground delay is the result of airlines' optimization of aggregate 
outcomes using the components of Collaborative Decision 
Making (CDM). When flight operators cancel or reroute flights 
out of AFP, they do not lose their arrival slots. Instead, they 
move some of the other flights up in the queue in order to reduce 
overall delays in a TMI. When we observe the route choices of 
flights it appears to us as a lower sensitivity of route utility to 
departure delay.  

In this paper we conduct computational experiments, in 
which we simulate flight schedules in the context of an AFP, 
assign departure delays to each flight in the queue, and then 
allow airlines to choose reroutes and flight substitutions using a 



simple optimization model. We then use the optimal solutions to 
airlines' problems as data inputs into random utility models in 
order to estimate DCR  values that were used by airlines as inputs 
in their optimization programs. After this, we develop a simple 
aggregate method for estimating the upper bound of DCR. 
Finally, we propose a method for demand prediction that can be 
implemented in the next generation of en route TMIs such as 
CTOP. 

A.  Flight-level Simulation   

1)  General Description 
The first step is to simulate notional AFP data that we can use 
for model estimation and validation. This simulated data 
contains information about flow constraints, airspace capacity, 
reroutes, schedule arrival time at flow constraints, reroute costs, 
and AFP-assigned delays. The flight-level AFP simulation 
constrains several components: simulation of notional flight 
schedules, FCAs, direct routes, reroutes and RTC values, and 
generation of airline response using a simple optimization 
model.  

2) Simulating Schedules and RTC  
The first step was to simulate airline schedules, FCAs, 

reroutes, and RTC values for every reroute. In order to have 
more control over the analysis and to get more general results 
we did not use real airline schedules in the simulation. Instead, 
we randomly sampled origin and destination coordinates from 
two, two-dimensional Gaussian distributions to generate a list of 
flights. In a similar vein we generated two end-points for a linear 
FCA that lies roughly in the middle of the analysis region. For 
each flight we computed shortest path flight times assuming that 
aircraft speed is normally distributed across flights with a mean 
of 450 knots. Every flight was assigned an FCA arrival time. The 
arrival times were uniformly distributed across the analysis 
period of several hours.  

Then we generated simplified reroute trajectories that 
circumvent the FCA via the shortest available path. The 
additional flight time for a reroute is therefore the difference 
between the reroute flight time and the shortest path flight time. 
After calculating reroutes, we computed RTC values for the 
reroute. We assumed that the RTC of a reroute is equal to the 
additional flight time for the reroute multiplied by DCR, which 
we assume to be constant for every flight in a given simulation. 
In three simulation runs we assumed that DCR  is equal to 2, 3 
and 5 (see more detail below). 

The next step is to conduct AFP delay assignment. The  
duration of the AFP was set to 4 hours—the average real-world 
AFP duration. The total number of flights controlled by AFP in 
every scenario is equal to 600 flights, approaching the real-world 
value for the United States. The capacity rate of AFP was set to 
75% of demand in order to generate delays that approximate 
real-world levels. The delays were assigned to the simulated 
flights using the Ration-By-Schedule rule applied to the FCA 
arrival times calculated above, without exemptions. Reroutes 
were assumed to have a required delay of zero minutes.  

As a result, we have simulated notional airline schedules, 
complete with shortest path routes and reroutes, RTC for 
reroutes, and required AFP delay values. Note that the analysis 
is simplified—we do not embed simulated airline schedules into 

broader airline hub-and-spoke networks. The purpose of this is 
to isolate the effect AFP structure on observations of revealed 
airline preferences and costs.  

B.   Airline Response Model 

The next step in the AFP simulation process is airline 
response. Our goal is to demonstrate that the ability of airlines 
to respond to AFP delay assignments hinders our ability to 
accurately assess airlines' sensitivity to changes in delay.  

The airline response model is a simple integer programming 
model program in which the airline may reroute flights and 
reallocate their vacated slots to other flights. 

min      ∑ ∑ [𝑎𝑡𝑥𝑖𝑡 − 𝑠𝑖(1 − 𝑦𝑖) + 𝑟𝑖 ∗ 𝑦𝑖]𝑡𝑖   (2) 
𝑠. 𝑡. 

1.) ∑ 𝑎𝑡𝑥𝑖𝑡 ≥ 𝑠𝑖(1 − 𝑦𝑖)𝑡      ∀𝑖  

 2. ) ∑ 𝑎𝑡𝑥𝑖𝑡  −  𝑠𝑖(1 − 𝑦𝑖) ≤ 𝑇𝑚𝑎𝑥

𝑡

    ∀𝑖 

3. ) ∑ 𝑥𝑖𝑡

𝑡

+ 𝑦𝑖 = 1     ∀𝑖 

4. ) ∑ 𝑥𝑖𝑡 ≤ 1       ∀𝑡

𝑖

 

𝑥𝑖𝑡 ,  𝑦𝑖 ∈ 𝛣 

Where 𝑎𝑡 is the scheduled FCA arrival time of slot t,  
𝑥𝑖𝑡  indicates whether slot t is assigned to flight i, 𝑦𝑖  indicates 
reroute for flight 𝑖, 𝑠𝑖 is scheduled arrival time at FCA for flight 
i, and 𝑟𝑖 is the RTC for a reroute for the flight. The objective is 
to minimize the total cost of TMI for an airline. The cost has two 
components: delay cost in minutes and reroute cost in ground 
delay unit equivalents. The cost of a reroute is equal to the RTC 
value of reroute for each flight. The first set of constraints 
ensures that the flight is not moved to the slot preceding its 
scheduled arrival time. The second set of constraints ensures that 
the flight does not get rescheduled to a much later slot. The third 
set of constraints makes sure that exactly one action is chosen 
for each flight. Finally, the fourth set of constraints ensures that 
each slot is used at most once. 

In other words, airlines are allowed to reroute and substitute 
flights. When a flight is rerouted, its AFP slot is not lost but 
instead can be filled in by another flight, thereby reducing delay 
for a specific flight and the carrier overall. This was done to 
isolate the effect of rerouting. Adding the ability to cancel 
complicates the analysis, but the results stay qualitatively the 
same.  

There is one optimization problem per airline. One output of 
the airline response model for each airline mathematical 
program is a binary decision vector that has the same dimension 
as the number of flights, n, controlled by the AFP, which 
indicates which flights are rerouted. A second output is an n by 
n vector specifying the assignment of slots to flights. After 
simulating multiple scenarios, the next step is to construct a 
RUM-model that attempts to predict whether airlines will 
reroute a particular flight. The binary reroute decision vector 
will be the Y-variable, while flight time and AFP delay values 



created in the simulation constitute the X-variables. The ratio of 
the flight time coefficient to delay coefficient from the RUM-
model is our estimate of DCR. In other words, our goal is to use 
the random utility model to recover the value of DCR and 
compare it to the ground-truth RTC that was assumed in the 
simulation used to generate the data.  

C.  Simulation scenarios 

We would like to see the effect that airline-level aggregate 
optimization has on DCR estimates from binary logit model 
reroute decisions. In order to do this, we generate multiple 
simulations in which we vary only one parameter – the number 
of flights controlled by AFP per airline. The higher the number 
of flights (slots) for an airline, the higher the flexibility to reroute 
and substitute flights. In different simulation runs we set the 
number of flights per airline to values between 600 and 1. We 
expected that the RUM-estimates of RTC will be different for 
different simulation runs. We generate 10 simulation runs in 
order to obtain a sample of 6,000 flights. 

We conduct this simulation process three times, each time 
setting ground-truth DCR  value to a different level: 2, 3, and 5.  

D.  Estimates of Random Utility Model 

1) Model Description 
Finally, we input all simulated datasets into the Random 

Utility Model. We chose the simplest kind of RUM-model: 
binary logit. Other types of models, such as mixed logit, produce 
different estimates, but do not qualitatively change the 
conclusions. 

The dependent variable is a binary decision variable that 
takes the value of zero if the flight does not reroute, and the value 
of one if the flight reroutes. There are two independent variables 
- flight time and required delay. Required delay for the reroute 
option is assumed to be zero, in line with AFP design. We model 
the probability that the flight operator chose one of the options: 

Pr(𝑌𝑖 = 0 𝑖𝑟 1) =  
𝑒𝑥1𝛽

∑ 𝑒
𝑥𝑗𝛽   (3) 

Here, i is the set of routes available to a given flight, which 
consists of two options – a shortest path option and a reroute. 𝑥𝛽 
is the deterministic component of random utility: 

𝑉𝑖 = 𝛽0 + 𝛽1 ∗ 𝐷𝑒𝑙𝑎𝑦𝑖 + 𝛽2 ∗ 𝐹𝑙𝑖𝑔ℎ𝑡 𝑇𝑖𝑚𝑒𝑖   (4) 
As a result of model estimation, we obtain three regression 

coefficients: regression intercept, flight time and delay 
coefficients. The flight time and delay coefficients show the 
change in route's utility as flight time and delay on the route 
increase by one minute. The ratio of the flight time and delay 
coefficients is the DCR value, which shows the amount of 
reduction in ground delay that is required to offset the increase 
in flight time equal to 1 minute.  

 

2)  Summary of Results 

DCR  values were computed for each simulation run. Binary 
logit DCR estimates vary by the number of slots per airline in the 
AFP and by the assumed ground-truth value of DCR specified 
for the simulation run. Figure 2 summarizes results. The x-axis 
is the number of flights (slots) available per airline in AFP. The 

y-axis is the regression estimate of DCR  for each simulation run. 
Each line indicates a separate set of simulations with different 
assumed values of DCR. For ease of interpretation, the plot is 
logarithmic. 

While the assumed ground truth values of DCR  are equal to 
2, 3 and 5 in the three sets of simulations, the estimated values 
are very different. For simulations with a very large number of 
AFP-controlled flights per airline the estimate of DCR  is close 
to 100—two orders of magnitude higher than the ground-truth 
value.  

 

Figure 2.  Summary of random utility model estimates for three simulation 

runs with varying cost ratios. 

 As the number of flights per airline in the AFP decreases, 
DCR estimates slowly approach the ground truth value. For 
simulations with one AFP slot per airline—implying TMI 
actions for each flight are made independently—the estimated 
DCR is only slightly higher than the ground truth values. 
Statistical methods, such as binary logit, are best-fitted to deal 
with such cases, since the primary assumption in most statistical 
methods is independence between observations. 

The results suggest that DCR estimates based on real-life data 
that we obtained in preceding research were not an accident or 
the result of poor data. The analysis of simulated data shows that 
simple intra-airline coordination of actions that is allowed within 
the CDM framework results in an inability to estimate the true 
sensitivity of flights to changes in TMI delay.  

3) Causal Inference Interpretation 
 The fact that a particular model failed to recover true route 

cost parameters does not necessarily mean that another 
econometric model cannot succeed. However, there is a reason 
why statistical models that treat flights as individual 
observations will not be able to estimate the true cost parameters. 
The results that we obtained can be explained within the 
framework of causal inference that employs systems of 
simultaneous equations that was proposed by Judea Pearl in 
1995[5]. It has been shown that in order to recover the 
parameters of simultaneous equations, the assignment model has 
to be represented by Directed Acyclical Graph, or DAG. The 
following is an example of DAG: 

1) Ground delay and flight time influence utilities of 
routes. 



2) Utilities of routes with unobserved attributes described 
by a probability distribution with known moments 
influence route choice. 

 

Figure 3.  Directed Cyclical Graph that represents the route choice decision-
making model. Boxes represent variables, arrows represent influences that 

these variables make on other variables. 

In this case we would be able to get regression coefficients 
for ground delay and flight time and compute a DCR that 
matches the DCR that we assumed in order to generate our 
simulated data. This is the case when the carrier has one flight 
controlled by TMI and may choose to reroute it. As we have 
seen, in this case we can recover DCR  estimates fairly well. 
However, when there is more than one flight, we are dealing 
with a Directed Cyclical Graph model: 

1) Ground delay and flight time for flight 1 influence choice for 
flight 1. 

2) Choice for flight 1 influences ground delay for flight 2. 

3) Ground delay for flight 2 influences choice for flight 2. 

4) Choice for flight 2 influences delay for flight 1. This closes 
the cycle. 

As we add more and more flights, we add more and more 
cycles, which makes DCR estimates deviate more and more from 
the true values. The deviation happens due to the ability of 
airlines to optimize their queues. Rerouting only a handful of 
flights with the lowest RTC values can reduce departure delay 
and make rerouting other flights unnecessary. 

E.  Aggregate Approach 

1) Method Description 
As the previous sections shows, the inability to precisely 

estimate relative trajectory costs is related to the ability of 
airlines to use rerouting and slot substitution to optimize their 
schedules. Statistical models are poorly suited for this type of 
problem, since all flights are treated as independent 
observations. However, there might be a way to estimate DCR 
using more traditional deterministic queuing models. 

Figure 4 is a queuing diagram for a hypothetical single-FCA 
en route TMI that fits the description given in the previous 
section. For a certain period, the capacity of the FCA is below 
the scheduled demand. In order to balance the demand, ground 
delay is assigned to flights. Airlines, however, can "extract" 
flights from the TMI via rerouting and cancellation. On the 

queuing diagram this amounts to reducing the slope of the 
demand curve to match the capacity curve. To reduce ground 
delay to zero, airlines need to reroute Nex flights—the maximum 
excess accumulation of flights in the system. However, even 
rerouting a small portion of flights leads to a large percentage 
reduction in departure delay. The delay is represented by the 
triangular area between two curves. If the airline reroutes 
 𝑁𝑒𝑥flights this area will be reduced to zero. 

 

Figure 4.   Single-FCA AFP queueing diagram. NAFP is the set of flights 

controlled by AFP. Nex is the excess accumulation.  

As a result, we can write down the following inequality: 

Δ𝐷𝑖 ∗ 𝑐𝑑𝑒𝑙 ≥ Δ𝐹𝑇𝑖 ∗ 𝑐𝑑𝑒𝑙 ∗ 𝐷𝐶𝑅  (5) 
Here, Δ𝐷 is the reduction in delay that results from reroutes, 𝑐𝑑𝑒𝑙 
is the cost of one unit of ground delay, Δ𝐹𝑇 is the total additional 
flight time for all rerouted flights. On the righthand side, we 
decompose the cost of one unit of flight time as 𝑐𝑑𝑒𝑙 ∗ 𝐷𝐶𝑅, 
recalling that 𝐷𝐶𝑅 is conventionally defined as the ratio of the 
cost of one unit of airborne delay and one unit of ground delay. 
Index 𝑖 stands for airline. We can rewrite the inequality above to 
obtain the following upper bound on DCR: 

DCR ≤  𝐷𝐶𝑅𝐻𝑖𝑔ℎ
𝑖 =

Δ𝐷

Δ𝐹𝑇
   (6) 

This expression can be used to compute the upper bound on 
DCR using the simulated AFP data. We can do this by computing 
the total reduction in ground delay for all carriers and dividing it 
by the sum of additional flight times on all rerouted flights.  

We use the simulated data from before to compute this upper 
bound on DCR and compare it with the ground truth value and 
RUM estimates. 

In some cases, especially when the number of slots per 
airline is small, we cannot compute the upper bound of   DCR, 
since in these cases no flights reroute. Instead, we can compute 
the lower bound. We can write down the following inequality: 

𝑇𝐷 ∗ 𝑐𝑑𝑒𝑙 ≤ Δ𝐹𝑇 ∗ 𝑐𝑑𝑒𝑙 ∗ 𝐷𝐶𝑅  (7) 
TD stands for total delay. The inequality is saying that, if no 

flights rerouted, the total cost of delay should be lower than the 
total cost of airborne delay required to reroute out of AFP. We 
can rewrite the inequality to obtain the lower bound of 𝐷𝐶𝑅: 

𝐷𝐶𝑅𝐿𝑜𝑤
𝑖 =

𝑇𝐷

Δ𝐹𝑇
≥ 𝐷𝐶𝑅   (8) 

The estimates of the upper bound and the lower for each airline 
might be highly variable due to the fact that some airlines will 



be able to achieve a higher reduction in delay from reroutes due 
to chance. Assuming that all airlines have the same DCR, we can 
bring our estimates closer to the ground-truth value: 

𝐷𝐶𝑅𝐻𝑖𝑔ℎ = min {𝐷𝐶𝑅𝐻𝑖𝑔ℎ
𝑖 }  (9) 

   𝐷𝐶𝑅𝐿𝑜𝑤 = max {𝐷𝐶𝑅𝐿𝑜𝑤
𝑖 }  (10) 

The first expression says that the best estimate of the upper 
bound of DCR is the smallest upper bound estimate across all 
airlines. The second expression states that the best lower bound 
estimate is the maximum lower bound. 

2) Summary of Results 
Figure 5 summarizes the estimates of DCR as a function of 

the number of slots per airline in AFP. The estimates of the 
aggregate model are much closer to the true parameter values. 
Moreover, these estimates converge to the true value faster than 
the random utility estimates.  

In the second figure we summarize the estimates for the 
lower bound of DCR. These values were calculated using 
observations, where none of the flights in a particular airline 
rerouted. Such cases are most likely for airlines with a small 
number of slots. We obtained the estimates for airlines that have 
10 or fewer slots per AFP. The lower bound estimates converge 
to the true parameter value. 

 

Figure 5.  Summary of aggregate model estimates – upper bound. 

Although the aggregate approach to DCR estimation allowed 
us to come closer to estimating the cost parameter for the simple 
model of reroute cost, the implementation of this approach in 
practice is very complicated. First, airlines are allowed to cancel 
flights to reduce departure delay, which makes estimation of 
reroute costs more challenging. Additionally, there are multiple 
sources of delay that interfere with AFP delay. The result of this 
is the inability to estimate the cost ratio in the majority of cases.  

For the case of airlines with a large number of slots, the 
second estimation method fails to recover RTC estimates. We 
could precisely estimate the DCR parameter if the rerouting cost 
were exactly equal to the reduction in the cost of delay to the 
remaining flights. However, typically the reduction in ground 
delay cost is much greater than the increase in the cost of 
airborne delay. In most cases this makes our estimates of  Δ𝑅𝑇𝐶  
much larger than the true value. 

 

 

Figure 6.  Summary of aggregate model estimates – lower bound. 

F. Real-life AFP Dynamics 

Even though our methods may not precisely estimate reroute 
costs, we can draw several conclusions from our observations, 
which can be used to make qualitative and quantitative 
predictions about the behavior of airlines. Optimization of 
airline schedules in response to a TMI has relatively simple 
consequences: instead of rerouting flights with high delays, 
airlines may want to spread reroutes uniformly over schedules. 
This is done in order to match the slope of the arrival curve of 
the queueing diagram with the slope of the departure curve. 
Rerouting in this manner maximizes its benefits on airline on-
time performance. This leads to a simple approximate algorithm 
for determining which flights to reroute: 

Step 1: Calculate the number of flights that need to be rerouted 
using the queueing diagram. 

Step 2: Select a subset of flights with the shortest, least costly 
reroutes. 

Step 3: Reroute flights roughly uniformly across the duration of 
AFP 

We can demonstrate this behavior on the real-life AFP data. 
On the figure below you can see an instance of AFP that 
constrained a substantial number of rerouted flights. This plot 
uses data from an instance of AFP that occurred on July 19, 
2012. The x-axis is airport arrival delay associated with 
choosing the shortest path flight option. The y-axis is airport 
arrival delay for rerouted flights, assuming a route that we 
constructed that avoids the FCA region. The red point are flights 
that remained in AFP; the blue points are rerouted flights. The 
airlines choose an acceptable arrival delay threshold, below 
which flight are allowed to reroute. In other words, in the case 
of this AFP, the airlines chose to reroute only those flights that 
will certainly arrive at their origin on time. Among the flights 
with such reroutes, the airline distributed rerouted flights 
roughly evenly across the schedule. We know this, because 
higher arrival delay corresponds to higher departure delay, and 
higher departure delay corresponds to a lower place in the AFP 
queue. As can be seen, the rerouted flights span the entire range 



of possible arrival delay values, and generally have among the 
lowest arrival delays associated with choosing the rerouting 
option. 

 

Figure 7.  AFP that occurred on July 19, 2012 at FCA A05. Blue dots are 

rerouted flights, red dots – flights that remained in AFP.  

G.  CTOP Approach 

1) Method Description 
There is a third approach to modelling reroute cost, which 

can potentially give us more detailed models of demand.  It will 
be available to us once CTOP TMI or similar TMIs outside of 
the US are fully implemented. This section focuses on how we 
can use our knowledge of the internal resource allocation of 
CTOP to estimate bounds on DCR. 

 

Figure 8.  Illustration of TOS with three route options that traverse two 

FCAs. Note that required delay for each route option and adjusted cost are in 
red. RO3 route has the lowest adjusted cost and is assigned to this flight with 

0 minutes of ground delay. Source: Metron Aviation. 

CTOP combines rerouting and delay assignment in one TMI. 
At the start of CTOP, airlines submit a trajectory option set 
(TOS) for each participating flight. A TOS contains a list of 
potential flights along with RTC values for each route, where the 
shortest path route has an RTC of zero. The resource allocation 
algorithm loops through the list in pre-specified order and 
computes required departure delay for each TOS route. It then 
adds RTC values for each route with required delay values to 
compute the adjusted route cost: 

𝐴𝑑𝑗. 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑅𝑜𝑢𝑡𝑒 𝑖 =  𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐷𝑒𝑙𝑎𝑦 + 𝑅𝑇𝐶11  
Figure 8 is an example of CTOP with two FCAs. The flight 

that is controlled by this CTOP submitted a TOS with three route 
options. They have a cost of 0, 15, and 40 minutes ground delay 
equivalent respectively. The CTOP resource allocation 
algorithm calculated that routes 1 and 2 require 45 and 30 
minutes of ground delay. The route with the lowest adjusted cost 
is route 3, since it requires no ground delay and has an RTC of 
40, which results in an adjusted cost of 40. 

TOS option data will not be accessible to air traffic managers 
since it contains proprietary information that is relevant to 
airlines’ internal operations. However, we can use the resource 
allocation algorithm to our advantage to learn DCR values. 

When a flight is rerouted by CTOP we know that its adjusted 
cost is less than or equal to the required delay for the shortest 
path option, because otherwise the reroute would not be 
assigned: 

𝐴𝐶𝑅𝑅 ≤ 𝑅𝐷𝑆ℎ   (12) 
Or alternatively: 

𝑅𝐷𝑅𝑅 + 𝑅𝑇𝐶𝑅𝑅 ≤ 𝑅𝐷𝑆ℎ  (13) 

𝑅𝑇𝐶𝑅𝑅 = Δ𝐹𝑇 ∗ 𝐷𝐶𝑅  (14) 
Where RD is required delay, AC is adjusted cost, Δ𝐹𝑇 is 
additional flight time of reroute relative to shortest path option, 
RR is reroute, and Sh stands for shortest path. 

By subtracting the required delay for the reroute from the 
required delay for the shortest path option we can compute the 
upper bound on RTC for the reroute. If we divide the RTC 
estimate by the airborne delay for the reroute we can get the 
estimate of DCR.  

𝐷𝐶𝑅 ≤
𝑅𝑒𝑞.𝐷𝑒𝑙.𝑅𝑒𝑟𝑜𝑢𝑡𝑒−𝑅𝑒𝑞.𝐷𝑒𝑙 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑃𝑎𝑡ℎ

Δ𝐹𝑙𝑖𝑔ℎ𝑡 𝑇𝑖𝑚𝑒
 (15) 

This assumes, as we do in previous sections, that the relative 
trajectory cost of the reroute is the linear function of its flight 
time: 

𝑅𝑇𝐶𝑅𝑅 = Δ𝐹𝑇𝑅𝑅 ∗ 𝐷𝐶𝑅  (16) 
The resulting estimate of 𝐷𝐶𝑅 computed for each rerouted 

flight is the upper bound estimate—𝐷𝐶𝑅 could be higher, but 
not lower. For every 1,000 CTOP flights we expect to see 50-
100 rerouted flights, for which we can compute upper bound 
estimates of the cost ratio. Note, however, that this method only 
allows us to estimate DCR bounds for flights that a) complied 
with CTOP and b) received a reroute by CTOP. The flights that 
complied with CTOP are defined as flights that submitted a TOS 
with at least two alternative routes that differ from each other by 
RTC and resource demands. Without having additional 
information about whether a flight complied with CTOP or not 
we cannot distinguish the flights with one TOS option and the 
flights that submitted multiple routes but were assigned the 
shortest route by CTOP. As a result, DCR upper bounds will only 
be certain for a relatively small subset of flights, since in most 
CTOP instances only 5-10% of flights will receive reroutes. 

2) Summary of Results  
Our task was to test how well we can estimate DCR values 

of individual flights using the methods outlined about. To 
achieve this, we simulated an instance of CTOP that included 
approximately 10,000 flights across the US NAS, controlled by 



5 FCAs (see figure). Flight schedules, Trajectory Option Sets 
and FCA capacity rates were generated using a CTOP planning 
tool designed by Metron Aviation. This tool generates a TOS for 
each route that consists of routes that have been observed in 
previous flights. Some flights were allowed to submit a single 
route option in the TOS (shortest path option). We call such 
flights non-compliant. The RTC values for each TOS route were 
computed as the additional flight time for that route relative to 
the shortest path flight time, multiplied by DCR, which in the 
case of the simulation was set to be equal to 2 for all CTOP-
compliant flights. Next, we would like to see how reliably we 
can estimate DCR values for flights using the method outlined 
above. If successful, this method will give us a method that can 
be used to forecast changes in airspace demand in future CTOPs, 
assuming that the RTC generation policy remains the same.  

 

Figure 9.  Simulated CTOP FCAs and flight tracks of CTOP-controlled 

flights. Source: Metron Aviation. 

After obtaining the list of CTOP-controlled flights, we 
conducted CTOP resource allocation and assigned routes and 
delays to all flights. Due to low capacity rates that were specified 
in the simulation, approximately 2,500 flights were rerouted 
away from shortest path routes by CTOP. For this set of flights, 
we observe a set of two route options—the initial flight plan 
(shortest path) and the final flight plan (CTOP reroute). Using 
the CTOP resource allocation algorithm, we computed the 
required delay for the shortest path route option.  

Figure 10 summarizes DCR upper bound estimates by 
various airlines. The estimates are summarized as empirical 
cumulative distribution functions grouped by air carrier. The 
true value of DCR was assumed to be equal to 2 for all flights. 
The estimates of DCR vary significantly across flights. While 
estimates for many flights are close to 2, for others the estimates 
are as high as several hundred. However, as in the previous 
method, assuming that all flights within a certain airline have the 
same DCR and assuming linear route cost functions, it suffices 
to find the lowest upper bound estimate of DCR. In all 4 cases 
displayed above the DCR estimate is equal to 2. In general, given 
large enough sample, the lowest upper bound DCR estimate will 
be equal to true DCR, assuming all flights within a certain group 
of flights have the same DCR. 

This approach works when the RTC function is linear with 
respect to flight time and when there is no significant 
heterogeneity of Δ𝑅𝑇𝐶 values within the airline. In practice, this 
is unlikely to be the case. One future research direction is to 
modify the technique described above to predict route costs for 
these cases of non-linearity and heterogeneity.  

 

 

Figure 10.  Empirical cumulative distribution functions of estimates of Δ𝑅𝑇𝐶 

and the estimates of first moments. 

These results show us that although this method works better 
than random utility models and aggregate models estimated on 
AFP data, since we have more information about flights' 
preferences, the CTOP-based estimates are not completely 
certain. The average estimate of DCR is far from the ground-
truth value that was assumed to simulate the data. Using the 
minimum upper bound as DCR brings us much closer to the 
correct estimate. In practical settings, however, RTCs are 
unlikely to be a simple linear function of extra flight time, let 
alone one that has the same constant of proportionality across all 
flights. In our simulated example, the least biased DCR estimate 
is based on a single flight that yields the lowest upper bound 
estimate. We cannot predict how well this would approximate 
the actions of the rest of the flights in the system. As a result, the 
efficacy of this demand prediction model can only be tested ex 
post by comparing the outcomes of future CTOPs with our 
forecasts. This makes it necessary to constantly monitor the 
performance of such demand prediction models in order to avoid 
potentially dangerous forecasting errors. 

III. DISCUSSION AND CONCLUSION 

A.  Summary of Route Cost Estimation Approaches 

In this section we would like to summarize the results of the 
three demand models that were presented in the previous 
section: the random utility model and the aggregate model that 
used simulated AFP data, and the CTOP-based DCR estimation 
model. All three approaches share several characteristics. We 
simulated flight schedules, assumed that the relative trajectory 
cost of a route for any given flight is equal to the product of 
additional flight time relative to the shortest path flight time and 
the so-called DCR—the incremental change in relative trajectory 
cost as a result of 1 unit increase in flight time for a route. We 
then simulated several instances of TMIs that are based on real 
existing or planned TMIs: AFP and CTOP. For all three 
approaches we assigned arrival slots to flights that were included 
in the simulated schedules. Simulated AFP flights were allowed 
to respond to AFP assignment via reroutes and substitutions. 
Simulated CTOP flights, instead of responding to CTOP, 
supplied the air traffic management with information about their 
preferences—trajectory option sets—before assigning routes. 



 In all three cases we used airline response and resource 
assignment data to try to statistically estimate DCR values. These 
values, if estimated successfully, could be used to provide a 
detailed forecast of demand distribution over the airspace in en 
route TMIs. This would give planners an opportunity to see 
where potential new bottlenecks might occur and focus on 
preventing them. 

In the simulated data, we made the assumptions as simple as 
possible. The route utility function is linear and depends on one 
parameter of interest—DCR. This was done to see if the tools at 
our disposal can reliably extract information from the simplest 
type of route cost models. If our models fail to recover 
parameters from simple data, they will fail at recovering 
parameters from more complicated data. Moreover, such models 
might be of little use in more realistic operational settings. In 
real-world TMIs, all inputs in the decision-making process, such 
as demand, capacity, flight time, and weather are uncertain. Such 
uncertainty may alter airline behavior. Cost models depend on 
network structure, fleet availability, load factors, and crew 
availability, making route cost a potentially non-linear stochastic 
function of flight time. Also, in TMIs such as AFP and CTOP 
airlines are not only allowed to reroute flights out of TMI, but 
can also cancel them, among other potential actions not taken 
into account in our simulations. These and other factors make 
the real NAS significantly more complex than the simulations 
presented in this paper. If our demand estimation models 
perform poorly in a simplified simulated setting, they will 
perform equally or worse in the real world.  

B.  Implications and Future Work 

There are several implications of the inability to reliably 
estimate cost models that underly airlines' flight routing 
decisions. First, it is difficult to make forecasts of airspace 
demand that are more accurate than the simplest baseline 
demand models. As we have shown, even under idealized 
settings the statistical methods are not causal. Due to significant 
estimation bias, we will systematically underestimate the 
probability of reroutes for flights with low delays and 
overestimate the probability of reroutes of highly delayed 
flights. Flight cancellations, weather uncertainty, and other 
factors add additional layers of complexity that make it even 
harder to generate demand predictions.  

Possibly, simple queuing models give us all the information 
we need to make demand predictions. The queuing diagram can 
tell how many flights need to reroute in order to reduce delays 
to a manageable level. Depending on the geometry of FCA, 
rerouting flights can spillover to one or both ends of the linear 
FCA. As a result, we can predict the changes in demand on the 
edges of FCAs relatively well, while potential bottlenecks that 
may arise in any other part of the airspace system may remain 
obscured. The development of such queuing models should be 
the focus of future research in TMI demand prediction. 

One of the ways to solve the problem of demand forecasting 
in en route TMIs is to reframe the problem. Focusing on demand 
prediction is difficult and potentially harmful, since erroneous 
forecasts may lead to erroneous planning decisions. For 
example, if a surge in demand occurs at a certain airspace sector, 
while the forecasting model predicted a low probability of this 

event, the sector control room may not be adequately staffed in 
order to safely conduct operations. A way to avoid this is to 
focus on predicting exposure to potential adverse events. For 
example, we may focus on finding sectors, where unanticipated 
changes in demand may endanger the users of the airspace 
system. Such problems constitute another line of future research, 
which might be easier to solve and may offer larger long-term 
benefits.  

Traffic management initiatives such as CTOP are well suited 
to deal with such systemic fragilities. If a potentially fragile 
sector appears in the NAS, additional FCAs can be set up to 
meter demand to these areas. The spillover traffic along the 
edges of FCAs can also be effectively controlled by CTOP. 
Finally, as we have seen, the estimates of demand parameters for 
CTOP are much closer to reality due to the structure of the 
program. As a result, demand forecasts for CTOP can be made 
with greater accuracy than for programs like AFP. 

Finally, CTOP provides us with data structures that allow us 
to better predict changes in the airspace demand. The CTOP-
based models perform better than random-utility and aggregate 
models. This means that we can achieve a higher level of 
predictability in the system. In future work we will focus on the 
sensitivity of our estimates to non-linear and heterogeneous 
route costs. Additionally, we will look at the problem of airline 
responses to CTOP assignments, which will make a significant 
impact on distribution of demand in the airspace. 
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