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Abstract—In Europe, the most common air traffic flow man-
agement measure used by the network manager to resolve
imbalances between demand and capacity is to impose reg-
ulations, which delay flights on ground. The ground delay
assigned to a regulated flight may change from the time it
is caught by the regulation(s) to the actual departure. This
variability of the delay stems from the mechanisms used by
the computer-assisted slot allocation system to manage the slots
of the regulations. At present, the information on the delay
evolution of a regulated flight is very limited for the airspace
users, raising high uncertainty on the delay propagation and
the operations management throughout the day. This paper
describes the architecture of a machine learning model that,
trained on historical data, is able predict the evolution of the
delay for a regulated flight. Such evolution is expressed by using
various indicators, which were selected by the airspace users
involved in the project. The proposed model is able to predicted
the trend of the delay with an accuracy of 0.75. Furthermore,
results show that the model is able to reduce the prediction
error (measured as the difference between the actual and the
predicted delay) up to 63%, if compared to the current delay
as reported by the enhanced tactical flow management system.
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I. INTRODUCTION

According to the most likely scenario of the EUROCON-
TROL’s statistics and forecast service, there will be around
16.2M of flights in Europe in 2040, which corresponds to 53%
more traffic than in 2017 [1]. It should be noted, however,
that these forecasts were made prior to the COVID-19 crisis,
whose long-term consequences remain unclear. In any case,
with traffic demand expected to increase in the years to come,
balancing demand and capacity has become crucial.

When balancing demand and capacity, the first step is
to adapt the capacity to the demand, e.g., by modifying
the airspace sectorisation. If the demand cannot still be
accommodated, air traffic flow management (ATFM) mea-
sures are applied to proactively align demand with capacity.
In Europe, one of the habitual ATFM measures used by
the network manager (NM), in coordination with the local
flow management position (FMP), consists of restricting the
maximum rate of aircraft entering a congested traffic volume1

during a certain period of time, i.e, to impose a regulation.
The computer-assisted slot allocation system (CASA) cre-

ates and manages a list of ATFM slots for each regulation [2].

1A traffic volume is related to a single geographical entity (either an
aerodrome, a set of aerodromes, an airspace or a point), and may consider
all traffic passing through that entity or only specific flows.

For example, the list of slots for a 2-hours duration regulation,
with a maximum entry rate of 20 aircraft per hour, would be
composed of 40 slots separated by 3 minutes.

When a regulation is activated, each flight affected by the
regulation is assigned to a pre-allocated slot, on the basis of
the first planned-first served principle. In other words, CASA
sequences the regulated flights in the order they would have
overflown the restricted entity in the absence of regulation.

The difference between the time of the assigned slot and the
estimated time over (ETO) the restricted entity is translated
into a ground delay (the ATFM delay), which added to the
estimated off-block Time (EOBT)2 determines the calculated
off-block Time (COBT), i.e., the departure slot3.

This provisional slot allocation list, however, is very likely
to change over time. When CASA receives new flight data
(e.g., a new flight plan or an updated ETO), it tries to assign
the available slot that is closest to the ETO, i.e, the slot that
produces less ATFM delay. If the slot of the ETO is free,
then the flight will not receive delay. It the slot is already
pre-allocated to another flight, then the slot will be given to
whichever flight planned to overfly the restricted entity first.
This mechanism inevitably leads to a chain reaction, since the
flight whose slot has been taken attempts to obtain another
slot, likely by taking the slot of another flight, and so on [2].

Only at a fixed time before the EOBT of each pre-allocated
flight (typically 2 hours), the slot is finally allocated. Once the
slot is allocated, it cannot be taken by another flight. However,
it can improve by an automatic mechanism that continuously
attempts to improve the slot and depart as close as possible
to the target off-block time specified by the airline [2].

In summary, the slot of a regulated flight and the as-
sociated ATFM delay are not static, but may change over
time as CASA updates the slot allocation list according to
the aforementioned rules. This volatility of the ATFM delay,
particularly when the slot has not yet been allocated, may
cause serious predictability problems for all the stakeholders.

On the one hand, when the ATFM delay increases, the stand
availability at the airport can be impacted. An aircraft whose
flight is regulated might have to change its parking stand to
a new one, in order to free the stand for another arriving
aircraft. This implies the shift of the related ground-handling

2The off-block time is when the aircraft pushes back the parking position.
3A flight may be subject to more than one regulation simultaneously. In

this case, the ATFM delay of the most penalising regulation takes precedence
and is forced into all other regulations to which the flight is subject.



team and equipment to the new parking stand, increasing the
cost. Furthermore, the flight will not depart on time, and the
delay could propagate to the next rotation of the aircraft.
Such knock-on effect could even impact the entire schedule
of the aircraft. Last but not least, when the information on a
delay increase is not available, the airspace user cannot inform
the passengers on a clear expected delay. Sometimes, when
the boarding has already started, the passengers are asked to
remain seated in the aircraft for an unknown duration.

On the other hand, when the ATFM delay decreases and
the aircraft may depart at/close to the target off-block time,
pilots and ground-handling teams must be informed about this
improvement, in order to be ready on time.

This work emerged due to the need of airspace users to
have a better understanding of the ATFM delay evolution
when a flight is caught by one or several regulations. As
discussed above, the uncertainty on the ATFM delay evo-
lution, especially when it increases, negatively impacts the
economic and operational performance of the airspace user
and the airport, as well as the passenger experience.

In order to prevent these negative impacts from happening
when a flight is regulated, this paper proposes several indica-
tors that will inform the flight dispatcher and the other actors
about the evolution of the ATFM delay. These indicators
are provided by a machine learning model that, trained on
historical data, is able to predict several hours before the
COBT, the trend of the delay (i.e., the likelihood that it will
increase, decrease or stay stable), its probability distribution,
as well as the expected value at the actual departure time.

II. LITERATURE REVIEW

Previous research on the field of ATFM has mainly focused
on detecting and/or solving demand and capacity imbalances,
using a wide variety of novel ATFM techniques, optimisation
algorithms and performance metrics. For instance, Ref. [3]
presented a new ATFM technique that, exploiting some of
the rules and mechanisms already existing in CASA [2],
could potentially allow airspace capacity to be used more
effectively, thus reducing ATFM delays and their associated
costs for the airspace users. A very different technique was
proposed by Ref. [4], which consists of using en-route speed
reduction to complement ground delay. The idea was to
increase the flight time and partially perform the ATFM delay
in the air, at no extra fuel cost for the airspace user.

Other works investigated optimisation algorithms to better
align demand and capacity using current and/or new ATFM
practices. For instance, Ref. [5] proposed a mixed-integer
optimisation algorithm to assign ATFM delays in a way that
minimises delay propagation to subsequent flights, simul-
taneously increasing flight adherence to departure slots at
coordinated airports. Similarly, Ref. [6] formulated an integer
programming model for strategic redistribution of flights so
as to respect nominal sector capacities, in short computation
times for large-scale instances. Recently, Ref. [7] proposed a
collaborative ATFM framework aiming to improve the cost-
efficiency for airspace users when facing ATFM regulations.
One of the main difficulties of these works was to translate
the ATFM delay into an monetary cost for the airspace users.

Recently, [8] addressed this issue by defining quantitative
and qualitative indicators to assess the expected impact of the
costs that ATFM regulations could cause on airspace users.

This paper does not propose modern ATFM techniques, nor
ways to optimally distribute the delays in order to minimise
the cost of the airspace users. The objective of this work is to
build a solution that could be deployed and provide benefits
in the short-term, using the already existing ATFM practises.
Taking advantage of the large amount of data collected by
the NM for all flights that were regulated and all regulations
that were activated, a model based on state-of-the-art machine
learning techniques has been trained to perform accurate
predictions of the ATFM delay evolution, therefore supporting
the airspace users during their decision-making process.

In the last decade, the combination of historical data and
machine learning has shown potential to improve the accuracy
of predictions in many problems of air traffic management.
For instance, Ref. [9] used recurrent neural networks to
predict the progress of a boarding event; and Ref. [10] used
gradient boosted decision trees to predict the take-off time of
a flight, showing that the current ATFM delay was one of the
most important input features of the model, which effectively
learned that flights with a high ATFM delay often depart
earlier than the current COBT, due to slot improvements.

Several works attempted to predict flight delays aggregated
at a very coarse level (e.g., the whole air traffic network
or particular airports), or to classify individual flights as
delayed or not. For instance, Ref. [11] proposed a deep
convolutional neural network architecture that, given a set
of regulations and their associated maximum entry rates, is
able to accurately predict the number of delayed flights and
the total delay of the whole air traffic network. A supervised
model capable to predict the departure delays aggregated at
airport level has been also proposed by Ref. [12]. These
aggregated figures could help the FMP and the NM to assess
the overall consequences of certain ATFM measures, but may
not help the airspace users to accurately predict the impact on
the economic cost for a particular flight and the subsequent
legs. Recently, Ref. [13] proposed a model based on deep
learning and Levenberg-Marquart algorithm that can predict
the delay as a binary indicator (i.e., yes or not) per flight.

To the best of our knowledge, this is the first work dealing
with the real-time prediction of the ATFM delay for a flight
that has been already caught by one or more regulations.

III. BACKGROUND

The ETFMS (enhanced tactical flow management system)
distributes enhanced flight data (EFD) messages to provide
users with the progress and the most up-to-date state of
each flight. The first EFD is sent at the moment of creating
the flight plan. The EFD distribution stops when the flight
terminates. An EFD message includes basic attributes of the
flight (such as departure airport, destination, aircraft type,
tail number, etc.), as well as the most up-to-date ATFM
state (including the list of regulations to which the flight is
subject, the most penalising one, the current ATFM delay,
the COBT, etc.). In between the transmission of the first
and the last messages, EFD are distributed whenever these



data change, and also at regular interval (currently every
60 minutes until approximately 2 hours before EOBT, and
15 minutes afterward). Further details of the ETFMS, the
information included in the EFD messages, as well as the
list of events that could trigger EFD are described in [14].

Therefore, for a regulated flight, the history of regulations
affecting the flight (including the most penalising), the ATFM
slot changes as well as the associated ATFM delay can be
extracted from the ETFMS, resulting in a multi-dimensional
time series composed of several categorical values (e.g., the
name of the traffic volume where one of the regulations
affecting the flight is applied), numerical values (e.g, the
ATFM delay) as well as timestamps (e.g., the current COBT).

At a given time, a regulated flight may be subject to more
than one regulation simultaneously (remember that the ATFM
delay, however, is given by the most penalising regulation).
In turn, a regulation may be divided in several periods, each
one with a different duration and maximum entry rate. For
instance, a regulation spanning from 10:00 to 12:00 could
have a maximum entry rate of 30 aircraft per hour from 10:00
to 11:30, and 25 aircraft per hour from 11:30 to 12:00.

The model proposed in this paper was designed taking
into account that (1) the prediction of the actual ATFM
delay for a flight at a given time may be conditioned on the
progress of the EFD since the flight plan creation (i.e., the
sequence of EFD messages). For instance, if the ATFM delay
is decreasing, the flight is only subject to one regulation, and
the most penalising regulation has not changed for a long
time, the model is likely to predict (based on the patterns
learned from historical data) a different value than if the
ATFM delay and the most penalising regulation have been
jumping back and forth; and that (2) the ATFM information
of a flight at a given time follows a hierarchical structure,
where an EFD message could include a list of regulations,
and each regulation could be decomposed in several periods.

Throughout this paper and as a general rule, scalars and
vectors are denoted either with lower or upper case letters.
Vectors are denoted with bold fonts, like for example a, while
matrices use bold computer modern calligraphy fonts, like for
example A. Furthermore, the following notation is used when
referring to sequences (at)

T
t=1 = (a1,a2, . . . ,aT ).

A. Recurrent neural networks for learning sequences

Recurrent neural networks (RNN) are very popular for nat-
ural language processing (NLP) applications due to their out-
standing ability to capture the underlying sequential structure
present in the language, where the elements of the sequence
could be characters, words or even sentences. Obviously,
when aiming to predict the next word in a sentence, for
instance, it is better to know which words came before it. In
the same way, in order to predict the evolution of the delay,
the progress of the features that determine it (e.g., the most
penalising regulation) as well as their values are priceless.

Roughly speaking, RNN have a sort of memory over previ-
ous computations, and use this information when processing
the current input of the sequence. This information is stored
in the hidden state vector ht ∈ <nh . At present, LSTM (long
short-term memory) and gated recurrent unit (GRU) [15] are

the most popular RNN architectures because of their superior
ability to deal with the vanishing gradients problem.

Let us define a generic RNN as the function that, given a
sequence of inputs (xt)

T
t=1 and the initial hidden state h0,

generates a sequence of hidden states (ht)
T
t=1:

(ht)
T
t=1 = RNN

(
(xt)

T
t=1 ,h0

)
. (1)

In a GRU, the following operations are performed to
successively update the hidden stat at each time step t:

zt = σ (Wzhht−1 +Wzxxt) ,

rt = σ (Wrhht−1 +Wrxxt) ,

nt = tanh (Wnxxt + rt �Wnhht−1) ,

ht = (1− zt)� ht−1 + zt � nt,

(2)

where the update gate zt ∈ <nh controls the extent to which
the information of the previous hidden state is transferred into
the current hidden state, and the reset gate rt ∈ <nh controls
how much the previous hidden state contributes to the new
candidate hidden state nt ∈ <nh . In Eq. (2) and for the
remainder of the paper, σ represents the sigmoid function,
and � the Hadamard product. The values in the matrices4

appearing in Eq. (2) are optimised to accomplish the task for
which the recurrent neural network is trained.

Note that, at the very first time step, the hidden state
depends on the first inputs vector x1 as well as the initial
hidden state h0. The default approach consists of initialising
the hidden state with zeros (i.e., h0 = 0). Another alternative
is to consider h0 as an additional trainable parameter. Finally,
one could also condition h0 on some static inputs c ∈ <nc .

The GRU update described by Eq. (2) allows for control
of the flow of information along the sequence, from the past
to the future. This implies that ht is an implicit function
of (xq)

q<t
q=1. For many tasks, however, it is beneficial to have

access to past as well as future information. The bidirectional
GRU (BiGRU) extends the unidirectional case by introducing
a second GRU (with different trainable parameters), which
processes the input sequence in the opposite order. The hidden
state at each time step is the result of concatenating the hidden
states of the forward (

−→
ht) and the backward (

←−
ht) GRUs:

ht =
−→
ht ‖
←−
ht. (3)

IV. MATHEMATICAL MODEL

Whenever the user aims to predict the ATFM evolution
for a regulated flight, the following steps are performed: (1)
collect all previous EFD messages received for that flight;
(2) For each EFD message, extract the set of features listed
in Section V, in order to generates the inputs for the model;
(3) call the model described below to generate a sequence of
hidden states (ht)

T
t=1, each one associated with one of the

previous messages; (4) keep only the latest hidden state of
the sequence hT (i.e., that corresponding to the most recent
message) and then predict the desired indicator(s).

4Throughout this paper, if not explicitly mentioned, the bias vector is
omitted for the sake of simplicity



(a) Distribution of actual ATFM delay (b) Distribution of ATFM delay trend
(c) Number of periods per regulation

Figure 1: Statistics of regulated flights and ATFM regulations during the 2019 time period

The architecture of the generic model presented herein is
inspired by the hierarchical attention neural network proposed
by Ref. [16]. The fundamental idea of this model is that the
inputs follow a hierarchical structure: a regulation is divided
in periods, a message may include several regulations, and the
sequence of messages is needed to perform the prediction.
Most of the hierarchical models proposed in the literature
combine RNNs and attention mechanisms. For the task ad-
dressed in this paper, however, initial assessments revealed
that attention mechanisms did not boost the performance of
the model, but significantly increased the complexity of the
architecture. A complex architecture is more difficult to train,
debug and maintain. For this reason, the model presented
in this section uses only bi-directional RNNs to capture the
most important information of each level in the hierarchy
and update the next one, starting from the periods of the
regulations (first level) to end up with the final prediction.

Let us define xtrp as the features for one of the Ptr periods
that compose the regulation r, which was affecting the flight
when the EFD message t was received. Following the notation
adopted in this paper, (xtrp)

Ptr

p=1 represents the sequence of
features for the Ptr periods, ordered by ascending starting
time of the period. Note that Ptr could change with r and t.

Analogously, let us define xtr as the features for one of
the Rt regulations affecting the flight when the EFD message
t was received; and (xtr)

Rt

r=1 as the sequence of features for
the for the Rt regulations, ordered by ascending ETO the
restricted entity. Note that Rt could change with t, and that
only one of these regulations is the most penalising. Finally,
let us define xt as the features of the EFD message t.

When processing the first level of the hierarchy, each
xtr shall updated based on the information captured from
the corresponding sequence of periods (xtrp)

Ptr

p=1. Typically,
however, Ptr is 1 or 2 (see Fig. 1c). For this reason, the
processing of the first hierarchy could be simplified to:

x̃tr = xtr ‖ xtrq, (4)

where q is the time period of the regulation r in which the
ETO the restricted entity is contained.

Then, the feature vector of each EFD message xt is updated
based on the corresponding sequence of regulations (x̃tr)

Rt

r=1.

First, the sequence of regulations is passed thorugh a BiGRU
in order to obtain a representation of the sequence:(

h̃tr

)Rt

r=1
= BiGRU

(
(x̃tr)

Rt

r=1 ,
−→
h̃t0,
←−
h̃t0

)
, (5)

where the initial hidden states of the forward and backward
GRUs are conditioned on the content of the EFD message:

−→
h̃t0 = FFNN (xt)
←−
h̃t0 = FFNN (xt) .

(6)

A feed-forward neural network (FFNN) could be composed
by one or several stacked layers. Each one of these layers
is defined by the number of neurons n and the activation
function φ, and generates a vector of outputs y ∈ <n by
applying the following operation to the inputs x ∈ <|x|:

y = φ (Wx+ b) , (7)

where W ∈ <n×|x| is a weighting matrix, and b ∈ <n
is the bias vector. Both W and b are parameters to be
learned. Note that (1) the outputs of the first layer are the
inputs of the second layer, and so on; (2) each layer may
have a different number of neurons and activation function;
and (3) the parameters of the FFNN that generates

−→
h̃t0 are

different from those of the FFNN that generates
←−
h̃t0. The

latter statement applies all along the paper, i.e., each FFNN
has its own (unknown) set of parameters, which will be fitted
to the historical data during the training process. The hyper-
parameters (number of layers, neurons, activation functions,
etc.) of all the components (BiGRU, FFNNs, etc.) of this
generic model will be particularised in Section VI-B.

The message is concatenated with the last hidden state of
the BiGRU in order to generate the updated message:

x̃t = FFNN
(
xt ‖ h̃tRt

)
. (8)

The messages updated with information of the correspond-
ing regulations are then processed by a conventional GRU:

(ht)
T
t=1 = GRU

(
(x̃t)

T
t=1 ,h0

)
, (9)



where the initial hidden state h0 is an additional trainable
parameter. The hidden state corresponding to the most recent
message at the moment of performing the prediction (i.e., hT )
is used to predict the evolution of the ATFM delay.

In this paper, the evolution of the ATFM delay is expressed
by using three indicators: the expected value of the actual
ATFM delay (in minutes), its probability distribution, and the
trend. Each one of these indicators is predicted by a copy
of the neural network architecture described above. The only
difference between these three copies is in the last layers,
which process hT to predict the specific indicator. Note that
since all the three models aim to predict a very similar value,
sharing the parameters of the initial layers may benefit and
accelerate the training process. In the experiment performed
herein, however, the trainable parameters of each model have
been optimised to minimise the loss function from scratch.
Next sections describe the final layers for each indicator, as
well as the loss function used to optimise the parameters.

A. Basic regression to predict the expected value

The most evident approach to provide an indicator of the
ATFM delay evolution consists of predicting the expected
value of the actual ATFM delay (in minutes). In this case,
the output ybasic ∈ [0,∞) of the model would be given by:

ybasic = FFNN (hT ) , (10)

where the ReLU (x) = max (0, x) activation function is used
in the very last layer to ensure that ybasic ∈ [0,∞), i.e., that
the expected value of the actual ATFM delay is positive.

The training of the model can be addressed as a regression
problem, in which the parameters of the whole neural network
are optimised to minimise the mean absolute error (MAE)
between the predicted and the actual ATFM delay:

L = |ybasic − ytrue|. (11)

After being trained with historical data, the basic regression
model could predict the actual ATFM delay, yet the user has
no means to quantify the uncertainty of the indicator provided
by the model. This limitation inspired the development of a
model that predicts the probability distribution of the actual
ATFM delay (rather than just its expected value), aiming to
better inform the user about the likelihood of the prediction.

B. Poisson regression to predict the probability distribution

The objective of this model is to predict the probability
distribution that best describes the actual ATFM delay.

The number of occurrences that the actual ATFM delay
is zero, however, is so large that its empirical distribution do
not readily fit conventional functions (e.g., Gaussian, Poisson,
Binomial). This situation is known in the literature as zero-
inflated process [17]. Figure 1a illustrates this behaviour.

Let us imagine that, for each regulated flight, there are
two possible cases: (1) With probability ρ, the current ATFM
delay will decrease to zero; and (2) With probability 1−ρ, the
actual ATFM delay is generated from a Poisson distribution
with rate λ ∈ [0,∞). Then, the probability distribution of a
zero-inflated Poisson (ZIP) random variable y is:

ZIP(y |λ, ρ) =

{
ρ+ (1− ρ)e−λ if y = 0

(1− ρ)Pois (y, λ) otherwise
(12)

where the probability distribution of the standard Poisson
distribution is:

Pois (y |λ) = e−λλy

y!
(13)

The expected value of the ZIP distribution is given by:

E [ZIP(· |λ, ρ)] = (1− ρ)λ (14)

Figure 2a shows how the ZIP distribution changes with ρ,
for a fixed λ. Analogously, Figure 2b shows how the ZIP
distribution changes with λ, for a fixed ρ.

(a) λ = 3

(b) ρ = 0.1

Figure 2: ZIP probability distribution

Note that the ZIP distribution is defined by two parameters:
λ and ρ. Since the objective of the model is to predict
the parameters of the ZIP distribution that maximises the
likelihood of the actual ATFM delay, the neural network has
two outputs, which are generated by different FFNNs:

λ = FFNN (hT ) + ε

ρ = FFNN (hT )
(15)

where the ReLU activation function is used in the last layer
of the FFNN that generates λ to ensure that λ ∈ [0,∞); and
the sigmoid (σ) activation function in the last layer of the
FFNN that generates ρ to ensure that ρ ∈ [0, 1]. Note that a
small constant value ε is added to the prediction of the model
in order to comply with the support of the parameter λ.



Finally, the parameters of the resulting model are optimised
to minimise the negative log-likelihood:

L = − logZIP (ytrue |λ, ρ) (16)

C. Ordinal regression to classify the trend

The last model emerged from the request of the airspace
users to have an indicator of the ATFM delay trend of a
given flight. That is, the probability that the current ATFM
delay of the flight will increase, decrease or stay stable5. This
question could be addressed as a classification problem, where
the model generates as many outputs as classes (Decrease,
Stay and Increase), and each output represents the probability
of the true delay trend belonging to the associated class.

Different from traditional multi-class classification prob-
lems (e.g., determining if a picture contains a dog, a cat
or a horse), the targets proposed in this paper have ordinal
relationships to each-other. That is, there is a larger difference
between Decrease and Increase than between Decrease and
Stay. Similarly, from the point of view of the model, wrong
predictions should also have ordinal relationships. In other
words, the penalty given to the model when it predicts
Increase and the true value is Decrease must be higher
than when the prediction is Stay. This class of problems is
commonly known in the literature as ordinal regression [18].

For K classes, the basic idea behind ordinal regression
is to learn how to split the prediction space according to a
sequence of K − 1 cutpoints (ck)

K−1
k=1 = (c0, c1, . . . cK−1).

The probability that an observation y belongs to the class k
is given by the cumulative logistic link (CLL) function:

CLL(y = k | (ck)K−1k=1 ) =


σ (c0 − y) if k = 0

σ (ck − y)− σ (ck−1 − y) if 0 < k < K

1− σ (cK−1 − y) if k = K

(17)

The cutpoints become additional parameters to be learned
during the training process using back-propagation. Varying
the cutpoints changes the class probabilities for a given input.
Figure 3 shows the CLL with three classes (Decrease, Stay
and Increase) for two different locations of the cutpoints.

The input of the CLL yordinal ∈ (−∞,∞) is given by a
FFNN that processes hT , using a linear activation function:

yordinal = FFNN (hT ) (18)

Similar to the Poisson regression model, the loss function
is the negative log-likelihood:

L = − logCLL
(
yordinal = ytrue | (ck)K−1k=1

)
(19)

The frequency of these three classes, however, is not
balanced (see Fig. 1b). This characteristic often results in
models that have poor predictive performance for the minority
class. If no measure is taken to address the imbalance problem
(e.g., down-sampling, weighting the examples in the loss
function and/or during sampling), the trained model may have
difficulties to identify situations in which the delay increases.

5In this paper, the ATFM delay is considered stable if it does not change
more than 5 minutes. Note that this threshold was selected by the airspace
users involved in the project, based on their operating methods.

(a) (ck)2k=1 = (−3, 3)

(b) (ck)2k=1 = (−1, 1)

Figure 3: CLL probability distribution (dashed lines indicate
the position of the cutpoints

V. FEATURES

Table I lists the input features used by the model to make
predictions, classified according to the type of transformation
that is applied and the level in the hierarchy of features.

Some of the features are discrete (i.e., categorical), such as
the airline, while some others are continuous (i.e., numerical),
like the ATFM delay. Some machine learning models, like
decision trees, are robust to arbitrary scaling of the numerical
features and only require categorical features to be encoded as
integers (e.g., VLG→ 1). Neural networks, on the other hand,
prefer numerical features to be standardised or normalised,
and categorical features take special precautions.

Normalisation consists of re-scaling a feature from the
original range to a smaller range, typically through dividing
by the maximum absolute value, or by performing a min-max
transformation. Standardisation consists of subtracting the
mean and then dividing the result by the standard deviation,
under the assumption that the feature is normally distributed.
Very often, however, a feature presents severe skewness, and
therefore the assumption of normality does not hold.

In such cases, power transformations typically help to make
the distribution of a feature more Gaussian-like. In this paper,
the well-known Yeo-Johnson transformation [19] has been
applied to some features, followed by a standarisation.

Other features related with time (e.g., hour of the day) are
cyclical in nature. A common method for encoding cyclical
features is to map the data into two dimensions, using the sine
and cosine transformations. The boolean indicators simply
indicate whether a given condition holds or not.



TABLE I. Features of the model

Feature Description Transformation Level in the hierarchy

Aircraft type (e.g., A320)

Embedding

Message (xt)

Departure airport (e.g., LFPO)
Destination airport (e.g., LEBL)
Type of event that triggered the EFD message [14] (e.g., CASA slot allocation / update )
Class of event that triggered the EFD message [14] (e.g., EFD generated by a slot re-calculation event)
ATFM state of the flight [14] (e.g., The flight is regulated, but the slot has not yet been published)
Type of flight [14] (e.g., scheduled; non-scheduled, military, etc.)
Ready state [14] (e.g., ready for slot improvement, ready to depart, etc.)
Aircraft operator (e.g., VLG)
Airline (e.g., VLG)
Type of departure airport in CDM, advanced air traffic control (ATC) tower, or conventional
Collaborative decision making (CDM) state [14] (e.g., the flight is pre-sequenced by ATC)

Traffic volume where the regulation is applied [2]

Regulation (xtr)Geographical entity associated to the traffic volume [2]
Type of geographical entity [2] (e.g., airspace, aerodrome, etc.)
Reason of the regulation [2] (e.g., ATC capacity, weather, etc.)

Estimated taxi-in time at departure airport

Power → Standarisation

Message (xt)

Current ATFM delay
Time to EOBT
Time from EOBT of the flight plan to current EOBT
Time from previous EOBT to current EOBT
Time since previous EFD message
Time since creation of the flight plan
Time from EOBT to TOBT
Time from EOBT to TSAT
Duration of the flight

Entry time difference with respect to entry time at previous regulation

Regulation (xtr)

Time to start time of the regulation
Time since activation time of the regulation
Time since last change time of the regulation
Duration of the regulation
Time since the first time that the flight is subject to the regulation
Time since the previous time that the flight is subject to the regulation
Time since the regulation is (or is not) the most penalising
Window width of the regulation [2]

Pending entry rate of the regulation [2] Period (xtrp)Entry rate of the regulation [2]

Hour of the EOBT of the flight plan
Cyclic Message (xt)Day of week of the EOBT of the flight plan

Month of the EOBT of the flight plan

Number of regulations affecting the flight

Normalisation

Message (xt)

Time from start time of the regulation to entry time1

Regulation (xtr)
Time from start time of the regulation to exit time1

Maximum flight level of the regulation
Minimum flight level of the regulation
Number of periods that compose the regulation

Time from start time of the regulation to end of the period1
Period (xtrp)

Time from end of the period to end time of the regulation1

Is the TSAT present?

Boolean missing indicator

Message (xt)

Is it the most penalising?

Regulation (xtr)Is it the first regulation crossed by the flight?
Does it allow ATFM slot improvement?
Does it allow ATFM slot deterioration?

Finally, each categorical feature has been encoded by using
an independent embedding layer [20]. Each embedding layer
automatically learns the representation of each category of
the corresponding feature in a multi-dimensional space. The
result of the embedding layer is a vector of continuous values
for each category, which values are closer for categories with
similar effect for the task the model is trained.

1This feature is normalised with respect to the duration of the regulation

VI. RESULTS

The model presented in Section IV, which uses the features
listed in Section V to predict several indicators of the ATFM
delay evolution, has been trained on real flight data. Sec-
tion VI-A describes the setup of the experiment. Section VI-B
lists the final hyper-parameters of the model. An illustrative
examples is shown in Section VI-C. Finally, the aggregated
performance metrics are discussed in Section VI-D.



A. Setup of the experiment
The data used in this study includes all flights that were

regulated during 2019. The training examples have been
obtained from 300 random days of 2019 (with around 2.2M
regulated flights). From the remaining days of 2019, 20 days
(with around 120K regulated flights) were used for early
stopping and hyper-parameters tuning (i.e., the validation set),
and the other 40 days (with around 300K regulated flights) to
assess the performance of the model on unseen data. Three
days out of the 40 in the test set were selected by the airspace
users, which were interested on quantifying the performance
of the model in scenarios with a large number of regulated
aircraft due to, e.g., air traffic control (ATC) strikes or severe
issues related to weather. Table II shows the key metrics of
the three days selected for the validation exercise.

TABLE II. Key metrics of the three days selected for the
validation exercise with the airspace users

Date #Flights ATFM delay Represents

30th of April 2019 30890 47260 min Normal scenario
6th of December 2019 28375 141150 min ATC industrial action
27th of July 2019 32524 320215 min Summer thunderstorms

B. Hyper-parameters of the model
Table III lists the hyper-parameter of the model, which were

selected based on expert judgment and manual fine-tuning
using the validation set. In Table III, the succession of layers
for a FFNN is denoted by →, where the number represents
the number of neurons and, if not explicitly mentioned, the
activation function of each layer is the ReLU.

TABLE III. Hyper-parameters of the model

Hyper-parameter Value

Batch size / Learning rate / Epochs 32 / 1e-4 / 4
Gradient clipping value 5
Min. / Max. embedding size 4 / 64
Hidden state size of GRU in Eq. (9) 256
Number of recurrent layers in Eq. (9) 2
Hidden state size of BiGRU in Eq. (5) 128
Number of recurrent layers in Eq. (5) 1
FFNNs in Eqs. (6) for hidden states 128 (ReLU)

FFNN in Eqs. (10) and (18) for y 256→128→64→32→1 (linear)
FFNN in Eq. (15) for λ 256→128→64→32→1 (ReLU)
FFNN in Eq. (15) for ρ 256→128→64→32→1 (sigmoid)

The training of each one of the models (with around 1.8M
of parameters each) took around 7 h using a NVIDIA Tesla
K80 GPU and the Intel Xeon E5-2690 v3 (Haswell) processor.

C. Illustrative example
Table IV shows an illustrative example of the evolution

of the ATFM delay and the indicators of the model for a
regulated flight extracted from the test set. The left region
of the table show the information that, nowadays, can be
obtained from the ETFM: the time to EOBT, the state of
the flight6 and the current ATFM delay. The right region of

6FS stands ”for Filed Slot allocated”: The flight is regulated, but the ATFM
slot has not yet been published; and SI stands for ”Slot Issued”: The flight
is regulated and the ATFM slot has been published.

the table shows the indicators provided by the trained models:
the expected ATFM delay (ybasic), the two parameters of the
ZIP distribution (λ and ρ) and the probability that the ATFM
delay will decrease, stay stable or increase (pd, ps and pi,
respectively). Each row corresponds to an EFD message.

TABLE IV. Illustrative example

Time to EOBT State Delay ybasic λ ρ pd ps pi

03:43:34 FS 79 12 23 0.25 0.98 0.02 0
03:31:37 FS 64 10 23 0.21 0.97 0.03 0
03:30:54 FS 79 11 26 0.19 0.98 0.02 0
02:58:47 FS 76 11 26 0.17 0.98 0.02 0
02:39:55 FS 46 09 21 0.20 0.93 0.07 0
02:28:42 FS 76 11 25 0.17 0.98 0.02 0
02:07:22 FS 76 12 26 0.16 0.98 0.02 0

02:02:54 SI 76 12 26 0.16 0.98 0.02 0
02:00:47 SI 76 12 25 0.17 0.98 0.02 0
00:42:48 SI 76 21 30 0.11 0.97 0.03 0
00:39:45 SI 76 21 31 0.12 0.96 0.04 0
00:39:38 SI 76 23 31 0.12 0.96 0.04 0
00:35:07 SI 76 31 39 0.08 0.96 0.04 0
00:23:46 SI 34 22 23 0.05 0.80 0.20 0
00:15:46 SI 19 15 14 0.08 0.61 0.37 0
00:09:27 SI 64 34 40 0.03 0.93 0.07 0
00:07:31 SI 34 23 24 0.03 0.74 0.26 0
00:01:52 SI 19 15 15 0.06 0.54 0.43 0
00:01:51 SI 19 16 16 0.03 0.41 0.55 0

The flight shown in Table IV was caught by a regulation 3
h and 43 min before EOBT, and was assigned with a delay of
79 min by CASA. At the same time, the model was predicting
an actual ATFM delay of 12 minutes, with a high probability
(98%) that the delay would decrease by more than 5 min, and
a probability that it would decrease to 0 (i.e., ρ) of 25%.

While the slot of the flight was still pre-allocated (FS state),
the ATFM delay fluctuated between 46 and 79 minutes. This
variability stems from the slot changes caused by the rules
that govern the CASA algorithm. Despite the ATFM delay
variations, the indicators provided by the model were very
stable. The prediction for the actual ATFM delay remained in
the range 9 to 12 min, the model was still very confident that
the delay would decrease, yet the probability that it would
decrease to 0 dropped to 16%. Then, the slot was finally
allocated to the flight (i.e., it reached the SI state).

42 min before EOBT, the ATFM delay stabilised at 76 min.
For this reason, the model became less optimistic and slightly
increased the actual ATFM delay prediction to 21 min. Note,
however, that the model was convinced that, before departure,
the ATFM delay would decrease more than 5 min.

This prediction became a reality 23 min before EOBT,
when the ETFM delay decreased to 34 min. Actually, this
flight had a final ATFM delay of 19 min, closer to the 12
min predicted by the model almost 4 h before, when the
ATFM delay was 79 min. These indicators provide valuable
information to assess the evolution of the ATFM delay.

D. Aggregated performance metrics
This section shows the aggregated performance metrics

evaluated in the 40 days of the test set. Results for the
regression models (basic and Poisson) are presented in Sec-
tion VI-D1; while Section VI-D2 shows the performance
metrics for the trend classification (ordinal regression) model.



(a) Current delay reported by the ETFMS (b) Basic regression model (c) Poisson regression model

Figure 4: Mean Absolute Error (evaluated on the test set)

Figure 5: Confusion matrix (evaluated on the test set)

1) Basic and Poisson regression: Figure 4 shows the MAE
between the actual ATFM delay and: the current delay as
reported by the ETFMS (Fig. 4a), the actual delay predicted
by the basic regression model (Fig. 4b), or the expected
value of the actual delay distribution predicted by the Poisson
regression model (Fig. 4c). Remember that, for the latter case,
E [ZIP(· |λ, ρ)] = (1−ρ)λ. The MAE letric is aggregated for
all messages of all flights in the test set. Results are shown
as a function of the time to COBT (horizontal axis) and the
ATFM state of the flight (vertical axis). Note that the meaning
of FS and SI states were presented in the previous section.

According to Fig. 4a, the MAE of the ETFMS ranges
from 4 to 26 min, depending on the look-ahead time of the
prediction and the ATFM state of the flight. For instance, more
than 4 hours before the COBT, when the flight is regulated
but the slot has not yet been allocated (FS state), the ATFM
delay reported by the ETFMS is far from the one that will
actually happens. Between 2 and 4 hours, the prediction error
of the ETFMS is reduced by almost 50%. Once the slot is
allocated (typically 2 hours before EOBT), the slot does not
change so often and, consequently, the delay reported by the
ETFMS is already accurate (the error is lower than 10 min).

More than 4 hours before the COBT, both regression mod-
els are able to reduce the MAE of the predictions to around
10 minutes (63% improvement if compared to the ETFMS).
These predictions do not improve significantly when moving
to 2-4 hours before COBT, yet the improvement with respect
to the ETFMS in the same conditions is still notable (45%).

The slot of a regulated flight is typically allocated two hours
before EOBT. Then, CASA tries to improve the slot through
the true revision process. Figure 4 shows that the relative
benefit of the machine learning approach after slot allocation
is under 30%. In fact, one hour or less before COBT, the delay
reported by the ETFMS is similar to that predicted by the two
regression models. Note, however, that the Poisson regression
model was not explicitly trained to minimise the MAE, thus
the comparison with other models using this metric is not fair.
The Poisson model could be less accurate when predicting
the expected value, but it provides the probability distribution
of actual ATFM delay, which cannot be extracted from the
predictions of the basic regression model.

2) Trend classification: Figure 5 shows the confusion
matrices for the predictions of the trend classification model
on the test set, aggregated by time to COBT and state of the
flight. The rows and the columns of each confusion matrix
correspond to the true and the predicted class, respectively.
Diagonal and off-diagonal cells correspond to correctly and
incorrectly classified samples, respectively. The number in
each cell indicates the frequency of samples with respect to
the messages of the 300K regulated flights in the test set.

For instance, 17.8% of the samples belong to predictions
performed between 1 and 2 hours before COBT, when the slot
was allocated (SI state). Under these circumstances, in 34%
of the corresponding samples the delay actually decreased.
From this 34%, the model was correct 79% of the cases, and
it predicted a stable delay in the remaining 21%.



Results suggest that the model is very accurate when pre-
dicting whether the delay is going to decrease or stay stable,
even far away from COBT. As discussed in Section IV-C,
however, the imbalance present in the target hampers the
correct identification of the minority class: delay increase.

The model has an overall recall of 0.75, with a precision
of 0.73 and a F1-score of 0.71. Interestingly, the precision of
an hypothetical model that always predicts stay stable would
have a recall of 0.46, a precision of 0.21 and a F1-score
of 0.29. It should be noted that these metrics do not fully
represent the effectiveness of the model in an operational
environment. The standard metrics (i.e., recall, precision, F1-
score) assume that a prediction is either correct or wrong. As
discussed in Section IV-C, however, the model was trained
to perform ordinal regression, i.e., the penalty for a wrong
prediction depends on how far it is from the true value. This
fact can be observed in Figure 5: when the model performs
a wrong prediction it typically assigns the closest class.

VII. CONCLUSIONS

This paper proposed a generic machine learning model in-
spired by hierarchical architectures that, trained on historical
data, is able to provide several indicators of the air traffic
flow management (ATFM) delay evolution of each individual
flight. The model can be used as soon as the flight is caught by
any regulation, providing up-to-date indicators to the airspace
users all along the progress of the flight. These indicators
were designed to improve their situation-awareness, and thus
be able to mitigate the negative impacts of the ATFM delay.

Two variants of model, designed to predict the actual
ATFM delay and its probability distribution, respectively,
demonstrated to improve the accuracy of the current delay
predictions from 30% to 63%, more than 2 h before calculated
off-block time (COBT). When approaching COBT, however,
the ATFM delay does not present significant variability, and
the relative benefits of the proposed models are residual.

Another variant of the model explicitly designed to predict
the trend of the ATFM delay showed an overall accuracy of
0.75. This variant effectively captures when the ATFM delay
is going to decrease or stay stable, yet facing some difficulties
to predict when the delay is going to increase.

In future work, the model proposed herein should be
compared with other models existing in the scientific literature
(if any) to predict the ATFM delay and its trend for individual
flights, and not only with the current ETFMS predictions.

The proposed model performs the predictions per flight,
based only on the sequence of the features extracted from
its corresponding flight progress messages. In other words,
the model does not explicitly consider the effects that the
overall air traffic network have on its ATFM delay evolution.
Future work should explicitly consider these information as
new features of the model, e.g., by including the evolution
of the entry counts at the traffic volumes associated to the
regulations to which the flight is subject, or by using a more
complex graph architecture that makes predictions for the
whole set of regulated flights in the network simultaneously.

Last but not least, strategies to improve the performance
of the trend classification model and detect more cases with

delay increase could be investigated, e.g., by giving more
weight to examples belonging to this class in the loss function
or by sampling them with higher probability during training.
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