
Fourteenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2021)

Early Detection of Night Curfew Infringements by
Delay Propagation with Neural Networks

Ramon Dalmau & Giuseppe Murgese
Network Research Unit (NET)

EUROCONTROL
Brétigny-Sur-Orge, France

Yves De Wandeler & Ricardo Correira
Central Office for Delay Analysis (CODA)

EUROCONTROL
Brussels, Belgium

Alan Marsden
Airports Research Unit (APT)

EUROCONTROL
Brétigny-Sur-Orge, France

Abstract—Airport night curfews are restrictions applied at some
airports that prohibit operations during certain hours of the
night, aiming to reduce noise nuisance in the surrounding
neighborhood. Despite effectively reducing noise exposure for
local residents, these environmental measures can have negative
economic and operational effects on the airspace user and the
airport, as well as a negative experience for the passenger. This
paper presents a model that, for each flight and well before
the starting time of the curfew period, is able to provide the
probability (risk) of night curfew infringement. The risk of night
curfew infringement is computed from the start time of the
restriction and the distribution of in-block times. The former is
known for each airport, while the latter is provided by a neural
network which was trained on historical data to predict the
propagation of arrival delay along the sequence of flights of an
aircraft. Results show that the model significantly improves the
in-block time predictions, if compared to the current solution.
Furthermore, the risk indicator could assist in identifying flights
with potential risk of night curfew infringements within a
reasonable time frame to implement effective mitigation actions.

Keywords—delay propagation; machine learning; curfew

I. INTRODUCTION

Aircraft noise is a major concern for millions of people
living in the vicinity of airports. Despite the continuous efforts
of the industry to design quieter engines and airframes, several
airports have taken operational measures to address the issue.

Night curfews are environmental restrictions imposed at
some airports, which prohibit take-offs and/or landings dur-
ing certain night-time hours in order to mitigate the noise
nuisance on the local airport community. These night curfews
could be partial or total. At Paris-Orly, for instance, a total
night curfew from 23:30 to 06:00 (local time) has been imple-
mented since 1968. Berne-Belp is another example of airport
with total night curfew, where operations are not permitted
between 23:00 and 06:00 (local time). In some airports, like
Rome–Fiumicino, a partial night curfew is applied only to
the runway that is closer to populated areas. Liverpool and
Stockholm-Arlanda are examples of airports implementing a
partial night curfew, which restricted period time depends on
the day of the week [1], [2]

Night curfews are common across Europe, and although
they have positive effects for the surrounding residents, they
could also cause significant operational and financial disrup-
tions. In some cases, a flight running late may have to divert
to an alternate airport if it is unable to reach the airport before

the start of the night curfew, and therefore passengers would
have to be shuttled between airports. In other cases, a flights
may be cancelled if it is certainly known that it would infringe
the night curfew at the destination airport, or not be able to
depart from the origin before the end of the restriction.

In this context, developing effective methods to accu-
rately identify flights with potential risk of night curfew
infringement within a reasonable time frame is of paramount
importance to apply early responses and, consequently, to
mitigate the negative economic and operational performance
impact for the airspace user and the airport, as well as the
unpleasant experience for the passengers.

Night curfews infringements are often caused by a delay
propagation along the sequence of flights legs scheduled for
an aircraft during the course of the day. The delay that
propagates to a flight depends on the length of scheduled
turn-around time, the arrival punctuality of the previous flight
and the operational efficiency of the ground-handling services
at the airport, among other factors. For instance, an aircraft
with a very tight schedule that is delayed in its very first
flight could propagate such delay throughout the consecutive
flights. If this were the case, it could not be able to operate
the last flight of the day because of the night curfew at the
origin or destination airport. In other situations, however, the
flight could be able to absorb the delay during the course of
the day, or the airspace user may decide to swap the aircraft
and deflect the delay to an airport with no curfew.

Unfortunately, it is not straightforward to anticipate
whether a flight will infringe the night curfew or not, espe-
cially when the assessment is performed several hours (and
flight legs) in advance, when the uncertainty of the actual
delay propagation along the scheduled sequence is very high.

This paper presents a two-stages model, which is capable to
detect flights with potential risk of night curfew infringement
well before the starting time of the restricted period. Instead of
relying on hard-coded rules laboriously designed by domain
experts, the model has been trained on historical traffic data
by using state-of-the-art machine learning techniques.

The model performs predictions per aircraft (i.e., tail num-
ber), and can be queried at any time during the day using
the most recent information for each one of the flights that
the aircraft has already operated (if any) and those planned
until the end of the journey. During the first stage, the model
predicts the propagation of arrival delay along the sequence

of subsequent flights. The result is a distribution of predicted
in-block times for the very last flight of the sequence. During
the second stage, the distribution of predicted in-block times
is used to analytically compute the probability of night curfew
infringement, given the known start time of the restriction.

The input features used to train the model have been
obtained by combining two sources of data: Enhanced Tac-
tical Flow Management System (ETFMS) flight data (EFD)
messages, and the published airline schedules. The model has
been trained on sequences of flights (each one corresponding
to the state of the scheduled sequence of flights for a particular
aircraft at a given time) from 2019. The ability of the model to
generalise has been verified by assessing its performance on
unseen sequences from 2018. Last but not least, a validation
exercise has been also performed for the COVID-19 period,
aiming to measure the hypothetical performance degradation
in such exceptional and unfortunate traffic situation.

II. BACKGROUND

Understanding the factors that drive delay propagation
across the flights of the air traffic network has attracted
many researchers in the recent years. This work attempts
to address this problem from a data-driven point of view,
taking advantage of the large amount of data available and
the outstanding predictive performance of neural networks.
Section II-A reviews previous works on the modelling and
prediction of delay propagation. Section II-B describes the
working principle of recurrent neural networks, an architec-
ture designed to make predictions from sequential data.

A. Delay propagation

Some authors analysed the intensification and smoothing
factors of this widespread phenomenon. For instance, Ref. [3]
investigated the relationship between the planned schedules
of aircraft and crew, and the potential for delays to propagate
across the network. Results showed that the planned schedules
are often very tight, thus limiting the ability to absorb delays.

In parallel, Ref. [4] introduced several indicators to quan-
tify the propagation of delays, as well as to better under-
stand the amplifying and mitigating factors. Interesting results
showed that almost half of the departure delays in Europe are
caused by reactionary delays. Furthermore, empirical results
suggested that, the higher the inbound delay and the lower
absorbed delay, the more reactionary delay is propagated to
the subsequent flight legs. The analysis also revealed signif-
icant differences in techniques used to mitigate reactionary
delay, depending on the business strategy of the airline.

Later on, Ref. [5] proposed an analytical model to quantify
propagated and newly formed delays along the sequence of
flights that an aircraft operates during the day. The model was
formulated by considering that airlines (deliberately) insert
buffer into the flight schedules and ground turn-around oper-
ations, which could be used to absorb the delay. In addition,
the influence of various factors involved on the initiation and
progression of the reactionary delays were studied by using
a novel discrete-continuous econometric model.

Other relevant works on this field modelled the propagation
of delays at network-wide level by using Bayesian net-

works [6], causality networks based on the Granger causality
test [7], queuing and network decomposition methods [8], as
well as data-driven models [9] and simulators [10].

In the recent years, the use of historical data and machine
learning has shown potential to improve the accuracy of delay
predictions. For example, Ref. [11] assessed the strategic
flight schedules (i.e., slots) of an airport by using machine
learning to predict potential flight delays and cancellations.
Another example is Ref. [12], which recently proposed a
causal machine learning algorithm to predict the probability
(risk) of flight delays and to identify the driving features.

In a previous work [13], an explainable machine learning
model built on gradient boosted decision trees was used to
improve the predictability of take-off times. A comprehensive
analysis of features importance showed that, when the time
available to perform the turn-around is below a given thresh-
old (which in turn depends on the airline, airport and aircraft
type, among other factors), the impact of this input feature
on the prediction rapidly increases. These results suggested
that data-driven models could capture reactionary delays
caused by delay aggregation and propagation throughout the
consecutive flight legs of a given aircraft during the day.

The architecture of the neural network proposed herein,
as well as the input features that the model uses to predict
the delay propagation as required to assess the risk of night
curfew infringement, were inspired by the amplifying or
mitigating factors identified in the aforementioned works.

Different from previous works, this paper proposes a prob-
abilistic model, which does not only provide the expected
value of the delay, but also the uncertainty associated to the
prediction (used to compute the risk). Last but not least, the
model was trained and validated on real flight data, and was
explicitly designed to work in a real-time operational environ-
ment, taking advantage of the most up-to-date information.

B. Recurrent neural networks

In this paper, vectors are denoted with bold fonts, e.g., a,
while matrices use bold computer modern calligraphy fonts,
e.g., A. Furthermore, the following notation is used when
referring to sequences (at)

T
t=1 = (a1,a2, . . . ,aT).

Since their (presumably) first appearance in Ref. [14],
recurrent neural networks (RNN) rapidly became very popular
in many natural language processing (NLP) applications due
to their outstanding ability to capture the underlying sequen-
tial structure present in the language.

Roughly speaking, RNN have a sort of memory over previ-
ous computations, and use this information when processing
the current input of the sequence. This information is stored
in the hidden state vector ht ∈ <nh . At each time step, the
RNN uses the current inputs vector xt ∈ <nx to update the
hidden state. For vanilla RNN, the update function is:

ht = tanh (Whhht−1 +Whxxt) , (1)

where Whh ∈ <nh×nh and Whx ∈ <nh×nx are matrices of
parameters to be learned during the training process1.

1Throughout this paper, if not explicitly mentioned, the bias vector is
omitted for the sake of simplicity.

Note that, at the very first time step, the hidden state
depends on the first inputs vector x1 as well as the initial
hidden state h0. The default approach consists of initialising
the hidden state with zeros (i.e., h0 = 0). Another alternative
is to consider h0 as additional trainable parameters. The most
reasonable approach, however, consists of conditioning h0 on
static inputs (i.e., those not changing along the sequence).

The vanilla RNN update described by Eq. (1), however,
frequently leads to the problem of vanishing gradients, which
negatively influences the learning of long sequences. To solve
this problem, a popular way is to use LSTM (long short-
term memory) or gated recurrent unit (GRU) [15]. In this
paper, the latter architecture has been selected because it is
computationally faster than LSTM, and provides similar or
even better performance in a wide variety of applications.

In this context, let us define GRU as the neural network
that, given a sequence of inputs (xt)

T
t=1 and the initial hidden

state h0, generates a sequence of hidden states (ht)
T
t=1:

(ht)
T
t=1 = GRU

(
(xt)

T
t=1 ,h0

)
. (2)

At every step t = 1, 2, . . . , T of the input sequence, the
following operations are performed to update the hidden state:

zt = σ (Wzhht−1 +Wzxxt) ,

rt = σ (Wrhht−1 +Wrxxt) ,

nt = tanh (Wnxxt + rt �Wnhht−1) ,

ht = (1− zt)� ht−1 + zt � nt,

(3)

where the update gate zt ∈ <h controls the extent to which
the information of the previous state is transferred into the
current state, and the reset gate rt ∈ <h controls how much
the previous state contributes to the new candidate state nt ∈
<h. In Eq. (3) and for the remainder of the paper, σ represents
the sigmoid function, and � the Hadamard product.

This architecture effectively allows for control of the flow
of hidden state along the sequence, determining how much
hidden state is propagated to the next step of the sequence,
when to reset the hidden state, and how to update the hidden
state based on the current inputs. Note that, replacing hidden
state by distribution of delay and inputs by flight attributes in
the previous sentence, one could already guess the working
principle of the model proposed in the following section.

For many tasks, it is beneficial to have access to past as well
as future information (if available). The basic GRU architec-
ture described by Eq. (3), however, processes sequences only
in the forward direction. This implies that ht is an implicit
function of (xq)

q<t
q=1. The bidirectional GRU (BiGRU) extends

the unidirectional case by introducing a second GRU (with
different trainable parameters), which processes the input
sequence in the opposite direction. Then, the hidden state at
each time step is the result of concatenating the hidden states
of the forward (

−→
ht) and the backward (

←−
ht) GRUs:

ht =
−→
ht ‖
←−
ht. (4)

III. MATHEMATICAL MODEL

Let us consider an aircraft that will be used to perform
a sequence of T flights along the day, ordered by off-block
time. At any time during the day, each flight t of the sequence,
with t = 1, 2, . . . , T , can be described by a vector of features
xt that represent its most up-to-date state. Furthermore, the
aircraft has some static characteristics c that are identical to
all flights in the sequence, such as the aircraft type.

The main component of the model consists of a BiGRU
that generates a sequence of hidden states (ht)

T
t=1 out of the

sequence of flight features (xt)
T
t=1, generates a sequence of

hidden states. The initial hidden states of the forward and and
backward GRUs are conditioned on c as follows:

−→
h 0 = FFNN (c) ,
←−
h 0 = FFNN (c) .

(5)

A feed-forward neural network (FFNN) could be composed
by one or several stacked layers. Each one of these layers
is defined by the number of neurons n and the activation
function φ, and generates a vector of outputs y ∈ <n by
applying the following operation to the inputs x ∈ <|x|:

y = φ (Wx+ b) , (6)

where W ∈ <n×|x| is a weighting matrix, and b ∈ <n is the
bias vector. Both W and b are parameters to be learned.
Note that (1) the outputs of the first layer are the inputs
of the second layer, and so on; (2) each layer may have a
different number of neurons and activation function; and (3)
the parameters of the FFNN that generates

−→
h 0 are different

from those of the FFNN that generates
←−
h 0. The hyper-

parameters (number of layers, neurons, activation functions,
etc.) of all the components (BiGRU, FFNNs, etc.) of this
generic model will be particularised in Section V-A.

Provided that the predictive power of the model (mainly
expressed by the number of parameters) and the number
of examples processed during training are high enough, the
model shall learn to capture in (ht)

T
t=1 all the information

contained in the input sequence (xt)
T
t=1 that could be useful

to predict the probability distribution of arrival delay for each
non-terminated flight in the sequence of the aircraft.

When training a model that predicts a probability distri-
bution, one must first know which type of distribution best
fits the target. Whatever type of distribution is selected, it
must be expressed as a parametric function, which parameters
determine the exact shape of the distribution. These param-
eters are the values to be predicted by the model. In this
work, it is assumed that the arrival delay can be approximated
by a Normal distribution2. Accordingly, the model is trained
to predict the expected value (µ) and the standard deviation
(σ). Given a hidden state vector ht, the model predicts the
probability distribution of the corresponding flight t.

2Actually, the arrival delay could be better approximated by a log-normal
or other distributions with some positive skewness. In this paper, a Normal
distribution was used because it is easier to interpret and approximates the
arrival delay well enough for the objective of the project.

Figure 1: Risk of curfew infringement computation

σt = FFNN (ht) + ε

µt = FFNN (ht)
(7)

Note that the support of the standard deviation is σ ∈
(0,∞). In order to ensure that the model provides a valid
prediction, the ReLU (x) = max (0, x) is used as the activa-
tion function for the last layer of the FFNN that generates σ,
and a small constant value ε is added to the result.

Finally, the parameters of the model described above are
optimised to minimise the negative log-likelihood. As a result,
the contribution of each sequence of flights to the loss (i.e.,
penalty) function is given by the following expression:

L = −
T∑

t=1

logN
(
yt |σ2

t , µt

) (
1− 1{TE} (st)

)
, (8)

where the indicator function 1E of the event E is:

1E(x) :=

{
1 ifx ∈ E
0 otherwise,

(9)

and yt is the actual (i.e., true) delay of flight t, computed as
the difference between the actual in-block time (AIBT) and
the scheduled in-block time (SIBT)3.

In Eq. (8), st represents the state of the flight t at the
moment of performing the prediction and TE is the state that
identifies terminated flights. Note that terminated flights are
not considered in the loss function (predicting the delay of a
terminated flight is not interesting), yet they are essential to
to predict the delay of the subsequent flights in the sequence.

Once the probability distribution of arrival delays has been
computed by the model, one is ready to assess the risk of
curfew infringement. First, the distribution is added to the
SIBT, in order to obtain the distribution of in-block times.
By knowing this distribution and the night curfew period, the
probability of arriving after its starting time can be computed
analytically. This procedure is illustrated in Fig. 1.

3The off-block time is defined as the time that an aircraft pushes back the
parking position. Analogously, the in-block time is when the parking brakes
have been engaged at the parking position.

IV. FEATURES

At a given time, the vector of features xt for each flight in
a sequence are computed by combining two sources of data:
Enhanced Tactical Flow Management System (ETMS) flight
data (EFD) messages, and the schedules of the airline.

The ETFMS distributes EFD messages to inform users with
the latest updates of the state of a flight. The first event at
which a message is sent corresponds to the moment of the
flight plan creation, and the distribution stops when the flight
terminates. An EFD message includes static attributes of the
flight (such as departure and destination airports, aircraft type
and registration, etc.) but also dynamic features that may
change with time. In between the transmission of the first
and the last messages, EFD are distributed whenever one of
the fields changes, and also at regular time intervals.

Prior to off-block, the EFD messages provide accurate
information about the estimated off-block time (EOBT), the
estimated time of arrival (ETA), the expected taxi time, the
aircraft type and registration number, as well as the air traffic
flow management (ATFM) delay and the list of regulations to
which the flight is subject (if any). The ETFMS also knows
actual and predicted information after off-block, including
the actual off-block time (AOBT) and the most up-to-date
airborne position. The actual time of arrival (ATA) is also
known by the ETFMS once the flight terminates. Further
details of the ETFMS, the information included in the EFD
messages, as well as the list of events that could trigger the
distribution of EFD messages can be found in [16].

The schedules of the airline correspond to the airport slot
times, i.e., the scheduled off-block time (SOBT) and SIBT.
Note that these times are static per flight. Furthermore, some
flights may not be scheduled. In these cases, the EOBT and
ETA (plus the average taxi-in time at destination airport)
from the flight plan are used instead of SOBT and SIBT,
respectively. In addition, non-scheduled flights are flagged
with a boolean indicator, in order to inform the model.

Table I lists the input features for each flight in the sequence
planned by an aircraft, xt, as observed at a given time during
the day. Table II lists the static features related to the whole
sequence at the same time instant, c, which are used to
condition the hidden state of the BiGRU (see Eq. (5)).

Table I includes basic information of the flight, such as the
departure and arrival airports, the airline, etc., information
about the most penalising ATFM regulation affecting the
flight and the associated ATFM delay (if any), the latest
event that triggered an EFD message and the state of the
flight at that moment, as well as some features computed by
subtracting timestamps. In Table I, OBT and IBT represent the
most accurate off-block and in-block times when performing
the prediction, respectively. That is, the OBT is assigned to
the first available milestone by order of priority: (1) AOBT if
the flight has already departed, (2) TSAT if the flight has been
included in the ATC pre-departure sequence of a collaborative
decision making (CDM) airport, (3) COBT if the flight is
regulated, (4) TOBT if a departure planning information (DPI)
message has been received from a CDM airport, and (5)
EOBT otherwise. A similar criteria applies for the IBT.

TABLE I. List of features for each flight in a sequence at a given time (i.e., xt)

Feature Type of transformation

Departure airport (ICAO code)

Embedding

Arrival airport (ICAO code)
Aircraft operator
Airline
Traffic volume associated to the regulation23

Geographical entity associated to the traffic volume2

Type of geographical entity2

Reason of the regulation2

Type of event that triggered the EFD message (see Ref. [16] for a detailed description)
Class of the event that triggered the EFD message (see Ref. [16] for a detailed description)
ATFM state of the flight (see Ref. [16] for a detailed description)
Ready state (see Ref. [16] for a detailed description)
Flight model type (see Ref. [16] for a detailed description)
Type of departure airport in CDM, advanced air traffic control (ATC) tower, or conventional
Collaborative decision making (CDM) state1 (see Ref. [16] for a detailed description)

Estimated taxi-out time at departure airport

Power (Yeo-Johnson) → Standarisation

Average taxi-in time at destination airport
Time to SOBT
Time to SIBT
Time from SOBT to OBT (Current departure delay)
Time from SIBT to IBT (Current arrival delay)
Time from SOBT to EOBT
Time from IOBT (initial off-block time) to EOBT
Time from TOBT (target off-block time) to TSAT (target start-up approval time) 1

Time from SOBT to SIBT (Scheduled block time)
Time from OBT to IBT (Current block time)
Difference between current and scheduled block times
Time from SIBT of the previous flight leg to SOBT (Scheduled turn-around time)
Time from IBT of the previous flight leg to OBT (Current turn-around time)
Difference between current and scheduled turn-around times
ATFM delay2

Time since last EFD message
Time since first EFD message (i.e., moment of the flight plan creation)

IOBT missing indicator
Boolean missing indicatorTSAT missing indicator

SOBT missing indicator

Hour of SOBT Cyclic

Relative flight leg in the sequence (0 being the first, 1 being the last) -

TABLE II. List of features for a sequence at a given time (i.e., c)

Feature Type of transformation

Tail number (i.e., registration) of the aircraft EmbeddingAircraft type

Day of the week
CyclicMonth of the year

Hour of the day

Length of the sequence divided by 10 -

Some of the features are discrete (i.e., categorical), such as
the airline, while some others are continuous (i.e., numerical),
like the ATFM delay. Some machine learning modes, like
decision trees, are robust to arbitrary scaling of the numerical
features and only require categorical features to be encoded as
integers. Neural networks, however, prefer numerical features
to be standardised and/or normalised, and require special
attention when dealing with categorical features.

1Present in flights departing from CDM and advanced ATC tower airports.
2Present in regulated flights.
3A traffic volume is related to a single geographical entity (either an

aerodrome, a set of aerodromes, an airspace or a point), and may consider
all traffic passing through that entity or only specific flows.

On the one hand, normalisation consists of re-scaling a
feature from the original range to a smaller scale, typically
through dividing by the maximum absolute value or perform-
ing a min-max transformation. This conversion, however, is
not appropriate for features whose distribution exhibits out-
liers or skewness. On the one hand, standardisation consists
of subtracting the mean and then dividing the result by the
standard deviation, under the assumption that the feature is
normally distributed. Very often, however, a feature presents
severe skewness, and therefore the assumption of normality
does not hold. In such cases, power transformations typically
help to make the distribution of a feature more Gaussian-like,
stabilising the variance and reducing the skewness.

Simple power transformations, such as calculating the
logarithm or the square root may not always help to remove
the skewness. In this paper the parametric Yeo-Johnson
transformation has been applied to some numerical features,
followed by a standarisation [17].

Regarding categorical features, one-hot encoding is a pop-
ular method for converting them into numerical features.
Unfortunately, one-hot encoding of high-cardinality features
(such as the departure airport) often results in an unnecessary
amount of computational resources. An alternative to one-
hot encoding are the embeddings layers. An embedding
automatically learns the representation of each category of
a feature in a multi-dimensional space [18]. The result of the
embedding is a vector of continuous values for each category,
which values are closer for categories with similar effect to
the task that the neural network aims to accomplish.

Other features, especially those related with time (e.g.,
hour of the day, day of the week), are cyclical in nature.
A common method for encoding cyclical features is to map
the data into two dimensions, using the sine and consine
transformations. The boolean missing indicators only inform
about the presence or absence of certain features. Finally, a
small set of features can be fed directly to the neural network,
without prior (or just a very simple) transformation.

Let us define xt,e as the concatenation of the embedding
vectors of all categorical features of the flight t of the
sequence. Let us also define xt,n as the vector of numerical
features (which include those transformed with Yeo-Johnson
algorithm, cyclic features, the boolean missing indicators, and
features not requiring a transformation). Then, the vector of
features for the flight t of the sequence is xt = xt,e ‖ xt,n.
The length of xt,n is 24 (note that the hour of the SOBT
is mapped to two features), while the xt,e is the sum of
the embedding size of all categorical features. Assuming
and embedding size of 32, for instance, and having 15
categorical variables, then |xt,e| = 480. In practice, however,
each categorical feature typically has its specific embedding
size, which is an additional hyper-parameter to be selected.
Some models, like the one presented herein, include a large
number of categorical variables, making the fine-tuning of
the embedding sizes impractical. In this case, a simple rule
of thumb is to set the embedding size to min (n/2, 50), where
n is the number of categories of the categorical feature. Note
that the maximum and minimum embedding sizes could be
also considered as additional hyper-parameters of the model.

Similarly, c = ce ‖cn is the condition vector of an aircraft,
being ce the vector of embeddings and cn the vector of
numerical features. In this case, the length of cn is 7.

V. RESULTS

The model presented in Section III, which uses the features
listed in Section IV to predict the distribution of arrival delay,
has been trained on real flight data. Section V-A describes
the setup of the experiment. Section V-B lists the final hyper-
parameters of the model. An illustrative example is shown in
Section V-C. Finally, the performance metrics as a result of
the validation exercise are discussed in Section V-D.

A. Setup of the experiment

Each example shown to the model during training consists
of the most up-to-date information for the whole sequence of
flights that an aircraft operates during the day, inspected at a
given time (or snapshot). In this paper, an snapshot is taken
whenever one of the following events happens for whichever
flight in the sequence: (1) submission of the initial flight plan,
(2) reception of the first airborne message, (3) termination, (4)
suspension of the flight, or (5) ATFM slot allocation (typically
2 hours before EOBT for regulated flights).

Consequently, the same sequence of flights may be shown
to the model several times during training, depending on
the number of events triggered by these flights, operated
by the same aircraft. Each one these examples, however,
will represent a very different picture of the same sequence,
therefore providing new information for the model to learn.
Note that, at a given snapshot, some of the flights may be
terminated. These flights are not removed from the sequence,
since they could provide priceless information (especially the
last flight leg that was operated), yet they are not considered
in the loss function (as discussed in Section III).

The training examples have been obtained from 280 ran-
dom days of 2019 (with 1.8M sequences from 23K aircraft).
From the remaining days of 2019, 20 days (with 128K
sequences from 15K aircraft) were used for early stopping and
hyper-parameters tuning (i.e., the validation set), and the other
60 days (with 390K sequences from 19K aircraft) to assess
the performance of the model on unseen data. Two additional
validation exercises have been performed. During the first
validation exercise, the predictions of the model from June
to December 2018 (with 1.4M sequences from 21K aircraft)
were compared with the actual delays. The second validation
exercise was performed using flight data from January to May
2020 (with 520K sequences from 18K aircraft), including the
lock-down period caused by the COVID-19 pandemic with
an unusual traffic demand.

B. Hyper-parameters of the model and metrics history

Table III lists the hyper-parameters of the model, which
were selected based on manual trial and error. In Table III, the
succession of layers for a FFNN is denoted by →, where the
number represents the number of neurons and, if not explicitly
specified, the activation function of each layer is the ReLU.

TABLE III. Hyper-parameters of the model

Hyper-parameter Value

Batch size / Learning rate / Epochs 64 / 1e-4 / 3
Gradient clipping value 5
Min. / Max. embedding size 4 / 64
Hidden state size (nh) 256
Number of recurrent layers 1
FFNN of Eq. (7) for µ 256→128→64→32→1 (linear)
FFNN of Eq. (7) for σ 256→128→64→32→1
FFNNs of Eq. (5) for

−→
ht and

←−
ht 256

Figure 2 shows two metrics that explain the performance
of the model for the train and validation sets, as a function
the number of training steps. Figure 2(a) shows the evolution
of the Mean Absolute Error (MAE) of the predictions.

Figure 2(b) shows the explained variance. The metrics for
the validation set have been computed every 25K training
steps, aiming to reduce the time required to train the model
(6.2 hours using a Nvidia GeForce GTX960 1024MHz 4GB).

(a) Mean absolute arrival delay prediction error

(b) Explained variance of the predicted arrival delay

Figure 2: Training metrics history

Figure 2 shows that the model rapidly converged to a
MAE around 10 min and explained variance of 0.6 after
updating its 2.5M parameters during 100K training steps (i.e.,
after processing around 64M of sequences). Then, additional
training steps effectively improved the performance metrics
on the training set, but the ability for the model to generalise
(as described by the validation set metrics) remained stable.

C. Illustrative example

Figure 3 shows an example to illustrate how the model
could be used in real-life operations. Each region of the
vertical axis shows a different call of the model, ordered in
temporal order from the top to the bottom. The bold numbers
in the left show the remaining hours until the start of the
curfew, and the risk of curfew infringement as predicted
by the model. The crosses and the solid dots represent the
scheduled and actual in-block times, respectively, for each
flight in the sequence. Note that these markers are static
and do not change between calls. The vertical dashed lines,
however, do change because they represent the most recent
predictions of the ETFMS when calling the model. Finally, the
distributions are the predictions performed by the model. The
horizontal axis represents the relative time from in-block time
to the start time of the restriction. Positive values correspond
to the curfew period. It should be noted that, once a flight
terminates, it is not longer shown for the sake of clarity.

Figure 3: Example (×: SIBT, : ETFMS, : AIBT)

Figure 3 shows the evolution of the predictions and the
actual delays for an aircraft with a sequence of six flights,
which last flight was scheduled only 30 min before the night
curfew. The first prediction was performed 15 hours before
the start time of the restriction, right before the departure of
the first flight, which actual delay was around 30 min. Given
the short look-ahead time of the prediction, the model was
able to provide an accurate and certain prediction for the first
leg. Note that, at that time, the predictions of the ETFMS
were excellent for the two first flights. The ETFMS, however,
missed the delay propagation to the third and subsequent
flights, which was the cause of the night curfew infringement.
Despite having 6 flights ahead and performing the prediction
15 hours before the start time of the restriction, the proposed
model was able to predict the potential delay propagation,
resulting in a risk of night curfew infringement of 94%.

As flights were operated and confirmed information was
provided to the model to perform the predictions, its confi-
dence about the risk of night curfew infringement increased. It
was not until 4 hours before the starting time of the restriction
that the ETFMS was able to predict the infringement. At
that moment, the the probability of night curfew infringement
according to the model was 99%, which strong confidence
was supported by a relatively small standard deviation.

D. Performance metrics

Analysing particular examples is not only entertaining, but
also gives a clue of the behavior of the model in operational
situations. Yet, the performance of a model must be corrobo-
rated on a large amount (and variety) of samples in order to
provide statistically meaningful figures, and certainly assess
the potential benefits that it could provide at large-scale.

1) 60 random days of 2019: Figure 4 shows the MAE of
the arrival delay predictions for the last flight of the sequence
(i.e., the one for which the curfew infringement is assessed),
as a function of the time to its SOBT (in the horizontal axis),
and the number of flight legs ahead (in the vertical axis). 0
flights ahead indicates that, at the moment of performing the
prediction, the next flight is the last of the sequence.

Clearly, the cells are mostly aligned along the diagonal of
the figure, since it is very unlikely to be at 2 hours before the
last SOBT with still 6 flight legs ahead, for instance. Cells
with a frequency of samples lower than 1% were removed
from the figure to facilitate the interpretation of results.

Figure 4: Arrival delay prediction MAE (60 days of 2019)

According to Fig. 4, and as expected, the performance of
the model typically improves as the number of flights legs
ahead and the time to SOBT decrease. It should be noted,
however, that the number of samples in each cell may be
different, thus comparing the performance of different cells
may not be fair. In any case, the prediction error of the model
(in average terms) ranges from 9 min to 18 min.

Figure 4 definitely shows the performance of the model
in terms of predictive accuracy. Yet, the added value of the
model needs to be assessed by comparing these results with
the performance of the current predictions (i.e., the reference
or baseline). In this paper, two different baselines have been
considered: the first baseline uses the SIBT indicated by the
flight schedules as the best prediction; the second baseline
goes one step further by using the most recent in-block time
as derived from the ETFMS when performing the prediction.

Figure 5 shows the relative benefit of the machine learning
model for the 60 random days of the 2019. The relative benefit
in each cell is computed as one minus the ratio between the
MAE of the machine learning model and the MAE of the
baseline. The relative benefit with respect to the ETFMS and
the schedules are shown in Figs. 5(a) and 5(b), respectively.

According to Fig. 5(a), the relative benefit with respect to
the ETFMS ranges from 13% to 46%. For a given number of
flight legs ahead, the lower the time to the SOBT of the last
leg, the higher the relative benefit. These results suggest that
the less uncertainty in the data, the better the model exploits
the systematic patterns of the delay propagation hidden in the
input features, if compared to the ETFMS. Far from the SOBT
of the last leg and with many flights ahead, the uncertainty
in the data is so high that, apparently, the model provides
an expected value of the arrival delay based on conventional
statistics, together with a large standard deviation.

(a) With respect to ETFMS

(b) With respect to Schedules

Figure 5: Relative improvement (60 random days of 2019)

When some flights of the sequence have been already
flown, the data is more specific and the number of unexpected
events is highly reduced. Consequently, the model is more
certain about its predictions, providing an expected value
closer to the actual delay and a lower standard deviation.

Figure 5(a) shows that, generally speaking, the relative
improvement with respect to the schedules is higher than for
the ETFMS, especially when approaching the very last flight.

2) June to December 2018: Figure 6 shows the MAE of
the arrival delay for all the sequences that were operated from
June to December 2018. Note that the model was trained on
285 random days of 2019, and therefore has never seen flight
data of 2018. Interestingly, the performance of the model
evaluated on these 7 months from the past is very similar
to that shown in Fig. 4 (corresponding to 60 days of 2019),
which is a good indicator of the ability of the model to learn
general mechanisms of delay propagation along the sequence
of flights of any aircraft, independently of the year (as long as
the traffic situation is nominal, as discussed in next section).

Figure 7 shows the relative benefit of the machine learning
model for all the sequences that were operated from June
to December 2018. The relative benefit with respect to the
latest ETFMS predictions is shown in Fig. 7(a). Analogously,
Fig. 7(b) shows the relative benefit when taking the flight
schedules as baseline, thus assuming no delays.

Figure 6: Arrival delay prediction MAE (June to Dec. 2018)

By comparing Figs. 7 and 5 it can be observed that the rel-
ative benefits of the model are very similar (independently of
the baseline), despite considering very different time periods.
For the time period of 2018 used in this validation exercise,
the relative benefit ranges from 10% to 50% when comparing
against the ETFMS, and from 11% to 70% when considering
the flight schedules as hypothetical baseline.

3) January to May 2020: Assessing the performance of the
model on the most recent traffic is interesting. The traffic de-
mand during 2020, however, was exceptionally low due to the
lock-down caused by the COVID-19 crisis. Despite reducing
the data available for performing any kind of analysis, such
atypical situation also enabled a peculiar validation exercise:
to assess the performance of the model on traffic scenarios
very different from those seen during training.

Figure 8 shows the MAE of the arrival delay predictions
for all the sequences that were operated from January to
May 2020. By comparing these results with those presented
for 2018 and 2019, it can be observed that the performance
differences between years are not significant. As mentioned
before, however, the performance of the model needs to be
compared with a baseline in order to quantify its added value.

The relative benefit with respect to the latest ETFMS
predictions is shown in Fig. 9(a). Figure. 9(b) shows the
relative benefit when taking the flight schedules as baseline.

Figure 9 shows that the relative benefits during the time
period analysed for 2020 were significantly lower, if com-
pared to 2018 and 2019. On the one hand, the performance
of the ETFMS was better during 2020 due to low number of
ATFM regulations, reactionary delays and unexpected events.
On the other hand, the model was trained on a nominal traffic
situation, where the distribution of arrival delays and their
consequences on the subsequent flight legs were different.

(a) With respect to ETFMS

(b) With respect to Schedules

Figure 7: Relative improvement (June to December 2018)

Figure 8: Arrival delay prediction MAE (January to May
2020)

(a) With respect to ETFMS

(b) With respect to Schedules

Figure 9: Relative improvement (January to May 2020)

VI. CONCLUSIONS

The model proposed in this paper uses the latest infor-
mation of each flight leg of an aircraft to predict how the
delays will be propagated. The distribution of delays of the
last flight leg is used to assess the risk of night curfew
infringement. Despite initial results from three validation
exercises demonstrated notable benefits when compared to
the predictions of the enhanced tactical flow management
system, there is still a long way to go. The current model
assumes that the flight sequences of the same aircraft at
different times are independent of each-other. The architecture
of the model could be enhanced by considering a two-
dimensional recurrent neural network, in which the hidden
state propagates along the flights and along time. Another
natural extension of the model could be to explicitly consider
external factors such as weather. Furthermore, in this paper
all the flight sequences (independently of the last destination)
were considered, aiming to train the model with a large set
of examples. Future work shall compare this generic model
with one tailored to those airports implementing the curfew.

Another necessary exercise in future work consists of
comparing the performance of the model proposed herein with
previous delay propagation models described in the literature.
In fact, despite this paper is framed in the specific context of
night curfew infringements, it describes a general purpose
delay propagation estimator which has broad applicability
beyond curfews (e.g., airline schedule integrity monitoring).

ACKNOWLEDGMENT

The authors would like to thank the airlines involved in this
project (easyJet, Ryanair, Swiss, Transavia and Vueling) as
well as Paris-Orly and Zurich airports. The authors acknowl-
edge Laurent Renou and Franck Ballerini for their support.

REFERENCES

[1] O. Eglin, M. Rotureau, P.-Y. Savidan, J.-P. Desgrange, and R. Hel-
lot, Different aspects of Noise Limits at Airports, European
Commission/DGTREN-F3, 10 2004, rev. 2.0.

[2] H. van Essen, B. Boon, S. Mitchell, D. Yates, D. Greenwood, and
N. Porter, Sound Noise Limits: Options for a uniform noise limiting
scheme for EU airports, CE Delft, 1 2005, rev. 1.

[3] S. AhmadBeygi, A. Cohn, Y. Guan, and P. Belobaba, “Analysis of the
potential for delay propagation in passenger airline networks,” Journal
of Air Transport Management, vol. 14, no. 5, pp. 221 – 236, 2008.

[4] M. Jetzki, “The propagation of air transport delays in Europe,” Master’s
thesis, Brüssel, 2009, aachen, Techn. Hochsch., Diplomarbeit, 2009.

[5] N. Kafle and B. Zou, “Modeling flight delay propagation: A new
analytical-econometric approach,” Transportation Research Part B:
Methodological, vol. 93, pp. 520 – 542, 2016.

[6] Y. Liu and S. Ma, “Flight delay and delay propagation analysis based
on bayesian network,” 2008 International Symposium on Knowledge
Acquisition and Modeling, pp. 318–322, 2008.

[7] W.-B. Du, M.-Y. Zhang, Y. Zhang, and X.-B. Cao, “Delay causality
network in air transport systems,” Transportation Research Part E:
Logistics and Transportation Review, vol. 118, pp. 466 – 476, 2018.

[8] N. Pyrgiotis, K. M. Malone, and A. Odoni, “Modelling delay prop-
agation within an airport network,” Transportation Research Part C:
Emerging Technologies, vol. 27, pp. 60 – 75, 2013, selected papers
from the Seventh Triennial Symposium on Transportation Analysis.

[9] L. Belcastro, F. Marozzo, D. Talia, and P. Trunfio, “Using scalable data
mining for predicting flight delays,” ACM Transactions on Intelligent
Systems and Technology (TIST), vol. 8, pp. 1 – 20, 2016.

[10] P. F. B. Campanelli et al., “Modeling Reactionary Delays in the
European Air Transport Network,” in 4th SESAR Innovation Days,
Madrid, Spain, 2014.

[11] M. Lambelho, M. Mitici, S. Pickup, and A. Marsden, “Assessing
strategic flight schedules at an airport using machine learning-based
flight delay and cancellation predictions,” Journal of Air Transport
Management, vol. 82, p. 101737, 2020.

[12] D. Truong, “Using causal machine learning for predicting the risk of
flight delays in air transportation,” Journal of Air Transport Manage-
ment, vol. 91, p. 101993, 2021.

[13] R. Dalmau, F. Ballerini, H. Naessens, S. Belkoura, and S. Wangnick,
“Improving the Predictability of Take-off Times with Machine Learning
A case study for the Maastricht upper area control centre area of
responsibility,” in 9th SESAR Innovation Days, Athens, Greece, 2019.

[14] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning in-
ternal representations by error propagation,” in Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Volume 1:
Foundations, D. E. Rumelhart and J. L. Mcclelland, Eds. Cambridge,
MA: MIT Press, 1986, pp. 318–362.

[15] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” in NIPS
2014 Workshop on Deep Learning, December 2014, 2014.

[16] Hans Koolen and Ioana Coliban, Flight Progress Messages Document,
EUROCONTROL, Brussels, Belgium, 2019, edition No. : 2.501.

[17] I.-K. Yeo and R. A. Johnson, “A new family of power transformations
to improve normality or symmetry,” Biometrika, vol. 87, no. 4, pp.
954–959, 2000.

[18] Y. Li and T. Yang, Word Embedding for Understanding Natural
Language: A Survey. Cham: Springer International Publishing, 2018,
pp. 83–104.

