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Abstract—The presence of uncertainty in weather forecasts poses 
significant challenges for air traffic managers. These challenges 
can have major repercussions on stakeholders in terms of their 
impact on the delay within the system. In this paper, we discuss 
an approach for recommending Traffic Management Initiative 
(TMI) parameters during uncertain weather conditions. We 
propose four methods for TMI selection. The first two favor 
random exploration of TMI decisions. An epsilon-greedy 
approach and a softmax algorithm are also evaluated against the 
two random exploration approaches. A parallel fast-time 
simulation framework is presented for evaluating the proposed 
methods over a range of weather forecast scenarios. A set of 
regional TMIs is applied and tested against a case day in which 
the airspace capacity in the Northeast United States was 
compromised by convective weather. Both the softmax and 
epsilon-greedy approaches demonstrate strong performance 
relative to the other methods. The results suggest that the 
approach could potentially aid air traffic stakeholders in 
understanding how to best deal with weather forecast 
uncertainty. 

Keywords—reinforcement learning, epsilon-greedy, softmax, 
traffic management initiatives, weather, simulation. 

I. INTRODUCTION 

 Weather presents significant challenges to managing 
airspace and airport resources. When present, it limits the 
capacity at airspace and airport resources, which often causes 
airlines and Air Navigation Service Providers (ANSPs) to 
delay or cancel flights imposing significant costs to passengers 
and carriers annually. As weather forecasts are uncertain, 
particularly at longer time horizons, weather-related 
disruptions force stakeholders to alter flight schedules and the 
flow of air traffic around weather without clear knowledge of 
how these decisions will impact the flights and resources that 
they manage. In the presence of these challenges, traffic

managers often adjust the flight demand for weather-
compromised resources by imposing Traffic Management 
Initiatives (TMIs). In the US, these include initiatives such as 
Ground Delay Programs (GDPs), Airspace Flow Programs 
(AFPs), Ground Stops (GSs) and the new Collaborative 
Trajectory Options Programs (CTOPs), while in Europe the 
Network Manager applies demand-capacity balancing to 
flights [1] in order to better match the air traffic with the 
available capacity. These programs impose delays on flights 
thereby pushing the excess traffic demand back to later times 
during the day.  
 In the United States, traffic managers have traditionally 
managed traffic at the strategic level by consulting decision 
support systems such as the Traffic Flow Management System 
(TFMS) and weather forecasts such as the Corridor Integrated 
Weather System [2] to enhance their situational awareness of 
the traffic demand and weather. Traffic Managers use the 
information they receive from these tools along with their 
mental models and experiential knowledge of how the weather 
blocks the traffic flows along corridors within the airspace to 
manage traffic through the affected resources. Through 
consultation with other stakeholders, they attempt to make 
collaborative decisions about what actions to take in order to 
best mitigate the impact of the weather.  
 Making these traffic management decisions is an 
extremely complex endeavor. In this context, decision-makers 
are charged with translating uncertain weather forecast 
information into a time-varying estimate of the airspace 
blockage across all weather-affected resources. They must 
then translate this blockage information into an estimate of the 
future capacity of all of the airspace resources that they need 
to manage. Once they translate this weather to a capacity, they 
must then balance the demand and capacity at each resource 
across time. As weather forecasts are uncertain and mapping 
even perfect weather information to a capacity is an imprecise
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process, the inherent uncertainty in the problem grows with 
each passing stage of translation. While some of this demand 
mismatch can be managed tactically through mechanisms like 
path stretch, holding and time-based metering [3]–[9], when 
the demand/capacity mismatches are significant, most of the 
impact is not easily recoverable. 
 Beyond the challenges with using weather information to 
make actionable decisions, traffic managers are often forced to 
make not one but many decisions on how to control the traffic. 
They must decide what resources to control, when to impose 
control, what flights to control, where to control these flights, 
when to release control and at what rates the affected 
resources should be controlled to in order to match the 
projected demand. When paired together, this group of 
decisions represents an extremely computationally complex 
problem. This problem is further complicated by the fact that 
the decision-makers do not act as one body, but many with 
sometimes competing undisclosed objectives. For example, 
although there is some level of coordination, traffic managers 
may not know how many flights airlines will cancel. They also 
may not know how people in other facilities will respond as 
they are impacted by the initial traffic management plans. 
 As a result of all of these challenges, decision-makers are 
rarely able to perfectly match capacity to demand at the 
strategic level on the initial set of decisions. Accordingly, they 
often revise TMIs throughout the day as new information 
becomes available, circumstances change, the forecast horizon 
of the decision shortens and the reliability of the information 
that they are using increases. When cast in this context, the 
problem can be viewed as a set of sequential decisions over a 
series of stages where each subsequent decision depends on 
the outcome of the prior decision and the new information that 
is presented to the decision-maker.  
 Over the past three decades, a number of studies have 
focused on the subject of airspace and airport resource 
capacity management. This body of research includes both 
descriptive studies that aim to predict the capacity of airport 
and airspace resources with the goal of providing better 
translation of weather forecasts into actionable information, 
and prescriptive methods that issue specific recommendations 
for more optimally managing flight demand given the capacity 
uncertainty. The prescriptive approaches often employ integer 
programming to assign arrival times to flights at airports 
and/or airspace resources over a fixed time horizon while 
constraining the flight demand so that it does not exceed the 
capacity level of the managed resource(s) [10]–[21]. In these 
problems, the decision-maker either treats the problem 
deterministically, assuming all resource capacities are known, 
or they adopt a scenario-based approach in which they 
represent the capacity as a set of profiles that represent one 
potential manifestation of the evolution of resource capacities 
over time. In many cases the proposed approaches are capable 
of generating optimal solutions given the assumptions of the 
problem while demonstrating considerable computational 
tractability. The utility of the methods to support operational 
decision-making, however, has been limited to some extent 

due to the inability of weather forecasts and translational 
models to generate accurate estimates of resource capacities.  
 More recently there have been a number of advances in 
forecasting airport acceptance rates. These approaches issue 
predictions based on weather forecast products coupled with 
historical data on the airport acceptance rates, using machine 
learning to predict the airport acceptance rates given the 
forecast conditions [22]–[26]. The success of such 
developments have allowed researchers to leverage this 
information in data-driven integer programming models that 
support GDP planning [26]–[29].  
 Other efforts to predict resource capacity have focused on 
the airspace. At the tactical level, translational products such 
as the Convective Weather Avoidance Model (CWAM) [30], 
[31] provide additional visibility into the degree of airspace 
blockage imposed by the weather. At the strategic level, the 
Traffic Flow Impact (TFI) tool maps convective weather 
forecasts of up to 12 hours to predictions of en route airspace 
flow rates. The tool also provides a set of uncertainty bounds 
associated with the estimate [32]. The methodology has also 
been extended to forecast the airspace capacity in the terminal 
area [33]. While these estimates are a significant step towards 
providing capacity information to decision-makers, the tool 
does not provide any direct recommendation of how to better 
coordinate the flow of traffic in the form of a traffic 
management initiative given the forecast capacity impact.  
 One means of evaluating the impact of various 
interventions on air traffic is to use fast-time simulations [34] 
[26]. Given the appropriate weather and traffic information, 
these models can be used to statistically characterize the effect 
of weather on operational metrics such as delays and 
cancellations when different control strategies are 
implemented. One example of this type of model is NASPlay, 
an agent-based simulation with strategic en route weather 
translational models from TFI [35]. This tool allows users to 
simulate various traffic management initiatives and gauge the 
impact of these programs on the flight resources of interest. 
This capability was paired with automation to select TMI 
parameters to optimize flow rates over a set of flow 
constrained areas (FCAs) in the terminal area, [36], [37] 
however, the approach treated the forecasts as deterministic 
rather than stochastic profiles that evolve over time. Another 
approach injected weather scenarios from the Short-Range 
Ensemble Forecast (SREF) model into a fast-time simulation 
and used genetic algorithms to select a combination of TMIs 
over the Northeastern United States [38]. The approach 
demonstrated the use of automated design of TMIs and 
discretization of TMI parameters and examined a limited 
range of discretized TMI parameter values. While 
probabilistic forecasts such as the SREF can be used to model 
weather uncertainty, the forecast skill of the model has shown 
limitations due to its 6-hour resolution.  

In this paper, we build on the needs identified above by 
developing methods for selecting TMI parameters to manage 
regional convective weather impacts on a set of airspace and 
airport resources. The proposed methods combine 
reinforcement learning with significant parallel processing to 
achieve strong TMIs performance over a range of stochastic 



weather scenarios. The first uses an epsilon-greedy (-greedy) 
algorithm, while the second uses a softmax approach to 
identify potential TMI candidate parameters. A fast-time 
simulation inspired by (and improving on) NASPlay, which 
leverages the TFI model, is used to study the impact of weather 
forecast uncertainty on operational performance.  

In Section II, we describe our modeling framework and the 
methodology behind the approaches that we explored. Section 
III describes our computational experiments and presents an 
evaluation of our proposed methods using a case day in the 
Northeastern United States with significant convective 
weather. Within this scenario, we study the ability of our TMI 
parameter selection methods to mitigate the operational 
impacts of the affecting weather. Section IV provides a 
summary and proposed future expansions of this work. 

II. METHODOLOGY 

A. Characterizing the Weather Uncertainty 

The shortcomings in weather translational decision support 
tools represent a critical gap in the capability of air traffic 
management operations. Although there has been some effort 
to develop weather-aided decision support tools, much of the 
work done to translate weather forecasts into airspace flow 
rate estimates has been limited to the sector level [39]–[41]. 
TFI generates hourly forecast probability quantiles of the 
percentage of weather-free airspace, or permeability, along 
corridors of en route traffic. The permeability forecast is 
provided, for an altitude of 35,000 ft., in twenty-five idealized 
rectangular regions overlapping major traffic management 
boundaries in the Eastern portion of the National Airspace 
System (NAS). These discrete regions, called flow constrained 
areas (FCAs), represent choke points upon which convective 
weather has a large impact on NAS throughput. 

The actual permeability within an FCA at any given time 
is the fraction of airspace outside of clustered convective 
storm cells detected in a scalar Weather Avoidance Field 
translated from radar Vertically Integrated Liquid (VIL) and 
Echo Tops for 35,000 ft. TFI provides a forecast permeability 
via a Machine Learning approach [32]. A feature set is derived 
from the imagery of deterministic models such as NOAA’s 
High Resolution Rapid Refresh (HRRR) product, as well as 
from probabilistic (lightning) models such as the Localized 
Aviation Model Output Statistics Program (LAMP). The 
permeability forecast model is trained with data from one or 
more convective seasons in a two-step process. In the first 
step, the input features are fit to the actual permeability for 
each model type by means of a Ridge Regression technique. In 
the second step, Quantile Regression among the model types 
is used to establish distribution boundaries for combinations of 
input models as a function of time and FCA.   

Figure 1 shows an example TFI forecast distribution for an 
FCA near the transition to New York airspace from the 
Midwest. The origin of the forecast lead axis is relative to the 
issue time at 18 July 2019 at 13:00GMT. The solid black 
curve gives the median and the dashed lines give the 20th and 
80th percentiles of the permeability distribution predicted for 
each hour after issue time. The presentation of a distribution 

provides a measure of forecast confidence, or alternatively, the 
uncertainty in the prediction. The light colors in the plot 
background represent three categories of permeability (low, 
medium, high) generally indicating the severity of the weather 
impact.  

 

 
Figure 1.  An example TFI forecast for New York transitional airspace. 

     In order to consolidate the forecast information into a form 
that is more consumable for fast-time simulations, the TFI 
distribution forecast is capable of generating time-series 
permeability values using Monte Carlo sampling over random 
draws from each quantile of the distribution. To obtain 
realistic variation vs. forecast lead hour, each time-series draw 
is conditioned to have the same time correlation behavior as 
the actual permeability observed in the training data for that 
FCA. In these calculations, the prediction interval at each 
forecast lead hour is assumed to be Gaussian, which is a good 
approximation in the body of the distribution but somewhat 
under-predicts the highest impact tails. 
 

 
Figure 2.  Correlated random samples from the TFI prediction distribution. 

An example of twenty such draws is shown in Figure 2.  
Note that although the draws represent a large variation in 
possible airspace capacity, the general indication of the 
ensemble is that a medium impact event will begin about four 
hours from the issue time and last for five hours. These draws 
are currently uncorrelated across FCAs. An active area of 
research is to apply spatial correlation. 
     Draws of permeability are converted to flow rate (i.e., the 
number of aircraft estimated to be able to cross the FCA per 
hour) using tables established in studies of pilot avoidance of 
convective weather fields [42]. The major dependencies of 
that avoidance were observed to be the permeability in the 
airspace and the length of time the permeability existed at a 
given level. Table I shows the conversion table for an FCA 
region in the New York transitional airspace. The result is that 
the relationship between permeability and flow rate is largely 
linear, with a dampening of flow rate recovery depending on 
the amount of time the airspace capacity has been degraded. 
The flow rate is also driven by the airspace characteristics 
(e.g. size, traffic density) and will differ between regions. 



B. Searching for TMI Parameters  

     The translation of weather forecasts to airspace capacities 
provides us with one representation of uncertainty. There is 
however, another dimension of uncertainty that can be 
captured by the decision-making process itself. Traffic 
managers will often make decisions that are continually 
revised throughout the day. The ground delay programs that 
are put in place can be cancelled or morph into ground stops. 
Likewise the rates on AFPs can become more severe or the 
programs can be relaxed or cancelled before they were 
initially scheduled to end. While some of these changes are 
caused by unexpected changes in the weather, other changes 
could be completely independent. We would like to capture 
these two dimensions of uncertainty by considering a set of 
staged decisions that evolve over time. At the first stage we 
make an initial decision and in the subsequent stages we 
receive new information about the weather, traffic demand and 
stakeholder objectives and can revise our previous decisions to 
improve the performance relative to our objectives. If we let 
Wij The forecast from scenarios i in period j and T The set 
of all time stages, we can describe the process using a tree 
where the branches represent choices and the nodes represent 
states. In this construct, the decision-maker receives forecast 
information at each stage and progressively steps through a set 
of options.  A notional depiction is shown in Figure 3.  
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Figure 3.  A decision tree for a single scenario with forecast inputs at each 
decision stage. 

     Under ideal circumstances we would like to be able to 
sample from all of the branches of the tree and compute the 
expected value of reaching each state so that we can maximize 
our expected reward. However, there is simply not enough 
time to consider even a large subset of the possible scenarios 
in an operational setting due to the computational complexity 
of multi-resource TMIs, the uncertainty associated with the 
weather forecasts and translation, the uncertainty associated 
with the later-stage decisions and the relatively short horizon 

of the decisions being made. We can still select an optimal 
action given the information that we have about the system 
and the likelihood that future states will occur. However, we 
ignore learning more about the value of other states because 
we do not choose to visit them and may miss out on better 
solutions. This is commonly referred to as the exploration-
exploitation problem.   
    We propose four potential search strategies to identify the 
most promising TMIs. The first two favor heavy exploration 
of potential decisions, while the second two provide a more 
balanced mixture. Although the two exploration strategies run 
slightly faster as they do not have to learn from the data, all 
the approaches are able to generate solutions in less than 1 
minute. While we believe the latter two methods will perform 
better since TMI performance has some dependency on the 
TMI parameters used, the degree to which this relationship 
between TMI parameters and TMI performce  can be learned 
from the data is not clear given the computational complexity 
of the problem.  

Random Local Exploration (RLE):  

The Random Local Exploration approach begins with a 
baseline vector that describes the program charateristics of the 
TMI (e.g. resource, rate, scope, start time, end time). This 
baseline TMI vector is perturbed with a randomly sampled 
autoregressive distribution for time period t={n...T} while the 
initial period is kept constant. Initially n is set to 1 but the 
value is updated as the decision-maker makes new decisions 
and receives new information about the state of the air traffic 
management system. This fixed initial vector allows us to 
explore and learn the potential recourse decisions more 
thoroughly at the expense of exploring other dissimilar TMI 
options. The value of the decision is then obtained by 
averaging over the resulting samples. A depiction of the 
process is shown in Figure 4. 
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Figure 4.  A set of samples take using random local exploration (RLE) over a 
set of staged decisions. 

Random Global Exploration (RGE):  

     This approach begins by perturbing a baseline vector that 
describes the program charateristics of the TMI (e.g. resource, 
rate, scope, start time, end time) with an autoregressive 
distribution. Unlike the Random Local Exploration (RLE) 
method, the TMI vector is randomly sampled over all time 

TABLE I.  EXAMPLE AIRCRAFT FLOW RATE (PER HR) AS A 
FUNCTION OF PERMEABILITY (%) FOR A REGION IN THE NEW YORK 
AIRSPACE 

Length 
of Impact 
(minutes) 

Permeability Percentage 
0-20 21-

40 
41-
60 

61-
80 

81-
99 

100 

1-15 62 73 97 116 120 120 
15-30 39 55 73 86 94 120 
30-45 30 44 57 70 94 120 
45-90 18 34 45 70 94 120 
90+ 11 21 45 70 94 120 



periods t={0...T}. This less restrictive sampling range permits 
a more universal exploration of states and different TMI 
options. Another difference between the prior approach and 
this one is that the value of the decisions is obtained by taking 
the maximum value of all sampled forecast scenarios. An 
example of the search process is shown in Figure 5. 
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Figure 5.  A set of samples take using random global exploration (RGE) over 
a set of staged decisions. 

-greedy policies: 
      The prior two methods dealt with the issues of exploration 
vs. exploitation by heavily favoring exploration. One 
drawback of these approaches is that they do not make use of 
the data that they have collected as they go through the search 
process. As a result they may explore many poor solutions that 
could have been foreseen based on previous history. On the 
other hand, it may be undesirable to learn from the data when 
we do not have enough information as we may train our search 
to look for the wrong things. -greedy policies are commonly 
used to deal with these conflicting concerns. Under this 
approach, the decision-maker samples from a random 
distribution. If the sample value exceeds a level , then the 
policy selects a decision based on random selection, otherwise 
the algorithm selects the optimal action given the information 
currently available at the time of the decision based on an 
estimate of the value of each choice. Initially the algorithm 
typically favors a selection of random actions. When this 
happens, the algorithm can learn the value of the action and 
update the estimates accordingly. As more decisions are made 
and more samples are collected, the value of acquiring new 
information often diminishes. As a result, the value of epsilon 
is often set to decrease after each action to reflect an increase 
in the value of exploiting the existing information. A 
description of the algorithm is shown in Table II with the  
threshold occurring in step 5. The value of each decision can 
be fit using a variety of methods. In our implementation we 
train our model using non-parametric supervised learning 
methods (e.g., Random Forest Regression, Gradient Boosting 
Regression, Support Vector Regression etc.). 
If we let: 
Ω The set of all scenarios 
T The set of all time stages 
St

n,m
The system state at time t in scenario m during trial n 

Wt The airspace capacity described in forecast in period t 

J ≡The set of all simulation instances 
m  The scenario forecast m 
Xj

,n  The policy function that maps air traffic states to TMIs 
for instance  j of the air traffic simulation 
xt

n,m The TMI decision made at time t in scenario m for 
instance j on trial n 

C(St
n,m , xtj

n,m )  The cost to the decision made at time t  
 The value of the decision at time t in scenario m for 

instance j on trial n 
TABLE II. AN -GREEDY APPROACH FOR ASSIGNING TMIs 

Step 0. Initialization 
    Step 0a. Initialize   

    Step 0b. Initialize ,      
    Step 0c. Choose an initial policy  
    Step 0d. Set  
Step 1. Repeat for  
    Step 1a. Choose a sample path  
    Step 2. Do for  and j =  
        Step 2a. Find 
     
        Step 2b. Update the state variable by simulating   
         the air traffic 
  

         Step 2c. Set , and    

         and j =  
                    
    Step 3. Compute the average value of starting  
               in state  

        

    Step 4. Update the value function approximation by 
        using the average values by fitting an estimate 
    )  

    Step 5. With probability , choose  decisions  at  
        random from . With probability , choose 
         decisions  using the following procedure. Let j =0 
            Step 5a. For  find    
              

   

            Step 5b. Remove  such at   and let D, where 
            D is the set of TMI decisions to be taken.  
            Step 5c. Update the value of n+1), where  is 
            the learning rate. 
            Step 5d. Increment . If  go to step 6, if not go 
            to step 5a. 
     Step 6. Increment . If  go to step 1  
     Step 7. Return the value functions  
 
Softmax Exploration: 
One issue with the -greedy approach is that when it selects an 
exploration step, it is equally likely to sample from all 
potential state-actions. As noted with the prior exploration-
based strategies, this uniform sampling can result in the 
selection of some very poor choices where we may learn little 



from the decision. The softmax approach gets around this 
issue by weighting the probability of selecting a given 
decision by the estimated value of that decision. An 
expression for this probability is shown in below: 

 
 

 
where  is the value of choosing decision x and T is 
called the temperature. Similar to the -greedy approach, we 
would like to reduce the scaling parameter T value as we 
iterate. Decrementing T increases the odds of selecting the 
best choices as sampling continues. We can apply the softmax 
approach using the same algorithmic steps shown in Table II 
and substituting the greedy selection with this probabilistic 
selection of TMI decisions in Step 5. In this context we would 
select from R possible TMI decisions J times. 

C. Simulating the Air Traffic 

    A custom fast-time simulation framework was used to 
evaluate the effects of our algorithmic selection of TMI 
parameters. The simulation ingests airspace flow rates from 
TFI based on either forecast or actual weather. The simulation 
can also use wind forecast models such as the High Resolution 
Rapid Refresh model or the Global Forecast System model to 
adjust the four-dimensional flight trajectories. The sector 
workload constraints are enforced using the analytical models 
in [40] and [41]. The simulation also consumes flight plans 
based on historical data from the Traffic Flow Management 
System. Aircraft speed profiles derived from the BADA 3.6 
model. FAA coded instrument flight navigation procedures are 
used to generate the initial four dimensional trajectories 
required for the traffic management step of the simulation. 
The traffic management initiatives are modeled based on 
CDM procedures such as ration-by-schedule, cancellation and 
substitution and compression [43].        
    The simulation initializes the algorithm by generating a 
TMI description that is applied to the scenario. Once the 
simulation is initialized, a set of concurrent instantiations of 
the air traffic simulation are run in parallel. Each simulation 
samples a set of TFI-correlated FCA draws that are based on 
the forecast weather. After our initialization, we then use one 
of the selection methods to choose a set of TMI parameters 
based on the airspace and airport resources evaluated in the 
scenario. When a TMI is applied, the traffic flight demand for 
the affected resources is throttled and the temporal dimension 
of the traffic flow changes, introducing a number of follow-on 
effects. We observe the performance of this strategy in the 
simulation and score the resulting metrics (e.g., number of 
operations, holding events, delay) that characterize the TMI 
performance. As this process iterates, the framework continues 
the series of air traffic management simulations by using our 
selection method to choose different sets of TMI parameters 
until we have reached our last simulation run. A diagram of 
the process is shown in Figure 6. 

 

Figure 6.  A simulation framework to facilitate exploration of Traffic Flow 
Management Initiative parameters. 

III. RESULTS AND DISCUSSION 

 A set of computational experiments were conducted to 
evaluate the performance of each of the proposed methods 
using the fast-time air traffic simulation discussed in the 
previous section. In this section, we study the relative 
performance of each method at a number of TMI decision 
stages.  We also discuss the implications of the results for TMI 
decision support. 

A. Experimental Description 

    A computational experiment was conducted using the 
modeling framework described in the previous section. The 
selected scenario used the weather that occurred on June 10, 
2019. This day was chosen because the weather impacts were 
moderate but the convective blockage prompted traffic 
managers to impose a number of rolling TMIs throughout the 
Northeast. As such it was a good case day for the type of 
progressive air traffic management decision-making that our 
approach could be exercised on. A snapshot of the weather is 
shown in Figure 7. 
 

 

Figure 7.  Weather image at 20:00 GMT on June 10, 2019. 
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   A set of simulations was configured to evaluate the traffic 
over a period lasting between 04:00GMT on June 10 to 
3:59GMT on June 11. Flight plans from the entire set of traffic 
in the U.S. National Airspace were injected and flown in the 
simulation. A set of TMIs were imposed at John F. Kennedy 
(JFK), LaGuardia (LGA), Newark (EWR), Philadelphia 
(PHL), Boston Logan (BOS) airports and FCA regions called 
A01 and A08. A diagram showing the geographic locations of 
the airports and FCAs used is shown in Figure 8.  

BOS
LGA

EWRPHL

JFK
FCA A01

FCA A08

 

Figure 8.  The location of the set of airports and FCA regions in the TMI 
programs during the case day under examination. 

 
The modeling framework was developed on a high-

performance computing cluster [44]. During each run, the 
model sampled 30 randomly drawn TFI FCA forecasts 
representing 30 different spatial-temporal evolutions of the 
weather with 15 different TMI parameter configurations 
representing 15 different TMIs. Each TMI was tested on all 30 
TFI sample draws for a total of 450 concurrent instances, each 
on a single Intel xeon-e5 processor.  

The TMIs were configured on a nominal baseline using a 
1st-order Gaussian auto-regressive random process that 
produces time difference values that are parameterized with 
the mean, standard deviation and auto-correlation. A nominal 
baseline TMI was configured to a mean value that was set to 
80% of the airport capacity in the case of the airport resources, 
a rate of 115 flights/hour in the case of FCAA01 and 120 
flights/hour in the case of FCAA08. The rates were then 
perturbed using a distribution with a standard deviation of 3 in 
the case of the airports and 5 in the case of the AFPs as the 
FCA resources typically have higher flow rates associated 
with them. The exemption radii of the GDPs were limited to 
distances of 1000, 1500, 2000 and 2500 NM. The initial TMIs 
lasted for 12 hours. During each strategy evaluated, the 
simulation cycled through a set of 40 runs. All the TMIs 
implemented in this experiment were initiated at a start time of 
18:00GMT. In order to study the effect of revising the TMIs at 
various decision stages, the simulation was configured to issue 
revisions to the programs at 21:00 GMT and 00:00GMT, 
which we shall refer to as the 0-hour, 3-hour and 6-hour 
decision stages. During these revisions, the rate and exemption 
radius decisions made from 18:00GMT up until the revision 
time are kept fixed at whatever value they were set to by the 

prior decision. Looking forward beyond that time, the 
simulation has the option of revising the rate or cancelling the 
program at any given resource. Note that, while the planned 
rates were implemented at hourly intervals, we only revise our 
decisions every 3 hours.  A summary of the various test 
instances is shown in Table III. 

The Gradient Boosting Regression method was used to fit 
the value of various TMI decisions in our implementations of 
the -greedy and softmax algorithms as it demonstrated strong 
performance for related work [37]. A least-squares loss 
function was selected to fit the model estimates. As mentioned 
previously, the -greedy and softmax algorithms both vary the 
threshold for selection using a learning rate of =5, in the case 
of the -greedy, and T=4(1-n/40)+1, in the case of the softmax 
approach. While there are many potential parameter values 
that could be explored, since the dimensionality of the 
problem space is already very large, we will leave the subject 
of sensitivity analysis as an area for future study. Two gradient 
tree boosting models were created, one to predict the number 
of operations and the other to predict the number of flights that 
had more than 15 minutes of airborne holding. Each model 
was trained with an initial sample set of 5 random samples. 
These trained models were then used to predict the 
performance of an additional 100,000 samples.  
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TABLE III.: SIMULATION TEST PARAMETER 
CONFIGURATIONS 

 
TFI,TMI, 

Trials 
Exemption 
Radii NM 

Decision  
Stages 

Std Rate 
Perturbation 

RLE  30,15,40 1000,1500,
2000, 2500 

0 hour, 3hour,      
6 hour 

3 GDP, 5 
AFP 

RGE  
30,15,40 1000,1500,

2000, 2500 
0 hour, 3hour,      

6 hour 
3 GDP, 5 

AFP 

-greedy  
30,15,40 1000,1500,

2000, 2500 
0 hour, 3hour,      

6 hour 
3 GDP, 5 

AFP 

Softmax  
30,15,40 1000,1500,

2000, 2500 
0 hour, 3hour,      

6 hour 
3 GDP, 5 

AFP 

B. Results 

    A set of metrics were used to quantify the relative 
performance of the different approaches. As we decided to 
prioritize throughput at the airports, we tallied the number of 
operations (arrivals and departures) at the five airports where 
TMIs were applied. Although the weather impact was limited 
during the earlier part of the day, operations numbers were 
calculated over a 24-hour period. As it is possible to maintain a 
high level of throughput at an airport and still have 
operationally undesirable conditions if there is significant 
holding present, we also computed the number of flights that 
needed to hold for longer than 15 minutes. As a general 
objective, we would like to keep the number of operations as 
high as possible while limiting the amount of holding 
whenever possible. An initial simulation was run with 
additional demand to understand the system throughput limits. 
From this limit we take the ideal operating point to be the 
throughput under saturation with no holding events. While it is 
debatable whether the system could actually operate under 
those conditions, for the purposes of this study we would like 



our TMIs to generate metrics that are as close as possible to 
this level. The results of the 40 trials with each method are 
shown in Figures 9-11 for the 0 hour, 3 hour and 6 hour cases 
respectively, while a set of summary statistics are listed in 
Table IV. 
   Since we aim to maximize operations while limiting holding 
events, we would like our TMIs to produce values in the lower 
right corner of the graphs. By that measure, the RLE method 
generally underperforms. This is not surprising as it is the least 
sophisticated of the approaches implemented and can be 
viewed as the relative baseline. The solutions identified by the 
RGE, however, perform significantly better. This is likely due 
to the broader nature of the search. Since we have a large range 
of TMI parameters to consider due to the dimensionality of the 
problem, it is generally better to consider more solutions. There 
is a significant increase in the number of operations and drop in 
the amount of holding from stage to stage suggesting that the 
forecast may have over-predicted the weather impact. Yet, 
while the performance improves in all cases, the -greedy and 
softmax approaches outperform the two more exploratory 
methods. In both cases the mean values of operations are 
consistently higher in all instances and the relative standard 
deviation of the number of operations are lower suggesting that 
the selection performance is more consistent. Although in the 
case of the 3-hour decision stage the RGE exhibits marginally 
lower holding numbers than the -greedy approach, it also does 
so with an average of over 20 fewer operations. More 
importantly, the maximum values of the resulting method for 
the two learning-based approaches are consistently higher, 
suggesting that they are more likely to find the best solutions. It 
is somewhat unclear which learning-based method performs 
better. In the 0-hour decision stage, the softmax method finds 
TMIs that lead to a higher number of operations. However, in 
the two later stages the -greedy outperforms the others, 
exhibiting noticeably higher numbers of operations.  
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Figure 9.  TMI program preformance after revisions in the 0 hour stage. 
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Figure 10.  TMI program preformance after revisions in the 3 hour stage. 
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Figure 11.   TMI program preformance after revisions in the 3 and 6 hour 
stages. 

 
 
 
 
 

Hour 
Selection 
Method 

TABLE IV. AGGREGATED OPERATIONS 
PERFORMANCE OF EACH SELECTION METHOD  

Number of 
Operations 

Mean (STD) 

Number of 
Holds Mean 

(STD) 

Maximum 
Ops. Case 
Ops./Holds 

0 

RLE 5345 (66) 219 (21) 5420/236 

RGE 5428 (18) 239 (14) 5440/218 

-greedy 5436 (6) 233 (19) 5452/199 

Softmax 5439 (7) 229 (18) 5467/220 

3 

RLE 5389 (44) 144 (30) 5443/131 

RGE 5448 (7) 138 (27) 5465/86 

-greedy 5464 (7) 139 (32) 5501/66 

Softmax 5459 (2) 137 (20) 5463/135 

6 

RLE 5477 (11) 80 (27) 5497/131 

RGE 5495 (4) 49 (20) 5505/39 

-greedy 5511 (5) 46 (10) 5519/37 

Softmax 5502 (2) 43 (15) 5509/21 

     
 The performance of the TMIs in terms of the number of 

operations should be taken in context. While we can infer 
relative improvement with respect to the objectives, the 
intervention may still be undesireable if the improvement in 
the objectives results in significantly worse performance in 
other metrics.  

One might question what type of delay impact these 
initiatives have on the airports. To answer this question, we 
computed the mean and standard deviation of the total airport 
delay in hours at each decision stage. The resulting 
performance is shown in Table V. The data suggests that the 
two learning-based methods (of -greedy and softmax) yield 
lower amounts of delay with significantly less sample variance 
than the two more exploratory methods. The softmax function 
exhibits a particularly low level of sample variance. One 
interesting feature of the data is that, although the number of 
operations increases as the weather plays out and the forecast 
and TMI decisions are revised, the amount of delay increases. 



This is particularly true of the two exploratory methods. The 
one exception to this trend is the softmax method which 
remains fairly stable despite yielding considerable 
improvement in terms of operations and holding. 
   The strong performance in all three planning stages suggest 
that the proposed parameter identification approach could 
potentially be used at various points throughout the day to aid 
traffic managers in supporting strategic traffic planning, as 
there is a clear mapping of weather forecasts and their 
associated uncertainty to the range of operational performance 
when a set of operational plans is enacted. Instead of 
prescribing flow rates that vary across time and a broad set of 
resources, the approach provides specific recommendations on 
actions that the decision-maker can take to deal with the 
implied weather impact. By speaking to stakeholders in this 
context, we can more readily communicate the implications of 
weather forecast uncertainty in terms which they may more 
easily relate and integrate into their operational decision-
making processes.   
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TABLE V. AGGREGATED DELAY HOURS OF EACH SELECTION 
METHOD  

 
0 hour Mean 

(STD) 
3 hour Mean 

(STD) 
6 hour Mean 

(STD) 
RLE  6924 (190) 7026 (135) 7009 (48) 

RGE  6859 (210) 6868 (193) 6979 (191) 

-greedy  6772 (90) 6795 (51) 6829 (26) 

Softmax  6777 (73)  6809 (31) 6754 (10) 

IV. SUMMARY AND FUTURE WORK 

In this paper we presented four methods for selecting TMI 
program parameters in the presence of weather forecast 
uncertainty. Two of the methods used exploration-based search 
strategies in order to identify the appropriate rates and program 
exemption radii. The other two used a more balanced mixture 
of exploration and exploitation to search through the parameter 
space using reinforcement learning approaches. A highly-
parallelized air traffic simulation was used to evaluate the 
proposed approaches with a range of weather translational 
forecasts. A set of TMIs was applied to this framework over 
the range of regional airport and airspace resources. The 
resulting performance suggests that the two learning-based 
approaches may provide some enhanced capability to select 
TMI parameters in the presence of uncertainty.  

There are a number of potential areas of research that could 
be explored to further the objectives proposed in this paper. As 
the selection of TMIs is a problem plagued by dimensionality, 
there is a need to develop methods to accelerate the pace of 
parameter exploration and the evaluation of potential search 
options. These advancements could include improvements in 
the computing architecture and simulation runtime, and more 
effective search policies. Additionally, future studies could 
examine a framework that considers a broad range of 
objectives such as cancellations, predictability and more active 

incorporation of the relative preferences and risk tolerance of 
various stakeholders. The proposed search strategies could then 
be modified to include these relative weightings in their 
prioritization of TMIs. As the effectiveness of the approach is 
only as good as the credibility of the simulation that we are 
using, future studies will need to validate the model through a 
comparison of metrics obtained over a set of case days. Finally, 
it should be noted that more user feedback is needed from 
stakeholders as this methodology evolves to ensure the 
operational realism of the approach and reflect the concerns of 
the system decision-makers. 
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