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Abstract—Trajectory planning is a particularly challenging task
for autonomous vehicles when there are moderate to extreme
uncertainties in their operating environment, i.e., where the tra-
jectories of hazards are partially known to completely unknown.
In this paper, we propose a receding horizon control strategy
with novel trajectory planning policies that enable dynamic
updating of the planned trajectories of autonomous vehicles. The
proposed policies utilize two metrics: (1) the number of feasible
trajectories; and (2) the robustness of the feasible trajectories.
We measure the effectiveness of the suggested policies in terms
of mission survivability, which is defined as the probability that
the primary mission is accomplished or, if that is not possible,
the vehicle lands safely at an alternative site. We show that
a linear combination of both metrics is an effective objective
function when there is a mix of partially known and unknown
uncertainties. When the operating environment is dominated
by unknown disturbances, maximizing the number of feasible
trajectories results in the highest mission survivability. These
findings have significant implications for achieving safe aviation
autonomy.
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non-modeled uncertainty; mission robustness; mission surviv-
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I. INTRODUCTION

Highly autonomous vehicles must both operate and make
decisions without external support or supervision. This is
particularly challenging when there are exogenous uncer-
tainties, i.e., when the locations and future trajectories of
weather systems and other vehicles are partially to completely
unknown.

Several methods have been proposed to characterize and/or
bound the uncertainty associated with dynamic obstacles and
thereby account for their occurrence and motion. However, it
is difficult to characterize or for that matter bound the behav-
ior of highly unpredictable occurrences, or model unobserved
or complex dynamics (such as non-cooperative intruder traffic
or a flock of birds crossing the path of a vehicle) [1]. In this
study, we focus on the uncertainty caused by the trajectories
of uncertain intruder traffic.

To date, researchers who have studied the problem of
trajectory planning for highly autonomous vehicles in un-
certain operating environments have focused on scenarios
where the uncertainty can be characterized statistically. This
typically involves two steps: (1) predicting and estimating
the potential impacts of the uncertainty on the feasibility of a
trajectory; and (2) determining the trajectory that minimizes
the predicted risk. For example, Bry and Roy [2] proposed a
graph-search based algorithm–the Rapidly-exploring Random

Tree algorithm–where, given a nominal trajectory, distribu-
tions for future states of the vehicle are first predicted to
assess whether the probability of collision, given a state, is
bounded below a threshold value. Next, a set of trajectories
is incrementally constructed while efficiently searching for
the best candidate path. Paths are evaluated based on their
probability of being realized by a closed-loop controller.
Similar work that focuses on graph-based search algorithm
can also be found in [3] and [4]. Separately, roadmap-based
approaches that rely on an understanding of the safe states
in the environment (or the configuration space in general)
have attracted significant research interest. Typically, they
utilize one of three techniques: visibility graphs [5], Voronoi
diagrams [6], or potential fields [7].

Figure 1: Illustration of the three types of intruders present
in the operating environment.

The difficulty imposed on trajectory planning by an in-
ability to characterize and account for the behavior of highly
unpredictable obstacles is illustrated in Figure 1. The green
intruder has a trajectory that is both deterministic and known
to the ownship. In this case, the ownship can maintain the
feasibility of its trajectory by following one of many conflict-
free trajectories (solid black lines). The yellow intruder is
partially known to the ownship because either the time it
enters the airspace, its speed, or its path are unknown. In
this case, the yellow intruder’s trajectory is determined via



bounded probability distributions with prescribed parameters.
To protect itself, the ownship can then leverage analytical
techniques to assess the chance of collision for each feasible
trajectory and follow the one that maximizes a certain objec-
tive. The grey intruder represents the extreme case where the
intruder is completely unknown to the ownship, i.e., neither
the time of entry, the speed, nor the path are known. Thus,
from the ownship’s point of view, the grey intruder can show
up unexpectedly at anytime and anywhere in its operating
environment, and the associated statistical distributions are
unbounded.

The trajectory flexibility metrics proposed by Idris et. al [8]
provide the basis for a promising approach to improving the
ability of autonomous vehicles to adapt to unknown distur-
bances. Specifically, [9] demonstrated that self-separation and
self-organizing behaviors may be induced among autonomous
agents, and traffic complexity reduced by maximizing tra-
jectory flexibility. Further, building on that research, [10]
leveraged adaptability, one of the trajectory flexibility metrics,
to estimate airspace capacity under different control schemes.

In this paper, we contribute to the literature by proposing a
receding horizon control strategy with a set of novel trajectory
planning policies that enable the autonomous vehicle to dy-
namically update its planned trajectory in environments where
potential conflicts are, from a statistical perspective, either
partially known or completely unknown. Most importantly,
we demonstrate that maximizing the total number of feasible
trajectories is effective in mitigating the consequences of
extreme uncertainty.

The remainder of this paper is structured as follows.
In Section II we establish the theoretical foundation for
measuring the robustness and survivability of a mission.
Next, in Section III we propose a backtracking algorithm
for counting the number of feasible trajectories as well as
a Monte Carlo simulation to estimate the robustness of a
trajectory segment. We then, in Section IV, formalize the
receding horizon trajectory problem and present a detailed
description of four trajectory planning policies. In Section
V we outline the computational experiment for investigating
and comparing the effectiveness of the proposed trajectory
planning policies. The results and analysis of our experiment
are presented in Section VI. Finally, in Section VII we provide
our conclusions and suggestions for future research directions.

II. THEORETICAL FRAMEWORK

We consider the trajectory planning problem for a fixed
flight level. To count the number of trajectories, we establish
a discrete representation of space and time. Specifically, time
is discretized into equal time steps that are ∆t apart and space
is discretized into rectangular cells of dimension ∆x × ∆y

as shown in Figure 2. The state of a vehicle is denoted by
(xi, yi, hi, vi, ti) ∈ R5 where hi is the heading and vi is
the speed. A motion primitive is defined by the pairing of
heading and speed changes, that is (δh, δv) ∈ R2. The set
of all possible motion primitives is denoted by A, where the
cardinality of A indicates the maneuverability of a vehicle.

Next, we introduce the mapping c : R3 7→ N 3 between
a way point in continuous space and a cell in discrete space
defined by c(x, y, t) = (bxe, bye, bte) where b·e rounds the
element · to the nearest integer. We further define the partial
trajectory, connecting cell c(xi, yi, ti) to c(xi+1, yi+1, ti+1)
in discrete space and time, as a segment lsi. Equivalently, a
trajectory l can also be described as a sequence of segments,
that is l = [ls1, ls2, . . . , lsT−1], where [·] is an ordered list.

Figure 2: Discrete representation of space and time.

Depending on the resolution of the discretized time and space,
a segment li may degenerate to a cell (i.e., two end cells are
identical) or cross multiple cells between two end cells. Cells
that are blocked at time t are denoted by B(t) ⊂ N 3, where
the information on the environment is refreshed at a certain
rate. Further, we apply the following Assumptions II.1 and
II.2.

Assumption II.1. We consider intruders as the only sources
of uncertainty in the environment, and that a cell is completely
blocked if any part of it is crossed by an intruder’s trajectory.

Assumption II.2. A straight line passing through multiple
cells can be used to approximate a trajectory segment. Let
c(xi, yi, ti) and c(xj , yj , ti + εt) denote two end cells of a
segment. A segment is feasible if all cells that are crossed by
the segment are accessible. Specifically,

c(xi + β(xj − xi), yi + β(yj − yi), ti + βεt) /∈ B(ti),

where β ∈ [0, 1].

Cell quantization has an impact on trajectory quality and
safety. If the cell dimensions are small relative to the required
safe separation, blocking the cells traversed by the trajectory
does not provide sufficient separation from other vehicles.
In such cases, Assumption II.2 is leveraged to block cells
crossed by the trajectory segment as well as those within a
defined radius of the trajectory segment. Typically, such a
radius corresponds to the required safe separation between
two vehicles. If the cell dimensions are large relative to the
motion primitives, a trajectory may not be able to transit from
one cell to another in a single time step. Further, large cell
dimensions and time steps may result in trajectories that are
too coarse.

A mission is formally defined as follows: an ownship
departs from its origin (x0, y0) at time t0 and arrives at its
goal landing site (xf , yf ) during the time interval [tfl , tfu ]
that defines its Required Time of Arrival (RTA). At the
time of arrival, the heading of the vehicle hf depends on
the landing pad’s orientation and thus is limited to a finite
set of discrete values {h1, . . . , hm}, where hi ∈ [0, 2π]. In
addition, we require that the vehicle maintains a minimum
speed vf = vmin at the moment of arrival. We denote by
Ω(t) the set of all valid terminal states.

We focus on the task of computing a feasible trajectory
that directs the ownship to the goal landing site subject to
the constraint that it must always be (or at least have a very
high probability of being) able to reach an alternative landing
site should the goal landing site become unreachable. Since
the goal/alternative landing sites are built infrastructures, they
block cells in space and time that correspond to their physical
locations at all time (see the red and green vertical line in
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Figure 2). While the goal landing site is only open to the
ownership during the RTA period, the alternative landing site
is open at all times.

The ownership is capable of adapting its trajectory dy-
namically to account for uncertainty. Specifically, a mission
consists of T decision points set εt ∈ R+ apart. The choice
of εt depends on the frequency that the information on
environment is updated. Typically, we consider εt > ∆t.
The mission completion time should not exceed the maximum
flight endurance, which is determined by the ownship’s fuel
capacity. Regarding the vehicle dynamics, we assume that the
ownship is allowed to change its heading h and speed v at
a decision point by applying a pre-defined control primitive
(δh, δv) ∈ A, where δh ∈ [−δhl

, δhu ] and δv ∈ [−δvl , δvu ].
The vehicle maintains constant heading and speed until it
reaches the next decision point. Therefore, at each decision
point, the core decision-making problem involves optimizing
the trajectory plan so as to maximize a certain objective func-
tion while respecting all constraints imposed on trajectories.

To facilitate exposition, we next discuss the concepts of
mission robustness and survivability – the metrics by which
the effectiveness of a planning strategy is assessed. Following
that, we formally state and prove our theorem II.1.

Definition II.1 (Feasibility of a trajectory plan). A trajectory
is feasible if the following constraints are satisfied:

(1) Vehicle dynamics: The vehicle is able to follow the
trajectory without violating its maneuverability constraints
(i.e., turning rate and acceleration ranges, and maximum
speed).

(2) Terminal constraint: If the location (xf , yf ) corre-
sponds to the goal landing site, the arrival time T should
be in the range of RTA, that is T ∈ [tfl , tfu ]. Else, if location
(xf , yf ) corresponds to an alternative landing site, tf is
unbounded. In both cases, the terminal states must adhere to
the heading and velocity requirements at the corresponding
landing site.

(3) Conflict avoidance constraint: For any segment that
belongs to the trajectory l, the cells, crossed by the segment,
should be outside of blocked zones B(t).

Definition II.2 (Robustness of a trajectory plan). The ro-
bustness of a trajectory Pl is defined as the likelihood that
the trajectory l will remain feasible despite the occurrence
of disturbances that pose a constraint violation risk. The
robustness of a trajectory is expressed as:

Pl =
( T−1∏

i=0

pi

)
αT , (1)

where pi is the probability that segment li remains feasible in
the presence of disturbances, and αT is the probability that
the corresponding landing site is available at time T .

At a given point in space and time, a vehicle may have a
set of feasible trajectories L = Lg∪La, where the trajectories
in the set Lg = {l1, l2, . . . , ln} terminate at the goal landing
site, while the trajectories in the set La = {l1, l2, . . . , lm}
lead to an alternative landing site. A mission is deemed to
be successful if there is at least one feasible trajectory that
reaches the goal landing site (i.e., Lg 6= ∅). Similarly, a
mission is deemed to be survivable if there is at least one
feasible trajectory that leads to either the goal landing site
or an alternative landing site (i.e., L 6= ∅). Therefore, the
probability that a mission is successful or survivable is highly

dependent on the robustness of each trajectory in the set Lg/L
and its cardinality.

Definition II.3 (Robustness of a mission). Consider the set
of trajectories Lg = {l1, l2, . . . , ln} that terminate at the
goal landing site. With a slight abuse of notation, we denote
the robustness of a trajectory li as Pli ∈ [0, 1], and the
probability that the mission is successful as:

Psucceed(L) = 1−
n∏

i=1,li∈Lg

(
1− Pli

)
(2)

Definition II.4 (Survivability of a mission). Given the set
of feasible trajectories L = {l1, . . . , lm} that terminate at
a valid landing site (i.e., at either the goal landing site or
an alternative landing site), we denote the robustness of an
individual trajectory li as Pli ∈ [0, 1], and the probability
that the mission is survivable as:

Psurvive(L) = 1−
m∏

i=1,li∈L

(
1− Pli

)
(3)

Theorem II.1. Let L = {l1, l2, . . . , ln} be a set of indepen-
dent, feasible trajectories, where the robustness of trajectory
li ∈ L is Pli ∈ [0, 1]. Then, given the trajectory set L, the
survivability of the mission is expressed in Equation (3).
i. Let P ′li ∈ [0, 1] be a new robustness measurement of
trajectory li such that P ′li > Pli . Then, the survivability of
the mission increases by the amount ∆P1 ≥ 0.
ii. Let the trajectory set L increase in size through the addition
of a feasible trajectory ln+1 that is independent to all existing
trajectories, with the robustness Pln+1

∈ [0, 1]. Then, the
survivability of the mission increases by the amount ∆P2 ≥ 0.

Proof. For simplicity, define A =
∏n

i=1(1 − Pli) and
A ∈ [0, 1]. To show i., we express the increment in the
survivability of the mission due to the inclusion of an existing
trajectory li when Pli ∈ [0, 1) as follows:

∆P1 = P
′survive − Psurvive = 1−A

(1− P ′li)
(1− Pli)

− (1−A)

= A
P ′li − Pli

1− Pli

≥ 0

In a special case where Pli , since P ′li ≥ Pli = 1 and
P ′li ∈ [0, 1], we have P ′li = 1 which leads to the following
conclusion:

∆P1 = P
′survive − Psurvive = 0− 0 = 0

To show statement ii., we again express the increment in
the survivability of the mission due to the increase in the total
number of trajectories by 1 as follows:

∆P2 = P
′survive − Psurvive = 1−A(1− Pln+1

)− (1−A)

= APln+1
≥ 0

Corollary II.1.1. If the current survivability of the mission is
less than 1, improving the robustness of any existing trajectory
or adding a new and uncorrelated trajectory to the current
trajectory set increases the survivability of the mission.

III. METHODOLOGY

At each decision point, the vehicle should be able to evalu-
ate, for each candidate cell: (1) the robustness of the segment
connecting the current cell to the candidate cell, (2) the
feasible trajectories that contain the segment to the candidate
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cell, and (3) the robustness of each trajectory in the feasible
trajectory set. Given this information, the vehicle can evaluate
the robustness and survivability of the mission and develop
a robust trajectory plan according to its objectives. To this
end, in Section III-A, we propose a backtracking algorithm
for computing the set of feasible trajectories for each cell in
space and time. Next, in Section III-B, we develop a Monte
Carlo simulation that propagates the uncertainties from the
environment (i.e., intruders’ trajectories) to the probability
distribution describing the likelihood of “a segment being
feasible”. The robustness of segments is then integrated into
the measures of mission robustness and survivability.

A. Compute Feasible Trajectory Set via Backtracking

A trajectory is feasible if it is free of conflicts, meets
operational constraints such as the required RTA, and adheres
to the constraints on vehicle dynamics specified by the motion
primitives per Definitions II.1. To search for all feasible
trajectories starting from the cell of interest to the goal landing
site, we use a backtracking algorithm as illustrated in Figure
3.

Figure 3: Compute the set of feasible trajectories for a cell
in space and time.

We begin the search by marking the set of valid terminal
states as unvisited and the corresponding cells as 1. We project
intruder trajectories into space and time as blocked cells with
the label ‘N’ to account for the motion of obstacles in the
environment. We generate a list of backward reachable states
from each unvisited state under consideration and eliminate
the set of states that cannot be part of a feasible trajectory.
At the end of the iteration, only promising states will be
mapped into cells and become unvisited states. It is possible
that several states will be assigned to a single cell. Since each
promising state corresponds to a feasible trajectory that leads
to one of the valid terminal states, the total number of feasible
trajectories in a cell equals the number of promising states in
that cell. Denote by c(x, y, t).Nf the total number of feasible
trajectories and by c(x, y, t).S̄ the set of unvisited states in
cell c(x, y, t). The main steps are summarized below:
• Initialization: As shown in Figure 3, the green squares

represent goal-reaching cells. For any valid terminal
state (xf , yf , hf , vf , tf ) ∈ Ω(t0), we set the num-
ber of feasible trajectories for a goal reaching cell
c(xf , yf , tf ) to one, i.e., c(xf , yf , tf ).Nf = 1. In
addition, each valid terminal state becomes the only
unvisited state in the corresponding goal reaching cell,
i.e., c(xf , yf , tf ).S̄ = (xf , yf , hf , vf , tf ). If a cell is
blocked, we set c(xt, yt, t).Nf = c(xt, yt, t).S̄ = ‘N’.
Otherwise, c(xt, yt, t).Nf = 0 and c(xt, yt, t).S̄ = ∅.

• Expand & Prune: At time frame t, given a non
empty cell, any unvisited state (xt, yt, ht, vt, t) in the
cell c(xt, yt, t), called ancestor, should be propagated
one step backward by applying all possible heading
and velocity change (−δh,−δv), where (δh, δv) ∈ A.
All new generated states (xt−1, yt−1, ht−1, vt−1, t − 1)
should belong to the time frame t−1. (see red/blue arrow
and its corresponding new generated states). A new
generated state (xt−1, yt−1, ht−1, vt−1, t−1) is forward-
reachable if the minimum time required for the vehicle
to move from the current state to the new generated state
does not exceed t− 1− t0, as stated in Inequality (4).

||(xt, yt)− (x0, y0)||
vmax

≤ t− 1− t0, (4)

where (x0, y0, t0) is the way point corresponding to
a departure and vmax is the upper limit of vehicle’s
speed. In the pruning step, a newly generated state
is eliminated if the segment, connecting itself to its
ancestor, is infeasible; or if the newly generated state
is not forward reachable. Otherwise, we assign the
newly generated state (xt−1, yt−1, ht−1, vt−1, t − 1) to
the list of unvisited states in the corresponding cell
c(xt−1, yt−1, t − 1), increase the number of unvisited
states for cell c(xt−1, yt−1, t − 1).Nf by 1, and mark
the ancestor state as visited.

• We repeat the steps described above for the previous time
frame until t − 1 = t0. Once the algorithm terminates,
for each cell c(x, y, t) in space and time, we obtain the
number of feasible trajectories to the valid terminal cells
by looking at its c(x, y, t).Nf parameter.

The implementation details are provided in Algorithm
1, while the details of the ExpandPrune(·) function are
provided in Algorithm 2.

B. Estimate the robustness of a segment via Monte Carlo
Simulation

The robustness/survivability of a mission at a given point
in space and time is dependent on the robustness of all the
available feasible trajectories at that point. The robustness of
a trajectory is determined by the robustness of its segments
as well as the probability that the terminal landing site
is operational per Definition II.2. Because the uncertainty
in landing site availability is complicated and deserves its
own paper, we assume that both the goal landing site and
the alternative landing site are operational at all times with
probability αt = 1, t ∈ [t0, tfu ]. In this paper, we focus on
estimating the robustness of trajectory segments.

To this end, we propose a Monte Carlo (MC) simulation
based on mathematical models that describe the statistical
properties of uncertain events (i.e., the motion of intruders).
These events may be known, partially known, or unknown to
the ownership. The MC simulation yields the robustness of a
segment, which is then used to compute the robustness of a
trajectory per Equation (1).

Trajectory model of intruders: We model the intruder’s
trajectory using a Bezier curve of degree k. Given k ran-
dom control points {(xBi , yBi , tBi ) | xBi ∈ [Xl, Xu], yBi ∈
[Yl, Yu], tBi ∈ (t0, tfu),∀i = 0, . . . , k}, the uniquely defined
Bezier curve lB defines a continuous trajectory that enters
the time and space network at cell c(xB0 , y

B
0 , t

B
0 ) and exists

the time and space network at cell c(xBk , y
B
k , t

B
k ). Adjusting

the 0-th and k-th control points, one can specify the entrance
and exit location of the intruder as well as its flight duration.
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Algorithm 1: Compute feasible trajectory set via
Backtracking

Input:
Origin:
(x0, y0, t0)
Goal ∪ Alternative landing sites:
(xf , yf , hf , vf , [tfl , tfu ]) ∪ (xf , yf ,−,−,−)
Flight dynamics:
δh ∈ [δhl

, δhu
], δv ∈ [δvl , δhu

], v ∈ [vmin, vmax]
BlockMap: Space and time with information on no-fly
zones
Output: TrajMap: The estimate of total number of

trajectories
1 t = tfu
2 for tf ∈ [tfl , tfu ] do
3 c(xf , yf , tf ).Nf = 1
4 c(xf , yf , tf ).S̄ ← (xf , yf , hf , vf , tf )

5 while t > t0 do
6 for c(xi, yi, t) ∈ [Xl, Xu]× [Yl, Yu] do
7 if BlockMap(xi, yj , t) == 0 then
8 c(xi, yi, t).Nf = −∞
9 c(xi, yi, t).S̄ ← N

10 else if c(xi, yi, t).S̄ 6= ∅ then
11 for s ∈ c(xi, yi, t).S̄ do
12 Ifeasible ← ExpandPrune(s, δt, A)
13 c(:, :, t− 1).S̄ ← Ifeasible
14 c(:, :, t− 1).Nf+ = |Ifeasible|

15 t = t - 1

16 for c(x, y, t) ∈ [Xl, Xu]× [Yl, Yu]× [t0, tfu ] do
17 TrajMap(x, y, t) = c(x, y, t).Nf

18 return TrajMap

Algorithm 2: ExpandPrune(·) function

1 Function Expand & Prune(s, δt,A):
2 (xt, yt, zt, ht, vt, t)← s
3 Ifeasible ← ∅
4 for (δh, δv) ∈ A do
5 vt−1 = vt − δv
6 ht−1 = ht − δh
7 xt−1 = xt − vt−1δt cos(ht−1)
8 yt−1 = yt − vt−1δt sin(ht−1)
9 snew ← (xt−1, yt−1, ht−1, vt−1, t− 1)

10 if segment connecting c(s) and c(snew) is
feasible per Assumption II.2 & snew is
forward reachable per inequality 4 then

11 Ifeasible ← Ifeasible ∪ snew

12 return Ifeasible

By increasing the degree number k, the resulting curve has
a greater number of twists and turns, mimicking the motion
of an aggressive intruder. We generate a Bezier curve with
degree number 1 - a straight line that occupies a fixed location
for a time interval - to simulate the trajectory of a hovering
intruder.

Uncertainty model of a trajectory Trajectory uncertainty
models typically utilize either a probability density function
(pdf) or bounded shapes [11]. We utilize a shape-based
methodology to facilitate greater utility. With the assumption

that the ownship is capable of tracking the prescribed trajec-
tory, the possible trajectories can be bounded by geometric
volumes (i.e. sheared cylinders) [12]. Given an intruder tra-
jectory lB , we further define the trajectory uncertainty volume
V (lB , r) as the union of disks with radius r that are centered
at points along the trajectory lB . A possible trajectory is a
continuous curve starting at cell c(xB0 , y

B
0 , t

B
0 ) and ending at

cell c(xBk , y
B
k , t

B
k ) such that all intermediate points are within

the trajectory uncertainty volume V (lB , r).
With this uncertainty model, we assume that if an intruder

is only partially known to the ownship, the nominal trajectory
lB and the corresponding uncertainty level r are certain to the
ownship, but the actual trajectory is unknown. Typically, if
r > 0, the intruder may fly a trajectory that deviates at most
r from the planned trajectory. If r = 0, the partially known
intruder becomes fully known to the ownship. The known
intruder will follow lB exactly through space and time. In the
extreme case where an intruder is unknown to the ownship,
the ownship is unaware of the intruder’s existence until the
ownship encounters a conflict with the intruder.

A traffic scenario is defined as a situation in which there are
Nk known intruders, Np partially known intruders, and Nu

unknown intruders. The number of partially known intruders,
the uncertainty threshold r of each intruder’s trajectory, and
the number of unknown intruders all influence the severity of
the uncertainties in the environment. The proposed MC-based
simulator takes into account a segment or set of segments
related to the current trajectory planning decision all at once.
The expected output for each input segment is the probability
of the segment being feasible in the presence of the current
traffic scenario. Figure 4 depicts the framework of the MC-
based simulator which consists of four major processes:
• Initialization: During the initialization process, we simu-

late intruder trajectories by randomly generating Nk+Np

Bezier curves of various lengths between [t0, tfu ]. A
counter Nsuccess is used to record how many times
a segment is feasible out of the Nmc different traffic
realizations.

• Traffic Realization: The MC-based simulator randomly
generates realizations of an intruder’s trajectory for a
given traffic scenario based on each intruder’s nominal
trajectory lB and uncertainty threshold r (if applicable).
When a new realization is generated, the timer advances
by one. If the timer reaches the maximum number of
runs Nmc, the simulation process terminates and outputs
an estimate of a segment’s robustness. Otherwise, the
simulator proceeds to the next step.

• Feasibility Evaluation: A BlockMap is created by
blocking the cells traversed by the realized trajectories
lB . Given a segment of interest, the simulator evaluates
the feasibility of the segment via Assumption II.2. The
counter for the segment Nsuccess is increased by one if
the segment is feasible. Otherwise, we do nothing.

• Termination: After Nmc runs, the simulation process
terminates. The probability of the segment being feasible
is measured by the ratio Nsuccess/Nmc.

IV. TRAJECTORY PLANNING FRAMEWORK

A. Receding Horizon Control

An autonomous vehicle using a fixed horizon control
scheme optimizes a sequence of control actions a1, a2, . . . , aT
over T steps. If, during the T steps, unexpected events
occur or the system behaves differently than was expected
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Figure 4: MC simulation framework. (a) Visualization of
a traffic scenario in space and time. (b) Input trajectory
segment.

during the design of the control scheme, the controller will
not be able to account for them. This shortcoming can be
addressed through Receding Horizon Control (RHC) where
control actions are repeatedly optimized over a moving time
horizon. Specifically, the controller generates the optimal
control inputs over M time steps and executes the first control
action. At the next time step, a new control problem with the
most recent environmental information will be solved for the
remaining M-1 time steps [13]. We summarize the general
RHC optimization problem as follows.

min
z

F (st, at) + β

T∑
k=0

V (ct+k) (5)

s.t. st+k+1 = f(st+k, at+k) (6)
st = (xt, yt, ht, vt, t) (7)

ct+k = c(xt+k, yt+k, t+ k) (8)
ct+k /∈ B(t) (9)
st+T ∈ Ω(t) (10)
at+k = (dht+k, dvt+k) ∈ A (11)

st+k ∈ R3 × [vl, vu]× [t, tfu ] (12)

where we optimize over control commands
z = {at, . . . , at+T−1} for the remainder of the mission given
the current knowledge of the environment stored in B(t) at
time t. However, only the first command at is executed. This
process is then repeated until the vehicle reaches the goal, or
terminated if no feasible solution was founded. The vehicle
dynamics are prescribed in Constraint (6) with the initial
state given by constraint (7). The vehicle state is mapped
to a cell in discrete space and time in Constraint (8). In
addition, we ensure that a vehicle does not cross a blocked
region B(t) via constraint (9). Constraint (10) ensures that
the end state is one of the valid terminal states in the set
Ω(t). Note that set Ω(t) consists of only goal-landing sites
at the start of the flight. However, if no feasible trajectory
to the goal-landing site is available, the set Ω(t) will be
changed to include alternative landing sites. This ensures
that priority is given to the completion of a mission over its
survival. Constraint (11) limits actions to the set of motion
primitives A. The state-space is specified by constraint (12)
where the speed of the vehicle is explicitly bounded by
[vl, vu] and the mission duration is upper bounded by tfu .

The objective function (5) is made up of two parts. The first
term F (st, at) represents the robustness of the first trajectory

segment, which is the outcome of applying control at in state
st. The second term V (ct+k), k = {0, . . . , T − 1} measures
the quality of the k-th way point by evaluating the goodness
of its corresponding cell. A discount coefficient β ∈ [0, 1] is
applied to the second term to adjust the weighting between
instant and future response. Generally, the discount can be a
function of time, which is not considered in this paper.

B. Trajectory planning policies

A data preparation process includes computing the follow-
ing parameters:
• ct.L: Feasible trajectory set available at cell ct via the

Backtracking algorithm introduced in Section III-A.
• ct.Nf : Cardinality of the feasible trajectory set ct.L.
• pctct+1 : The robustness of a segment connecting cell ct

to cell ct+1 (probability of segment being feasible) using
the MC-simulation introduced in Section III-B.

• Pli ,∀ li ∈ ct.L: Robustness of trajectory li.
• Psurvive(ct.L): Survivability of the mission.
The first policy is to maximize the robustness of the

resulting trajectory to partially known disturbances.

(πR) pctct+1
+ β

T∑
k=1

P succeed(ct+k.L)

Motivated by a situation where there are only unknown
events or estimates of segment robustness are unavailable,
the second policy considers the maximization of the number
of trajectories only.

(πNf
) ct+1.Nf + β

T∑
k=2

ct+k.Nf

The third policy takes into account both the robustness of
a trajectory and the total number of alternative trajectories
available at each way point to maximize mission survivability.
The resulting trajectory attempts to provide at least one
feasible trajectory to guide the vehicle to a safe landing at
any point along the trajectory.

(πS) pctct+1
+ β

T∑
k=1

Psurvive(ct+k.L)

The fourth policy serves as an uninformed baseline against
which other policies can be measured, where the vehicle
chooses one of the feasible paths at random. The objective
function maximizes the chances of surviving the mission
under this assumption.

(πAvg(R)) pctct+1
+ β

T∑
k=1

( 1

ct+k.Nf

∑
li∈ct+k.LPli

)
V. EXPERIMENTS SETUP

Our computational experiments had two goals: First, to
show how the proposed trajectory planning framework can be
used to direct a mission. Second, to compare the effectiveness
of our four planning policies in mitigating varied levels of
uncertainty. The experiment is set up as follows.

a) Mission: We are interested in a mission in the San
Francisco Bay Area which is specified as an 85 × 85 km2

area as shown in Figure 1. A vehicle takes off from the Santa
Clara Towers Heliport and heads northwest to land at the
UCSF Helipad. We consider two alternative landing sites:
San Francisco International Airport and Stanford Hospital
Heliport. The flight mission includes a succession of three
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phases: takeoff, cruising, and landing. All three phases may
involve hovering.

The departure time is t0 = 00 : 00 minutes, and the
required arrival time at the goal landing site is tf = [00 :
40, 00 : 55] minutes. We assume that the vertical take-
off and hover, vertical landing and hover phases each take
5 minutes. In addition, the vehicle enters and exits in the
cruising phase with a speed of 0 m/s. Due to the topology of
the destination helipad, the vehicle must maintain its headings
at hf ∈ {90o, 135o, 180o} upon arrival at the goal landing site
before initiating a vertical descent. When the vehicle arrives
at an alternative landing site, the heading requirement changes
to hf ∈ {90o, 180o, 270o}.

During the cruising phase, we assume that the vehi-
cle’s cruise speed is in the range [0, 40] m/s. At each
replanning window, the vehicle can change its heading by
dh ∈ [−30o, 30o], in 5 equally spaced discrete increments,
and its speed by dv ∈ [−10, 10] m/s, in 5 equally spaced
discrete increments. Therefore, the motion primitive set is
composed of 5 × 5 different combinations of heading-
velocity changes. We divide time and space into cells of size
(1 km, 1 km, 1 minute). As a result, the mission entails 6, 7,
8, or 9 decision-making windows of 5-minute duration. We
assume that the maximum flight endurance is 60 minutes,
which is equivalent to 12 decision-making windows.

b) Environment: Intruders are of two types: (1) Ob-
served intruders with uncertainty radius r = 5 km whose
trajectories are partially known to the ownship; and (2)
Unobserved intruders whose presence is unknown to the
ownship. Our experiment assesses 36 different traffic scenar-
ios. Each scenario is characterized by the total number of
partially known intruders Np ∈ {50, 100, 150, 200, 250, 300},
and the total number of unknown intruders Nu ∈
{50, 100, 150, 200, 250, 300}.

c) Simulation Setup: For each traffic scenario charac-
terized by (Np, Nu), we generate Ninstance different traffic
instances. For each instance, Np trajectories are randomly
generated with different entrance and exit points in space and
time. In addition, we generate a set of Nu trajectories that
are unknown to the ownship during trajectory planning but
actually exist in the simulated environment. Given a traffic
instance, we simulate the real traffic between t0 and tfu . The
ownship plans its trajectory by employing each of the policies
πNf

, πS , πR, and πAvg(R). The computation of πS , πR,
and πAvg(R) involves measuring the robustness of feasible
trajectory segments via MC simulation introduced in Section
III-B. The three possible outcomes of a mission are: success
by arriving at the goal landing site (G), survival by arriving at
one of the two alternative landing sites (A), or failure, which
involves the more risky situation of an emergency landing
at an unplanned location (L). The survivability of a mission
under traffic scenario (Np, Nu) when employing a specific
policy is estimated by the ratio of the number of outcomes
(G) and (A) out of Ninstance. Similarly, the success of the
mission is measured by the ratio of the number of outcomes
(G) out of Ninstance.

d) Convergence Analysis: The convergence analysis is
based on the principle of utilizing sample proportion to
estimate an unknown population proportion, as well as quan-
tifying uncertainty in a population proportion estimate. First,
we investigate the case of utilizing direct MC simulation
to estimate the robustness of a trajectory segment, i.e., the
likelihood of a trajectory segment being feasible. Given a

segment of interest, let E denote the event that the segment
is feasible. The robustness of a segment p is defined as
the expected value of the indicator function IE , that is
p = Exp(IE). The variance of IE is p(1 − p). To estimate
p, we generate n independent samples x1, x2, · · · , xn of IE
using MC simulation and compute the sample mean.

p̂n =
1

n

n∑
1

xi

In this example, we refer to p as the population proportion
and p̂n as the sample proportion. We can further use sample
proportion p̂n to approximate the sample variance of IE ,
that is s2n = p̂n(1 − p̂n). To quantify the uncertainty/error
associated with the estimator p̂n, we leverage the central limit
theorem to construct a confidence interval associated with p̂n,
with the chance of p falling inside this interval equal to 1−α.
The confidence interval is given as follows [14].

p̂n ± zc
sn√
n

= zc

√
p̂n(1− p̂n)√

n

Where zc = 1.96 for a common choice of confidence
level 1 − α = 95%. Notice that when p̂n = 0.5 the half

uncertainty band h = zc

√
p̂n(1−p̂n)√

n
attains its maximal value

and therefore is upper bounded by hmax = zc

√
0.25
n . In our

experiment, given the computation time for obtaining one
data sample and the desired accuracy of estimator p̂n, it is
sufficient to limit hmax within 2% with confidence level 95%.
To achieve this goal, in theory, we need at least n = 2401
samples to obtain a point estimate p̂n of p. Therefore, in the
case of using MC simulation to evaluate the robustness of a
trajectory segment, we set the number of MC simulation runs
to Nmc = 2500. As an example, we consider measuring the
robustness of three1 independent trajectory segments in an
environment with 100 partially known intruders. As shown
in Figure 5, for each segment, the 95% confidence interval
associated with the trajectory robustness estimate shrinks
as Nmc increases. Moreover, when Nmc ≥ 2500, the half
uncertainty band is smaller than 2% for all three segments.

Given a traffic scenario, we further assess the convergence
of a policy’s performance measure, such as mission survival
rate, with respect to the number of samples Ninstance used
to estimate performance metrics. Consider measuring the
mission survival rate when the vehicle employs policy πS in a
traffic scenario parameterized with (Np, Nu). In this example,
let E

′
indicate the occurrence in which the vehicle survives

a mission. The mission survival rate p
′

is defined by the
expected value of the indicator Exp(IE′ ). With n independent
samples of IE′ , we can then use the sample average p̂′

n to
estimate mission survival rate p

′
. Following the same logic

as the MC simulation, we can theoretically obtain a half
uncertainty band ≤ 2%, centered on the mission survival rate
estimate p̂′

n, with a 95% confidence level by utilizing at least
2401 samples of IE′ . Therefore, to assess the performance of
a trajectory planning policy given a traffic scenario, we set the
number of traffic instances to Ninstance = 2500. As shown in
Figure 6, we consider employing policy πS in five different
traffic scenarios where the ratio of Np to Nu is kept constant
at one while the total number of intruders in the system grows
linearly from 100 to 500. When Ninstance ≥ 2500, the half

1Three segments are surrounded by relatively light, moderate, and severe
traffic, respectively.
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uncertainty band associated with the mission survival rate
estimate is smaller than 2% across all traffic scenarios.

Figure 5: The estimate of the robustness of three independent
trajectory segments via MC simulation

Figure 6: The estimate of mission survivability when employ-
ing policy πS in five different traffic scenarios.

VI. RESULTS AND DISCUSSION

A. Comparison between mission success and survival rates

In the first set of analyses, we examine how the traffic
volume affects mission robustness and survivability. For this
purpose, we focus on two critical performance indicators:
mission success rate, which indicates mission robustness, and
mission survival rate, which implies mission survivability. The
results are summarized in Figure 7 for five traffic scenarios
(Np, Nu) = {(50, 50), (100, 100), . . . , (250, 250)} where the
ratio of partially known and unknown intruders is constant at
1. Along the x-axis, the total number of intruders Ntotal in
the environment increases from 100 to 500 corresponding to
the five traffic scenarios. Each traffic scenario is associated
with a group of bars, and each bar in a group reports the
vehicle’s survival and success rates employing one of the
four proposed planning policies including πNf

, πS , πR, and
πAvg(R) as introduced in Section IV-B.

First, as expected, the mission success and survival rates
decline as more intruders are introduced into the environment

Figure 7: Mission Success Rate vs. Mission Survival Rate.

regardless of the policy that has been employed in trajectory
planning.

Second, allowing a vehicle to land at alternative landing
sites increases flight safety significantly. This is shown by
positive improvements in mission survival rate compared to
mission success rate across all columns. In the first set of
grouped bars, for example, the orange bar indicates that
when the vehicle flies through the airspace that contains 100
actively operating intruders while enforcing policy πS , the
vehicle has a 28.24% higher probability of landing safely
with only two additional landing sites provided.

Third, policy πR may be sufficient to maximize mission
success rate at low traffic volume, but this is achieved at
the expense of the survival rate, which is improved by also
considering the number of trajectories per policy πS (see A).
Considering the number of feasible trajectories becomes more
effective as the traffic volume increases, as indicated by the
fact that πS is the best policy for both success and survival at
300 (see B), and the policy πNf

is best for mission success
at 400 and for survival at 500 (see C). These observations
motivate us to further explore in Section IV-B the policies
πS and πNf

in terms of their ability to mitigate uncertainty
that is either partly known or unknown; and to concentrate
on mission survival for the remainder of the study.

B. Effectiveness of policies πS and πNf

We observed that policy πNf
offers no significant benefit

in protecting the ownship from partially known uncertainty.
The is borne out by the comparison in Figure 8 of the
mission survival rate of the four policies when the number
of unknown intruders in the environment is kept constant at
100 and the number of partially known intruders is increased
from 50 to 300. It is apparent that employing policy πS
results in the highest mission survival rate across all 5 traffic
scenarios. This promising result can be viewed as a by product
of the Theorem II.1. In particular, maximizing the total
number of feasible trajectories and improving the robustness
of a trajectory increase the likelihood that the ownship will
maintain at least one trajectory that will lead to a safe landing.

Second, the policy πNf
is shown to be the most effective

policy in mitigating extreme uncertainty - the unknown. As
shown in Figure 9, where we present the performance of
the proposed policies while keeping the number of partially
known intruders at 100 and increasing the number of un-
known intruders from 50 to 300, we observe a gradual decline
in the mission survival rate as more unknown intruders are
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Figure 8: Performance of four trajectory planning policies as
a function of the number of partially known intruders. Note
that the number of unknown intruders is kept at 100.

introduced into the environment no matter which policy is
applied.

Figure 9: Performance of proposed trajectory planning poli-
cies as a function of the number of unknown intruders. Note
that the number of partially known intruders is kept at 100.

The phenomenon that occurs when the blue curve (i.e.,
policy πNf

) and the yellow curve (i.e., policy πS) intersect
at the red dot corresponds to a traffic scenario with around
229.91 unknown intruders. This suggests that given a fixed
number of partially known intruders in the environment Np,
policy πNf

provides marginal protection against unknown un-
certainty over all other policies when the number of unknown
intruders exceeds the threshold value φ(Np). Therefore, it is
beneficial to switch to the policy πNf

at that threshold. As
shown in Figure 9, φ(Np = 100) = 229.9.

The intersection of the blue and yellow curves was iden-
tified for values of Np between 100 and 300, and the corre-
sponding policy switching threshold φ(Np) for the different
values of Np are plotted (see red line) in Figure 10. As may be
seen, policy πNf

outperforms policy πS for traffic situations
in the blue area where Nu > φ(Np). This suggests that
policy πNf

is highly effective when the level of uncertainty
is moderate to extreme (i.e., when there are more unknown
intruders than partially known intruders). We posit that this is
due to increased difficulty measuring mission robustness and
survivabiity in a highly unpredictable environment (because

1For comparison purpose, we keep the number to the nearest tenth. In real
application, this number should be an integer.

it only accounts for partially known intruders), and that
maintaining the number of trajectories is a more effective
strategy when accounting for unknown risks.

Figure 10: Policy switching boundary as a function of the
number of unknown intruders.

Additional evidence for the effectiveness of policy πNf

is provided in Figure 11. In this study, we set the to-
tal number of intruders in the environment to Ntotal =
300 while adjusting the ratio of unknown intruders
in [ 50

300 ,
100
300 , · · · ,

250
300 ], corresponding to traffic scenarios

(Np, Nu) = {(50, 250), (100, 200), · · · , (250, 50)}. We ig-
nore the impact of traffic congestion and focus exclusively on
the relative severity of the uncertainty. As the ownship’s envi-
ronment becomes more uncertain, policy πS , πR, and πAvg(R)

become less effective, as evidenced by a lower mission
survival rate. What stands out in this figure is the increasing
trend in mission survival rate associated with policy πNf

.
The rising blue curve intersects the orange curve at a point
corresponding to when 64.4% intruders in the environment are
unknown. Hence, the policy πNf

performs better than policy
πS when more than 64.4% intruders in the environment are
unknown. These observations imply that policy πNf

is highly
competitive in mitigating extreme uncertainty caused by an
increased ratio of unknown events.

Figure 11: Performance of proposed trajectory planning poli-
cies as a function of the ratio of unknown intruders in the
environment. Note that the total number of intruders is kept
at 300.

The critical percentage η(Ntotal) of unknown intruders
beyond which policy πNf

becomes the most effective is
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shown in Figure 12 as a function of traffic volume (see red
line). As may be seen, η(Ntotal) decreases with increasing
value of Ntotal, which (as the red line) indicates that as
traffic becomes more congested, policy πS becomes less
tolerant of unknown intruders – η(Ntotal) drops from 64%
to 38%. The blue region constitutes traffic scenarios with a
large percentage of unknown intruders in the environment.
We observe that policy πNf

results in the highest mission
survival rate for traffic scenarios falling in the blue region.

Figure 12: Policy switching boundary as indicated by the ratio
of unknown intruders.

VII. CONCLUSION

In this paper, we studied the trajectory planning problem
under uncertainty due to partially known and unknown intrud-
ers. We demonstrated that the success and survivability of a
mission from a given point in space and time are dependent on
two metrics: (1) the number of feasible trajectories available
at that point, which can be computed using the proposed
backtracking algorithm; and (2) the robustness of each of
the trajectories, which can be evaluated using a Monte-Carlo
simulation. We performed experiments for 36 traffic scenarios
with varying numbers of partially known and unknown intrud-
ers. Our findings indicate that a policy πS that combines the
two metrics by maximizing the probability of having at least
one feasible trajectory, outperforms all other policies when
the vehicle is exposed to partially known uncertainty and
moderate levels of unknown uncertainty. When uncertainty
is dominated by unknown intruders, however, policy πNf

,
which maximizes the first metric, yields the highest success
and survival rates.

We believe that the proposed metrics and policies will
provide robust trajectory planning for autonomous vehicles
operating in environments with moderate to extreme uncer-
tainty, e.g., for on-demand urban air mobility missions in
non-cooperative traffic. Finally, further research is required
to address the computation time of the proposed solutions,
which increases exponentially with the resolution of the
discrete space-time network. In addition, the impact of spatial
and temporal quantization on metric estimation should be
investigated in future work.
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