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Abstract—In this paper, an efficient algorithm to generate a short
and safe trajectory for an aircraft in a situation of emergency is
proposed. The algorithm is to be run on a Flight Management
System, hence the computation performance, the size of the
stored data and the quality of the solution are taken as primary
stakes. The algorithm is based on a front propagation algorithm,
the Fast Marching method. Fronts are propagated on a single
glide slope, allowing the algorithm to provide a flyable trajectory
in a very short time (a few seconds). The algorithm is tested in a
mountainous environment, and both shortness and safeness are
obtained in response to a critical emergency.
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I. INTRODUCTION

THE framework of application of this paper is the op-
timization of descent trajectories when a situation of

emergency occurs on an aircraft. Hence, the generation of
the trajectory must be fast to allow pilots to react quickly
and to maximize the chances of a successful landing.

Aeronautical constraints have to be taken into account in
the development of the algorithm. Providing bounds for the
aircraft flight, stall and range limitations are the most critical
constraints. These constraints, linked with the aircraft fuel
reserve and its maximum and minimum descent rate, must
be satisfied. The smoothness of the computed trajectory is
also a challenge: the trajectory has to be flyable. Considering
such constraints, there is a fundamental need for the algorithm
to be efficient while providing a high quality solution. All
computations needed to be done on a Flight Management
System (FMS), then the balance between speed, accuracy and
algorithmic cost is at the core of this study.

One can find examples of critical emergency situations
in aviation history. One can remind the Swissair Flight 111
(September 2, 1998), where an on-board cockpit-fire caused
by arcing resulted in a loss of control of the aircraft instru-
ments, and subsequently the crash of the aircraft. Another
example is the US Airways Flight 1549 (January 15, 2009),
where pilots successfully ditched their A320 in the Hudson
River shortly after take-off, in response to a bird strike causing
the loss of all engine power (see Figure 1).

These two events correspond to two separate types of
emergencies: As Soon As Possible (ASAP) and At Nearest
Suitable Airport (ANSA). In the case of ASAP emergencies,

Figure 1: US Airways Flight 1549. 2 minutes after take-off from LaGuardia
airport, the aircraft struck a flock of Canada geese at an altitude of 2,818
feet. 5 minutes after take-off, the aircraft made an unpowered ditching into
the Hudson River.

for example when there is an on-board fire or an urgent
medical issue, one has to find the fastest way to land. On
the other hand, when considering ANSA emergencies such
as a loss of engines, one has to find the safest path, to land
in the best possible conditions.

The structure of this paper is the following. First, some
previous related works regarding trajectory generation are
introduced in Section II. Then, the mathematical modeling of
the problem is described in Section III: considering the equa-
tions of Flight Dynamics, one can work in a two-dimensional
space instead of a three-dimensional space, by restricting
the aircraft to follow a single glide slope. Thereafter, the
resolution algorithm based on a Fast Marching method is
described in Section IV. The whole data structure is efficiently
stored in a quadtree, which is first balanced and then meshed
with triangles to propagate accurately the Fast Marching front.
Finally, a validation of the algorithm is proposed in Section
V for two key scenarios in a mountainous region, along with
some performance indicators to check the efficiency of the
method.



II. PREVIOUS RELATED WORKS

A. Aircraft emergency trajectory design

In [1], Atkins provides an Adaptive Flight Planning (AFP)
algorithm in order to select a landing site and generate a
safe emergency trajectory in real time. The trajectory planner
takes into account the initial state of the aircraft as well as
Flight Dynamics and wind constraints to generate geometric
trajectories built with Dubins curves [2]. This algorithm is
applied to Flight 1549 in [3], and the algorithm returned a
solution that could have enabled a safe return to LaGuardia
airport, if such a technology was available in 2009. In [4], the
Two Points Boundary Value Problem (TPBVP) is solved in
to generate unpowered landing trajectories and improve the
aircraft safety. These articles propose real-time solutions for
an aircraft in a situation of emergency, to be run independently
of the FMS. In our paper, we want to be able to use the current
FMS to implement the trajectory generation algorithm.

Fallast and Messnarz [5] propose a Rapidly-exploring Ran-
dom Tree algorithm (RRT) to automatically select a landing
site and generate an emergency trajectory. The RRT algorithm
creates an entire graph from a single vertex and no edges.
Vertices are sampled iteratively in the free space and if
connection is possible, edges are added to the graph. Their
algorithm is designed to converge towards an optimal solu-
tion, thus it is denoted RRT*. They are able to manage three
different constraints: terrain avoidance, airspace restrictions
and aircraft capabilities. To take them into account, they alter
the connections between points by introducing Dubins curves
[2], and limit these connections by considering the maximum
climb and descent rates.

Guitart et al. in [6] use Fast Marching Tree (FMT) approach
to generate emergency trajectories. The FMT algorithm per-
forms a forward dynamic programming recursion over several
sampled points generated during the initialization step and
generates a tree of paths. Again, Dubins curves are added to
the process to make the trajectories flyable, and the maximum
climb rate, the maximum descent rate but also the minimum
radius of turn are taken as contraints.

B. Trajectory generation algorithms

1) Graph-based approaches: The Shortest Path Problem
(SPP) has been explored by mathematicians during the second
half of the twentieth century. One of the first well-known dis-
crete algorithm to compute a trajectory between two points is
the Bellman-Ford algorithm [7]–[9]. Bellman-Ford algorithm
is very general, in the sense that it is able of handling graphs
with negative edge weights.

Bellman-Ford runs in O(|V||E|), where V corresponds to
the vertex set of the graph, E to the edge set. On a graph where
all the weights are positive, a better algorithm is Dijkstra’s
[10], which has a faster convergence of O(|E|+ |V| log |V|).
Knowing the destination vertex d, one can implement the A*
search [11], an algorithm that remains similar to Dijkstra’s
but achieves convergence in O(|E|).

Nevertheless, these algorithms compute the geodesic dis-
tance on the graph, hence they suffer from grid bias. For
real-life applications such as the optimization of aircraft

trajectories over tens or hundreds of nautical miles, a good
idea is to break free from such error sources by working with
a ”continuous” algorithm.

2) Front propagation approaches: Graph-based methods,
though efficient in computation time, are sensitive to the
precision of the discretization. To avoid such problems, one
can work with continuous methods such as Fast Marching.

These methods are simple, efficient and quite flexible: they
are based on the physical propagation of a wavefront in a
given domain Ω, containing obstacles. The front ∂Ω fixes the
minimum cost to reach any point in space. To propagate the
front, one has to solve the Eikonal equation:

|∇T | = f (II.1)

where T is the cost function to reach any point in space, and
f is the ”slowness” of the domain at any point. f characterizes
some parts of the domain that are less accessible than others:
in graph-based methods such areas are modeled with discrete
edge weights, here they are defined by a continuous function
over the domain. One can make the analogy with a forest fire,
where some areas are moist (the fire propagation is slow) and
others are dry (the fire propagation is fast).

The Fast Marching algorithm can be described in Algo-
rithm 1. One can note the line 14 of Algorithm 1 corresponds
to the Update Procedure, in which the Eikonal equation
is solved at the considered point, thus the T values of its
neighbors are updated. This algorithm is illustrated in Figure
2.

Algorithm 1: Fast Marching [Sethian, 1998]

1 Alive ← ∂Ω
2 Close ← N (Alive)
3 Far ← Ω \ {Alive ∪ Close}
4 while Far 6= ∅ do
5 Trial ← ω ∈ Close with the smallest T value
6 Alive ← Alive + {Trial}
7 Close ← Close \ {Trial}
8 for neighbor ∈ N ({Trial}) do
9 if neighbor /∈ Alive then

10 if neighbor ∈ Far then
11 Far ← Far \ {neighbor}
12 end
13 Close ← Close + {neighbor}
14 Update(neighbor)
15 end
16 end
17 end

These previous related works have shown that many ap-
proaches can be used to generate a trajectory. In the following
section, the mathematical modeling is described. From the
equations of Flight Dynamics, one can state the optimiza-
tion problem to solve in order to obtain the optimal three-
dimensional path. By limiting the aircraft descent to a single
glide slope, the optimization problem is reformulated and
simplified, fit to be solved by an efficient two-dimensional
Fast Marching algorithm.



Figure 2: Upwind construction of accepted values [12, Fig. 14]. In the narrow
band of trial values (Close in Alg. 1), the Eikonal equation is solved. The
front propagates from accepted values (Alive in Alg. 1) towards ”far away”
values (Far in Alg. 1).

III. MATHEMATICAL MODELING

A. Flight Dynamics

Let us consider an aircraft in the aerodynamic frame, with
heading angle σ, flight path angle γ and bank angle µ (see
Figure 3).

(a) Top view of an aircraft with a
heading angle σ.

(b) Side view of an aircraft with a
flight path angle γ.

(c) Front view of an aircraft with
a bank angle µ.

Figure 3: The aerodynamic frame (−→xa, −→ya, −→za). The frame origin is at the
aircraft center of gravity, and the velocity vector−→v (the aircraft true airspeed)
is along −→xa.

In the free space, the aircraft is constrained by a maximum
rate of climb (RoC), a maximum rate of descent (RoD) and
a minimum radius of turn rmin.

A flight path angle constraint can be stated: one can define
a maximum flight path angle γmax from the RoC, and a
minimum flight path angle γmin from the RoD. This constraint
is expressed as follows:

γmin ≤ γ ≤ γmax (III.1)

The aircraft is also bound to make turns during its descent.
These gliding turns are constrained by the minimum radius
of turn rmin. By definition, the radius of turn is

r = vh

(
∂σ

∂t

)−1

(III.2)

where vh is the horizontal airspeed of the aircraft.

Thus, a second constraint can be stated, now limiting the
variations of the heading angle σ:∣∣∣∣∂σ∂x

∣∣∣∣ ≤ 1

rmin
(III.3)

B. 3D general approach

In the context of path planning in three dimensions (here
(x,y, z) is a basis of R3), given a starting point Pstart and an
ending point Pend, one can find the optimal path by solving
the following optimization problem:

T (x, y, z) = min
π∈Π

∫ Pend=(x,y,z)

Pstart

f(π(τ))dτ (III.4)

subject to (III.1) and (III.3)

where T (x, y, z) corresponds to the minimal cost required
to travel from Pstart to Pend considering the cost function f ,
and Π is the set of paths connecting Pstart and Pend.

Considering a situation of emergency, it is possible that
the aircraft loses all of its power. In such a situation, the
maximum flight path angle is constrained by the maximum
lift-to-drag (L/D) ratio of the aircraft. (L/D)max characterizes
the ability of an aircraft to glide. An A320 has a maximum
lift-to-drag ratio of 17, this means that when the aircraft has
glided for 1 NM, it has lost a height of:

1

17
× 1.852× 1000

0.3048
= 357 ft.

The constraint (III.1) can be reexpressed as follows:

γmin ≤ γ ≤ γgliding
max (III.5)

with γgliding
max = − arctan

1

(L/D)max
.

This value is always negative (e.g. for an A320, γgliding
max =

−3.37°), which means that the aircraft is forced to go down.

C. Limitation of a single glide slope

In the following, as a first approximation, descent will be
operated with a single slope. When a situation of emergency
occurs, pilots have very little time to land, and performing
complex procedures cannot be advised. Nevertheless, this
limitation has consequences on the allowed behaviour of the
aircraft and the optimization problem must be rewritten.

In two dimensions ((x,y) basis of R2), the objective can
be written the same way as in the three dimensional case:

T (x, y) = min
π∈Π

∫ Pend=(x,y)

Pstart

f(π(τ))dτ (III.6)

where T (x, y) corresponds to the minimal cost required to
travel from Pstart to Pend considering the cost function f ,
and Π is the set of paths connecting Pstart and Pend.

On a single glide slope GS , the constraint γ = γ0 (a
constant) cannot be satisfied, otherwise the aircraft would be
forced to fly in straight line and would not be able to turn
to avoid obstacles. Hence, the lighter constraint forcing the



aircraft trajectory to stay in the gliding slope is added. Con-
sidering expressions obtained in Section III-B, the constraints
are as follows (in the general case):

π ⊂ GS, (III.1) and (III.3)

As mentioned before, in the special case where the engines
are lost, (III.5) replaces (III.1).

D. Fast Marching algorithm

In Section III-C, a new formulation for the path optimiza-
tion problem was established. Noting that the minimal cost
paths are orthogonal to the level curves, one can notice that
the equation left to solve is

|∇T | = f(x, y) (III.7)

which is the two-dimensional Eikonal equation.
To solve this equation in a discretized environment, the Fast

Marching method is used along with the following upwind
scheme, close to finite difference approximation which is
called quadratic equation for further calculations:

max
(
D−xij T,−D

+x
ij T, 0

)2
+ max

(
D−yij T,−D

+y
ij T, 0

)2
= f2

i,j

(III.8)

where the forward and backward operations are given by
D−xij T = (Ti,j − Ti−1,j)/∆x, D+x

ij T = (Ti+1,j − Ti,j)/∆x,
D−yij T = (Ti,j − Ti,j−1)/∆y and D+y

ij T = (Ti,j+1 −
Ti,j)/∆y, with grid steps ∆x and ∆y. Finally, Ti,j and fi,j
are respectively the cost and the slowness at gridpoint (i, j).

This scheme is said ”upwind”, because it chooses grid-
points in terms of direction of the flow of information, or in
other words from smaller values of T to larger values. Hence,
the algorithm builds the solution outwards from the smallest
T value.

Once the propagation is performed and the destination
is reached, one can extract the shortest path through back
propagation of the gradient from Pend to Pstart, by solving

X(t) = −∇T given X(0) = Pend (III.9)

A simulation example is given in Figure 4, with two
obstacles and where the propagation on the left side of the
domain is two times slower than the propagation on the right.

Figure 4: Two-dimensional navigation with constraints on variable domain
[12, Fig. 21]. The domain is binary: the speed of propagation on the left is
half the value as the one on the right. The generated trajectory is the optimal
one considering the obstacles and the speed: it is orthogonal to the level
curves.

The propagation depends on the chosen discretization of the
domain Ω. In our paper, propagation is first presented over
a grid, then over a triangular mesh. Note that in the back
propagation phase, the optimal trajectory (geodesic) is built
in a continuous maner without following the grid or mesh
points.

1) Propagation over a grid: Let A, B and C be some of
the grid vertices, and suppose that C is to be updated. If A
is the only possible contributor, i.e. only A has already been
updated, then the cost evaluated in C is T (C) = hfC +T (A)
with h the grid step and fC the slowness at point C.

If A and B are the only possible contributors with T (B) ≥
T (A), the Update on a Gridpoint Procedure must be used,
which is illustrated in Figure 5.

Procedure Update on a Gridpoint

1 T1 ← solution of
(T − T (A))2 + (T − T (B))2 = h2f2

C such that
T1 > T (A) and T1 > T (B)

2 if T1 ∈ R then
3 T (C) = T1

4 else
5 T2 ← solution of (T − T (A))2 = h2f2

C such that
T2 > T (A) and T2 ≤ T (B)

6 T (C) = T2

Figure 5: Update configuration on a gridpoint: A, B, C, D and E are some
of the grid vertices, where C is the one to be updated. The magenta labels
on nodes represent the current minimum costs to reach those nodes from the
origin. A and B are the only possible contributors, hence C may be updated
from both of these nodes.

2) Propagation over a triangular mesh: The same kind
of algorithm can be applied on a triangular mesh. However,
neighbors are no longer located on a regular grid but can be
found on the vertices of irregular triangles.

Let us consider an acute triangle ABC with T (A) 6= ∞,
i.e. A has already been updated. Such a configuration is
represented in Figure 6. Once again the quadratic equation
must be solved, to compute t such that (t−u)2 = h2f2

C with
u = T (B)− T (A) and t = T (C)− T (A).

Two cases can be studied:
• B and C are to be updated
• C is to be updated and T (B) ≥ T (A)

The former case is trivial because the update comes from
the edges: T (B) = min (T (B), cfB + T (A)) and T (C) =
min (T (C), bfC + T (A)). The latter is more complex, please



refer to the work of Kimmel and Sethian [13] for detailed
calculations. In this case, the quadratic equation can be
written as follows:

(a2 + b2 − 2ab cos θ)t2 + 2bu(a cos(θ)− b)t
+ b2(u2 − f2

Ca
2 sin2(θ)) = 0

(III.10)

Figure 6: Update configuration on a meshpoint: A, B and C are some of
the triangular mesh vertices.

−−→
GC is the gradient associated with vertex C.

Since the update must be done within the triangle, the
Update on a Meshpoint Procedure can be stated as follows:

Procedure Update on a Meshpoint

1 if u < t & a cos θ < b(t− u)/t < a/ cos θ then
2 T (C) = min (T (C), t+ T (A))
3 else
4 T (C) = min (T (C), bfC + T (A), afC + T (B))

This mathematical modeling allows us to develop an ef-
ficient algorithm based on a two-dimensional Fast Marching
method over the glide slope of the aircraft.

IV. RESOLUTION ALGORITHM

A. Generation of the 2D glide slope

The first step to build an efficient and complete structure is
to collect terrain data. This operation can be done periodically
(every 20s for instance) by using a forward looking radar,
making terrain data available on the aircraft, or based on
landscape data uploaded on the aircraft. Once the emergency
is detected and declared, two points in space are considered
to be known: the EmergencyStartPoint i.e. the position of
the aircraft when emergency is declared, and the Emergen-
cyEndPoint i.e. the Final Approach Fix (FAF) or the runway
threshold of the best landing site. Thus, one can extrapolate
the glide slope of the aircraft by setting one direction vector
along the StartCoordinate-EndCoordinate axis, and another
one orthogonal to this vector and parallel to the ground. The
designation Coordinate is chosen to highlight their belonging
to the glide slope. In Figure 7, an example of such glide slope
coordinate system in the region of the Grenoble Alpes Isère
airport (France) is presented.

One can easily see that the intersection between the terrain
and the glide slope forms a grid composed of free-space cells
and obstacles cells. Then, the objective is to navigate through
the grid to create a trajectory from the StartCoordinate to the

Figure 7: A glide slope in the mountainous region of Grenoble (France).
StartCoordinate and EndCoordinate are both represented in red.

EndCoordinate (red points in Figure 7). An example of such
plan is represented in Figure 8, where the obstacles are shown
in black, and the free-space in white.

Figure 8: A 2D grid (of size 8x8). Two obstacles, in black, are restricting
the free space.

B. Structural improvement

1) Quadtree generation: From Figure 8, a quadtree is
generated. Originally formalized in [14], quadtrees are here
presented in their linear version. A linear quadtree is a list
containing free-space leaf nodes (or obstacles leaf nodes),
characterized by their spatial address and their level. The
encoding of spatial addresses is made using the Morton code
[15]. Figure 9 shows the Morton codes, also called Z-values,
for the two-dimensional case with integer coordinates.

Figure 9: A Morton code on a 8x8 grid. A ”Z” scheme is repeated
successively throughout the grid to encode each cell.

In this paper, the convention is to work with the free-space
leaf nodes and to set the convention for levels beginning at 0
for root node level, increasing with children. Result is shown
in Figure 10.



Figure 10: A quadtree computed from a 8x8 grid. It is composed of 4 levels
(8 = 24−1). The free-space leaf nodes are assigned a spatial address from
the Morton encoding. Leaves are denoted (mortonCode, level). For instance,
the northwest leaf is denoted (0, 2): its Morton code is 0 because it is
the minimum Morton code of cells which compose this bigger cell (here
composed of 0, 1, 2 and 3, as in Figure 9), and its level is 2 because its size
is 2x2. Note that level 3 corresponds to the maximum level a leaf can have
(a 1x1 cell), and that level 0 corresponds to the entire grid.

One can see that leaf nodes have a higher level near the
obstacles, and that huge zones of free-space are condensed
into one leaf. This behaviour of quadtrees is interesting from
the storage point of view, but when trying to generate a flyable
trajectory it presents an issue. Indeed, the trajectory needs to
be relatively smooth. To best meet this constraint and solve
level discontinuities, the quadtree must be balanced.

2) Balancing operation: Balancing a quadtree consists
in ensuring a level difference of at most 1 between two
neighboring leaves. In Figure 10, the only leaf that needs
to be divided is leaf (32, 1). The balancing operation (see
Figure 11) will result in the removing of this leaf and the
building of four new leaf nodes (32, 2), (36, 2), (40, 2) and
(44, 2). The general algorithm to balance a quadtree is given
in [16].

Figure 11: A balanced quadtree: each cell has a maximum of 1 difference
level with its neighbors. In Figure 10, leaves (10, 3) and (32, 1) had a
difference level of 3−1 = 2. Here, the level difference between (10, 3) and
(32, 2) is 1, thanks to the balancing operation.

3) Level differences computation: In order to quickly
transform quadtree leaves from a grid into mesh cells (here,
triangles), neighboring informations are added to those stored
in the linear quadtree. The idea is to create a mesh vertex
whenever there is a difference level of 1 between two leaves.
Thus, one is able triangularize a leaf thanks to the knowledge
of the level difference between the current leaf and the neigh-
boring leaf. The linear quadtree becomes a linear quadtree
with level differences, where each leaf is characterized by

its Morton code m, its level l and its level differences δ.
Considering domain sizes, one can easily assume that m is
stored in an 4-byte signed integer and l in a byte.

One can show that δ can be stored in a byte. Indeed, after
balancing the quadtree, the only possible values for a level
difference are:
• ’-1’ representing a neighbor with lower level,
• ’0’ representing a neighbor with equal level,
• ’1’ representing a neighbor with higher level,
• ’#’ representing a neighboring obstacle or the grid limits.
Therefore, each level difference is coded with 2 bits, or 8

bits for the four cardinal directions.
This is illustrated in Figure 12.

Figure 12: Level differences are coded with 1 byte (8 bits), with 4 duets of
bits each corresponding to a cardinal direction in space.

4) Mesh generation: One has to define a scheme to build
the mesh. The Delaunay triangulation is chosen, meshing that
has proven adequate over balanced quadtrees in [16].

Thanks to the knowledge of level differences, the task of
creating triangles is straightforward. Knowing the vertices that
are on the edges of the square leaf on the grid (e.g. δ =
00000001 =⇒ 1 vertex in the middle of the West edge), the
edges to add for building the mesh are directly given by the
Delaunay triangulation scheme, in order to built two or more
triangles inside this leaf. The building of the mesh is shown
in Figure 13.

Figure 13: A triangular mesh adapted to the terrain. The triangulation is built
over the balanced quadtree thanks to the level differences.

5) Aeronautical considerations: Depending on the aircraft
position when the alert is raised, the following two situations
may happen (see Figure 14): the correct-energy situation,
when the aircraft is in the right range of altitude for which it
can reach the landing site by keeping its flight path angle
γ in the constraint limits (see Figure 14a), and the over-
energy situation, when the aircraft is too high and cannot



reach the landing site without violating the γ constraint
(see Figure 14b). The under-energy situation cannot happen,
because the landing site is assumed to be reachable from
EmergencyStartingPoint.

(a) The aircraft can reach directely
the landing site.

(b) The aircraft has to lose altitude
to be able to follow a single glide
slope.

Figure 14: Case of (a) correct-energy, (b) over-energy.

For the over-energy problem, a solution would be to
propose the pilots to make waiting racetracks from Emer-
gencyStartingPoint to StartCoordinate. These racetracks can
be modeled by Dubins curves, as shown in Figure 15.
Such a procedure allow the pilots to easily lose altitude for
connecting the glide slope plan in which the aircraft has to
stay for approach (green plan on Figure 16).

Figure 15: 360° turn with Dubins curves. Here, two Dubins curves of type
Circle-Segment-Circle are necessary to make the turn.

Figure 16: Initial procedure. From EmergencyStartPoint to StartCoordinate,
if the generation of a single glide slope is impossible, the aircraft can make
turns to lose altitude or get a better orientation.

Depending on the type of emergency the aircraft faces,
some areas of the glide slope become unreachable (see Figure
17). Indeed, when engines are failing, the aircraft is limited
by the minimum descent rate and cannot remain at the same
flight level: it has to go down.

The heading of the aircraft in Final approach must be in
accordance with the orientation of the landing site. Then, an
approach procedure is implemented from EndCoordinate to
EmergencyEndPoint to meet this requirement (see Figure 18).

A brief summary of the four critical points in space and
their relations is presented in Figure 19.

Figure 17: Heading constraints on the glide slope. The aircraft is forced to
navigate inside a cone, limiting the local variations of heading angle.

Figure 18: Final procedure. From EndCoordinate to EmergencyEndPoint,
an additional procedure can be followed to get the aircraft aligned with the
landing site.

C. Trajectory generation on the glide slope

The Fast Marching algorithm is based on the propagation
over a mesh, but considering domain sizes, it is not optimal
to generate the whole mesh at once. The mesh is built step
by step, by dividing a quadtree leaf node into triangles only
when the front enters inside it. Hence, the mesh is built only
as needed, which allows to save both computation time and
memory space.

The propagation of costs and gradients through the mesh
occur between StartCoordinate and EndCoordinate. When
visited, each mesh vertex is attributed a cost and a gradient
according to Kimmel and Sethian’s work [13] reminded in
Section III-D2. The propagation stops when the quadtree leaf
node containing the EndCoordinate is reached, as shown in
Figure 20.

The final trajectory is found thanks to the back propagation
of gradients, from EndCoordinate to StartCoordinate.

The choice of the mesh finds its importance with back
propagation of gradients. Indeed, there must not be any too
acute triangle, and there must not be too many triangles
inside each node so that the quadtree structure is not altered.
The Delaunay triangulation is a good candidate for these
considerations: it ensures a minimum angle of 26.565° within
each triangle [16], and it has the minimum number of triangles
inside each node which connect all of the mesh vertices.

At each encounter with an edge, one needs to interpolate
the gradient. It can be easily done by calculating the barycen-

Figure 19: Key Points and Coordinates.



Figure 20: Propagation of costs and gradients. StartCoordinate (in the
Northwest) and EndCoordinate (in the Southeast) are both represented in
red. Gradients are represented in orange, mesh nodes in blue, and mesh
triangles in green.

ter of the gradients linked with the two vertices of the edge
considered (see Figure 21).

Figure 21: Interpolation of a gradient inside a triangle ABC. Xi is the last
point visited by the back propagation. It coincides with the mesh vertex
C, hence the gradient at Xi is

−−−→
Cgrad. The next point visited by the back

propagation is Xi+1. It is at the intersection between
−−−→
Cgrad and the edge

AB, hence the gradient has to be interpolated. The interpolation parameter

is λ =
||
−−−−→
Xi+1B||
||
−→
AB||

. Thus, the gradient at Xi+1 is λ
−−−→
Agrad+(1−λ)

−−−→
Bgrad.

The algorithm stops on reaching StartCoordinate. Results
for back propagation are shown in Figure 22.

The final trajectory between StartCoordinate and EndCo-
ordinate can be found by linking the edge interception points
together, as presented in Figure 23.

In the following section, validation of the resolution al-
gorithm is made for the ASAP and the ANSA scenarios. A
performance analysis is also established.

V. RESULTS

Validation of the method is made in mountainous region
of the Grenoble Alpes Isère airport. Two key scenarios are
studied:
• ASAP emergency: The aircraft still has its fully opera-

tional engines. It is guided by a single glide slope, and is
constrained by equations of Section III-C (general case).

• ANSA emergency: The aircraft has lost all of its thrust.
It is guided by a single glide slope, and is constrained by
equations of Section III-C (special case of lost engines).

Figure 22: Back propagation from EndCoordinate. StartCoordinate (in the
Northwest) and EndCoordinate (in the Southeast) are both represented in
red, gradients in orange, mesh nodes in blue, and mesh triangles in green.
Blue triangles are the triangles visited during back propagation.

Figure 23: Trajectory generated with a Fast Marching algorithm on a 8x8
grid. The trajectory generated is very close to the optimal path, with weak
errors due to the discretization.

The data is a 12000x12000 grid containing the heights of
obstacles in a 50 NM radius around Grenoble airport. All
simulations are run on a computer equipped with an i5-8250U
processor and a RAM of 8 GB.

A. As Soon As Possible Emergencies (ASAP)

Results for the ASAP scenario are shown in Figure 24. In
this figure, StartCoordinate is on the left, EndCoordinate on
the right. The map corresponds to the glide slope of Figure
7.

This generated trajectory is really close to the shortest
one. It has a mathematical interest, but it cannot be the one
suggested to a pilot because it is a too difficult path to follow
in such a situation, mainly because it uses some canyons in
the mountainous area. One must not forget that the pilots
are under a lot of stress, and asking to achieve very difficult
maneuvers is too much. Therefore, instead of looking for the
ideal shortest path, one can look for a sufficiently short and
safe one, like in an ANSA scenario. This can be achieved by
adding new constraints to the algorithm.



Figure 24: Trajectory generated in a ASAP scenario. The blue trajectory
goes through the mountains, in order to minimize its length.

B. At Nearest Suitable Airport Emergencies (ANSA)

Leaf nodes have a higher level near the obstacles. A first
idea is to limit checking such nodes, because the aircraft
cannot go too close to the obstacles and because it wastes
time. Since the major part of discretization errors comes
from the beginning and from the end of the propagation,
a perimeter around StartCoordinate and EndCoordinate is
created where the checking of high level nodes is allowed,
and outside this perimeter their checking is forbidden. This
technique let us go faster without damaging the trajectory
too much, but also prevent the trajectory from getting very
close to obstacles. This constraint makes the trajectory a little
longer while making it safer.

Another update is the implementation of a metaheuristic
on costs. Isotropic propagation is interesting but expensive in
time, especially for the domain sizes considered. An idea is to
slightly alter the Update on a Meshpoint Procedure detailed
in Section III-D2 by focusing on nodes that are closer to the
EndCoordinate during propagation. Thus, the cost of a point
in space will not only be its distance from the origin but the
sum of two distances, the one from the origin but also to the
destination. Hence, fronts visit many fewer mesh nodes, and
faster convergence of the algorithm is achieved. The revision
of the procedure can be stated as follows:

Procedure Update on a Meshpoint, revised

1 if u < t & a cos θ < b(t− u)/t < a/ cos θ then
2 T (C) = min (T (C), t+ T (A))
3 else
4 T (C) = min (T (C), bfC + T (A), afC + T (B))

5 T (C) = T (C) + distance(C, EndCoordinate)

All these considerations are taken into account for the
ANSA scenario, because the real shortest path is no longer
the objective, which is now the shortest and the safest. Results
for the ANSA scenario are shown in Figure 25.

This is the trajectory which intuitively connects the de-
parture and arrival points in an optimal and safe way. This

Figure 25: Trajectory generated in a ANSA scenario. The blue trajectory
gets around the mountains, in order to minimize the length of the trajectory
while keeping it safe and flyable.

trajectory can be followed by a pilot quite easily, which guides
the aircraft safely until Final approach.

It is interesting to evaluate the gain in computation time
between the two scenarios. Table I presents the computation
time of each major operation of the algorithm.

TABLE I. Comparison on Computation Times (in
Milliseconds)

ASAP ANSA
Glide slope extraction 50
Quadtree generation 100
Balancing operation 100

Level difference computation 50
Fast Marching (propagation) 600 200

Fast Marching (back propagation) 30 20
Total 930 520

No matter the scenario, the algorithm manages to return a
solution under a second. However, the ANSA scenario allow
a much faster convergence of the Fast Marching algorithm (3
times faster) by visiting a small set of nodes.

In Table II are shown the different sizes of the stored data,
and in Table III the number of nodes visited during the Fast
Marching propagation.

TABLE II. Comparison on Stored Data Sizes (in
Kilooctets)

File Size
Terrain Data 491 649

Quadtree 225
Balanced Quadtree with level differences 302

TABLE III. Comparison on the Number of
Nodes Visited During Propagation

File Size
Fast Marching Nodes (ASAP) 14704
Fast Marching Nodes (ANSA) 3140



Low-sized structures are obtained, that can easily be em-
bedded on FMS. As expected, thanks to the improvement
brought for the ANSA scenario, the Fast Marching is able to
divide the number of nodes visited by 5 while providing a
trajectory of better quality than the ASAP scenario.

In Figure 26, the generated trajectory in its 3D environment
is shown. The algorithm works in a highly mountainous envi-
ronment, and produces a very satisfactory three-dimensional
trajectory. Thus, the algorithm for the design of an aircraft
emergency trajectory using a Fast Marching method on a
triangular mesh is validated.

Figure 26: 3D trajectory generated with a 2D Fast Marching Algorithm over
a single glide slope.

VI. CONCLUSION

The objectives of this paper were to develop an algorithm
able to rapidly generate a safe trajectory in the event of
an on-board emergency, in order to help pilots in such a
situation. Constraints for the flight with or without power
were established and were taken into account in a Fast
Marching algorithm, able to provide efficiently a smooth and
safe trajectory to be followed by the pilots. Results are good
in terms of stored data size, computation time and quality of
the solution. The algorithm is not able to take into account the
initial and final heading of the aircraft, but procedures such
as half turns or complete turns are implemented to provide a
feasible solution in most scenarios. Moreover, the algorithm
has the abilities to work on a FMS. If the emergency situation
is complex, the algorithm can promptly run several times to
evaluate different scenarios.

To go further, one could explore the effects of weather or
traffic on the simulated trajectory. For instance, an Ordered
Upwind method can be useful to allow taking into account
the wind. Another extension would be to study more complex
scenarios: to set an example, one could consider the particular
scenario where the control wheel of the aircraft is broken,
and the pilot only has the possibility to turn left. Finally, an
implementation of a full 3D Fast Marching algorithm, along
with a suitable meshing of the 3D domain, can be studied.
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