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Abstract—Aircraft trajectory generation is a widely addressed
problem with applications including emergency trajectory gen-
eration, collision risk models, air traffic flow and capacity
management or airspace design. State of the art methods to
generate individual trajectories and optimise some performance
or emergency criterion may lack of realism with respect to
common situations implemented by air traffic controllers. On the
other hand, statistical data-driven methods to generate aircraft
trajectories excel at imitating operational practice but may
be difficult to implement even in simulations due to aircraft
performance limitations. This contribution proposes a common
baseline to compare literature and bleeding-edge methods to
generate air traffic trajectories. Keeping in mind that the most
appropriate criterion should always depend on the targeted
application, we present here an extensive set of metrics to
evaluate the quality of generated trajectories, before assessing
two generation methods in light of these indicators.
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I. INTRODUCTION

Aircraft trajectory generation is the problem which consists
in creating a full set of timestamped coordinates for an aircraft
flying through a given airspace. Such generated flight paths
should reflect the physical behaviour of a potential aircraft
(e.g. airplane, helicopter, UAV) and statistical properties of
the spatio-temporal bounds it evolves in. When the generation
process is aimed to be computed online, while the aircraft is
flying, we talk about trajectory prediction.

Applications for such techniques are many: trajectory gen-
eration allows for simulation of the traffic flows and Air
Traffic Control (ATC) workload to support airspace design
processes [1], [2]; it allows for prediction of aircraft trajec-
tories and resulting demand in airport/airspace resources to
assist air traffic flow and capacity management at strategic
and tactical levels, especially in future Trajectory-Based Oper-
ations environment [3]; it can help in the design of emergency
procedures in future Flight Management Systems for single
pilot operations and in collision risk modelling [4], which
raises additional challenges, including the need to sample
outlying trajectories with characteristics of situations leading
to a risk increase.

Historically, researchers have been tackling the problem of
trajectory generation from a guidance and control approach,
as a dynamic programming [5] or online optimisation [6], [7]

problem, sometimes with variants to tackle weather uncertain-
ties [8]. Such physical and dynamical models perform well
within such a scope but do not usually consider operational
real-time constraints, interaction with ATC or human factors.
On the other hand, data-driven statistical approaches aim
at imitating operational situations, examples ranging from
Generative Adversarial Networks (GAN) [9] to Gaussian
Mixture Models (GMM) [10]. Despite some kind of weak
statistical guarantee that such generated trajectories are rea-
sonable as they are designed to be close to sample trajectories
which have already been flown before, no physical model
like BADA [11] or OpenAP [12] is integrated and nothing
constrains such generated trajectories to be flyable.

Best suited approaches obviously depend on the intended
application; however, the literature reveals that in spite of
convincing results on specific applications, a set of common
metrics to objectively compare the performance of such
methods in terms of physical soundness and statistical realism
is currently lacking: model-driven methods would score high
on physical aspects, while data-driven methods would favour
statistical relevance over the law of physics. While the eval-
uation of trajectory prediction methods is natural—compare
the predicted and the actual trajectory—, and some simple
applications may settle for the distance between a generated
trajectory and existing ones, it may be hard to converge to
a reasonable set of metrics for a wide range of applications,
including those where generated trajectories are expected to
follow an atypical pattern.

After a literature review in Section II, we present in Sec-
tion III a set of baseline metrics to evaluate the performance
of generation methods. Further in Section IV, we consider two
data-based generation methods with respect to the proposed
framework before initiating a discussion and concluding in
Sections V and VI about the implications of our approach.

II. LITERATURE REVIEW

Trajectory generation and prediction have been extensively
studied by the scientific community over the past decades.
Applications are many, and the motivation behind each con-
tribution results in fundamentally different methods focusing
on flight trajectory creation.



Trajectory generation embodies several different meanings.
The most common one refers to the generation of an optimal
flight route, be it time or fuel efficient. Some focus on the
creation of a whole trajectory: in [5], the authors applied their
method to a Terrain Following Problem, whereas in [6], they
calculate a whole commercial flight trajectory which min-
imises the fuel consumption given a set of path constraints.

Trajectory generation can also be computed online, in an
attempt to prevent hijacking [7], to avoid hazardous weather
[8] (rerouting), or even to find an emergency path to the
closest most appropriate airport given the nature of the failure
[13]. The latter also gives a method to obtain a configuration
reducing airspace congestion, minimizing cost and respecting
connection plans. Trajectory prediction for anticipation of
potential conflicts or delays is another common application.
Among many available methods, Shi et al. [14] focus on
weather or ATC uncertainties, while Wang et al. study
Unmanned Aerial Systems (drones) in restricted air-spaces
for collision avoidance [15]. Trajectory prediction heavily
relies on aircraft performances: BADA [11] and OpenAP [12]
provide an extensive way of modelling aircraft performances
for all flight phases of a given trajectory.

Further, collision risk models are another common applica-
tion of trajectory generation methods: Blom et al. [16] present
stochastic models for aircraft trajectories in order to deduce a
collision risk model. Eckstein [17] use trajectory generation
to oversample its database and estimate collision risks with
Monte-Carlo methods. These frameworks may benefit from
further contributions [1], [10], [18] focusing on the generation
of artificial trajectories aiming to be ”reasonable” compared
to existing ones.

The best fitted trajectory generation method can greatly
differ from an application to another. We can however classify
them into two main categories: model-driven generation meth-
ods and data-driven generation methods: both approaches
focus on very different aspects, so the final choice heavily
rely on the final purpose.

A. Model-driven trajectory generation

Model-driven trajectory generation is the classical ap-
proach, based on kinematics and aerodynamics models. The
generation process is mostly based on the optimisation of a
given criterion, usually, the fuel consumption. Waller et al. [5]
solve this problem through dynamic programming: they look
for an optimal path in a large-scale discrete solution space.
Soler et al. [6] minimize a cost function under constraints,
designed to ensure that the solution found actually follows
physical kinematics equations. Additional constraints may
help design trajectories to avoid buildings [7], prohibited areas
[13], or evolving bad weather [8].

The other main approach is based on a physical or sta-
tistical modelling of the different characteristics of an air-
plane. The most famous aircraft performance models include
BADA [11] and OpenAP [12]. Such methods are determin-
istic and provide accurate flyable trajectories but do not
take into account general uncertainties like ATC manoeuvres,
human factors, or unexpected weather.

A common way to address uncertainty is to introduce
randomness to the flight mechanics equations so as to model
a trajectory by a stochastic process in continuous time,
leading to some stochastic differential equations [16]. An
other approach uses Monte-Carlo simulations to estimate the
probabilistic distribution of positions using simple kinematic
equations [15]; however, such simplifications are made in the
physical equations that may no longer be relevant for 3D
trajectories.

B. Data-driven trajectory generation

Data-driven trajectory generation is currently booming with
the hype around data science and artificial intelligence. ML-
based methods predict or generate trajectories using only past
observations. No simplifications in the physical models are
required and uncertainties are easier to take into account.

Again, variants are many, and heavily depend on the task
to achieve. Jacquemart et al. [4] use Markov chain processes
to introduce randomness to a 2D straight flight path with
constant speed, before using importance splitting to estimate
conflict probabilities. Poppe et al. [1] target the generation of
nominal behaviours for a flight route and focus on clustering,
with a K-means algorithm to define clusters of 1D climb
profiles. Centroids of each cluster are then considered as
the mainstream trajectory of the route. Murça et al. [10]
initiate their approach with a clustering analysis to identify
a set of trajectory patterns, which are then modeled with a
probability distribution function. Sampling trajectories from
the probabilistic model generates trajectories looking very
familiar to ATC in charge of the airspace.

Dimensionality reduction is an additional tool available
to improve the sampling of statistically coherent data. For
instance, Eckstein et al. [17] project trajectories on dimen-
sions with the most variance with a Principal Component
Analysis (PCA). The trajectory generation can be performed
in the latent space, before serving as input to the inverse
linear operation. Jarry et al. extend the process to functional
PCA, considering trajectories as continuous objects [18].
Generative Adversarial Networks [9] are one of the most
common non-linear alternative to f-PCA. However, as such
approaches based on the sampling from fitted probability
distributions excel at generating new trajectories similar to the
most commonly encountered ones, they can fail to generate
emergency trajectories or situations falling in the ”outlier”
category.

All metrics will rely on definitions of trajectory distances
which are the sinews of war. The most reviewed definitions
of distances [19], [20] consider trajectories as samples in Rn

and compare trajectories point by point. As an attempt to
address the curse of dimensionality causing data samples to
become very sparse in high dimensional space, hence making
it very difficult to have two trajectories to become close to
each other, the literature in trajectory clustering addresses
this issue by finding original metrics [21] or by projecting
trajectories to a lower dimension space prior to computing
Euclidean distances [22].



III. FRAMEWORK AND METRICS

A. Expectations about generated trajectories

Trajectory generation is a popular topic with many different
applications ranging from flight management systems to de-
confliction strategies or safety analyses. Expectations set on
those generation methods highly depend on the application
framework: therefore, the best suited method will depend on
the question asked and on the definition of the optimisation
criterion.

In most use cases, generated trajectories are intended to
serve realistic simulations, but the focus for the realism
depends on the application. In the following, we make a
distinction between a trajectory which concerns the behaviour
of a single aircraft, and a scenario which focuses on the
interaction between two or more aircraft. Expectations for
common trajectory generation use cases are:
• Free flight and automatic deconfliction. Dense air traffic

scenarios with a large number of flights are generated.
Usually, random flights generated at boundaries of the
experiment airspace. In these simulations, flights do not
follow predefined waypoints and often do not need to be
based on historical flight data. The expectation is that
flights need to be physically plausible (i.e., within the
performance boundaries);

• Human factor studies and ACTO training. Here, very
realistic trajectories are expected. A generated flight
should be able to imitate real flights on the radar screen,
for example, following predefined waypoints and flying
with common speed and altitude restrictions. Scenarios
should implement reasonable separations, have a realistic
mix of different aircraft categories and may focus on
less common situations (QFU reconfigurations, thunder-
storms, etc.) for specialised training;

• Flight safety analyses. These studies aim at estimating
the probabilities of rare events, incidents such as colli-
sion risks, runway excursions, etc. A common approach
is to model each risk with fault trees, decision barriers
aiming at mitigating the precursors leading to dangerous
situations: e.g. go around if unstable approach or TCAS
resolution advisory if aircraft separation is infringed.
Such conditional probabilities may be estimated with
Monte-Carlo simulations but as precursors have a low
probability of occurrence, a common workaround is to
use importance sampling or subset sampling to favour
the generation of risky situations and better estimate re-
sulting probabilities. Those situations should be realistic
but ensuring the realism is a difficult task: the deeper the
condition in the fault tree, the less common the situation;

• U-Space simulation. Simulation of UAVs often involves
different performance models than aircraft. Since these
studies often deal with future urban U-Space scenarios,
there is no historical data available. Hence, UAV flights
are generated based on performance models and con-
strains of U-Space;

• Emergency trajectories. This topic is mostly about the
generation of flyable trajectories under degraded capa-
bilities: engine loss situations (the Hudson river case),

support to pilot with reduced crew, etc. The generated
trajectories aim at determining the most reasonable al-
ternative airfield to reach, and to feed the generated
trajectory to a Flight Management System (FMS). Past
emergency situations, e.g., 7700 squawk codes in ADS-B
large-scale databases [23]; may be considered for offline
comparison, but no two such situations being similar, it
is hard to leverage this knowledge for a most realistic
trajectory generation method;

• Air traffic flow and capacity management (ATFCM).
Trajectory generation can here be used to estimate the
future workload in given airspaces and avoid placing
unnecessary regulations [1]. Studies are mostly about
the estimation of possible implemented ATC strategies
(regulations, rerouting) and prediction of times of entry
and exit in given airspaces. Aircraft performance is here
a minor contributing factor: trajectory generation can be
coarse grain; a good knowledge of operational practice
has a higher impact on the quality of the models.

Eventually, expectations boil down to two main categories:
1) operational realism: generated trajectories and situa-

tions should look familiar to experts, pilots and air
traffic controllers. Realism is not about real, past or
usual patterns (safety analyses would be keen on situa-
tions identified as leading to a high probability for the
studied risk), rather about experts who would not say,
for a good reason, that ”this situation would actually
never happen”;

2) physical realism: generated trajectories should be con-
sistent with the performance of the aircraft. This crite-
rion is however limited by the accuracy of the model,
and by limitations of aircraft flying with degraded
performances, e.g. limited climbing rate;

but all applications do not call for the same amount of realism
on both aspects. Table I below attempts to summarize these
considerations.

operational physical
realism realism

free flight n/a average
human factor high average
ATCO training high average
safety analyses outliers average
UAV n/a high
emergency situations n/a high
ATFCM high low

TABLE I. Expectations for trajectory generation with respect to
common use cases

B. A set of proposed metrics

In light of hereabove considerations, we propose in the
following a set of metrics to address different needs of realism
with respect to the application framework. These metrics
attempt to reduce the performance of a generation method
to a scalar, and are either operation or physics oriented.

a) Expert evaluation: this metric assesses the opera-
tional relevance of generated trajectories. A possible protocol
is to ask air traffic controllers or pilots familiar with a given



airspace to determine whether a generated trajectory or situa-
tion has actually happened in real life. Candidate trajectories
or situations would be randomly drawn from a large set
containing real and generated samples: a natural metric would
be the f-score, i.e. the harmonic mean of precision (how many
selected items are relevant? how many detected trajectories
were generated?) and recall (how many relevant items are
selected? how many generated trajectories were identified?).
If experts are fooled by generated trajectories, it is reasonable
to claim the generation method performs well.

The weakness of this approach lies in the selection of
experts: the metric is based on the evaluation of their per-
formance at detecting simulated trajectories, and assumes all
experts are reasonably skilled at this unusual selection task.

b) Similarity evaluation: this metric is particularly suit-
able when the question asked is whether a given situation
has already been encountered in a reference dataset. The
corresponding definition of this similarity score s(t) would
be the minimal distance d between the generated trajectory t
and all samples tr in the reference dataset:

s(t) = min
tr∈history

d(t, tr) (1)

The difficulty here lies in the definition of the reference
dataset which should contain as many possible patterns as
possible for the score to be relevant. The risk is indeed that
an unusual pattern, real or generated, scores low because it
is unrepresented in the reference dataset. The definition for d
can be chosen among distances defined in [19].

c) Statistical evaluation: this metric refers to the statis-
tical properties of a set of generated trajectories or situations.
Rather than computing a distance from an individual situation
to a reference dataset, the comparison of the distribution of the
generated set with the distribution of the real trajectories set
should be the center of attention. The Kolmogorov–Smirnov
test determines whether the generated samples and the refer-
ence data follow the same distribution but many other metrics
are available for probability distributions. The Kullback–
Leibler divergence tends to zero when the two distributions
match; the Kolmogorov distance, the Total Variation distance,
or the Wasserstein distance are valid alternatives, the latter
being well known for its application in Generative Adversarial
Networks (GAN).

The probability density functions may be defined on large
dimension spaces with finely resampled trajectories or after
projecting to a latent space of lower dimension. The final
score will highly depend on the definition of the reference
dataset, which determines the reference probability density
function. When the topic revolves around safety studies and
atypical risky situations are expected, the reference dataset
may need to be formed of wisely selected subsamples so
that the reference probability density function matches the
expectations to be met by generated trajectories.

d) Physical evaluation: this metric tackles with the dif-
ficulty to generate trajectories expected to be reasonable from
the point of view of the laws of physics with considerations
of aircraft performances.

In this approach, we implement such a metric by measuring
the distance between a given trajectory and its replayed
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Figure 1: Trajectory of an aircraft landing at Zürich airport (SWR563
on November 28th, 2019), with the corresponding navigational
points, altitude and speed settings; and the reconstructed trajectory
in dashed lines.



version in the open-source air traffic simulator BlueSky [24].
We decompose trajectories in segments aligned on naviga-
tional beacons defined in the considered geographical scope,
with specific altitude settings in the FMS decoded from
Enhanced Mode S information (selected altitude, BDS 4,0)
and with constant indicated airspeed (heading and speed
report, BDS 6,0) [25]. From these segments (see Figure 1),
we generate corresponding ATC instructions leading to pilot
actions, and compare each recomputed trajectory with the
original one.

This approach relies on several hypotheses, especially on
the assumption that the simulator and aircraft performance
model are mature enough so that the distribution of distances
between real trajectories and their reconstructed counterparts
is much narrower than for generated trajectories. It also
assumes that all the maneuvers implemented in the geograph-
ical scope are all efficiently modelled and reproducible in
the simulator. When we evaluate the generation method in
Section IV-A:

• we filter out any trajectory with holding patterns;
• we ignore the parts of trajectories after the last naviga-

tional point before aligning on the runway

as BlueSky implements neither automatic holding patterns nor
ILS landing at the moment. These are not limitations of our
approach, but of the chosen tool to reconstruct the trajectories.

C. Guidelines for assessing trajectory generation methods

The focal point when considering trajectory generation
methods is the context of the application. A general evaluation
of the whole process is possible, and we limit ourselves to
such general remarks in next Section. However, the final
decision to prefer a method over on another will only depend
on the targeted application and will reflect the priorities in
terms of expectations.

Section III-B presents a set of metrics that may prove
useful when evaluating generation methods. Some of these
metrics happen to be the founding stones of a wide range of
common generation methods. Therefore, one had better try to
prove that trajectories generated after a statistical analysis are
actually flyable, rather than measuring how close they match
the distribution they have been sampled from. Conversely,
assessing the flyability of trajectories calculated by a real
Flight Management System, knowing the physical parameter
of the aircraft with the best precision, seems vain: evaluating
how such a trajectory in an operational context, where the
aircraft has to interact with many other ones, would make
more sense. The rule of thumb is to favour metrics that do not
serve as bases of the implementation, of which the generation
methods are assessed.

Finally, whenever possible, implementing the same metrics
on a large number of generated trajectories, as well as on a
significant number of real trajectories matching the desired
criterion is a good way to secure the analysis and to ensure
the chosen metrics remains fully relevant when faced with
real samples.

IV. CASE STUDIES

The methodology is tested with a dataset including a
total of 19,480 trajectories landing at Zurich airport (LSZH)
between October 1st and November 30rd 2019. We relied
on The OpenSky Network [26] database to properly label
trajectories landing at LSZH.

All trajectories have been requested and preprocessed with
the help of the traffic Python [27] library which downloads
OpenSky data, converts the data to structures wrapping pan-
das data frames and provides a specialised semantics for
aircraft trajectories (e.g., intersection, resampling or filtering).
In particular, it iterates over trajectories based on contiguous
timestamps of data reports from a given icao24 identifier: all
trajectories are first assigned a unique identifier and resampled
to one sample per second before the bearing of the initial point
within 40 nautical miles (ASMA area) is computed.

The data presented in this paper is now provided as a
generic import in the traffic library, triggering a download
from a corresponding figshare repository [28] if the data is
not in the cache directory of the user.

A. Generation of terminal airspace operations

a) Methodology: The first trajectory generation method
was purely data-driven based on the methodology presented
by Murça and Oliveira [10]. The approach starts with a trajec-
tory clustering analysis to identify the major arrival trajectory
patterns in the terminal area. For this, the flight trajectory data
was resampled to generate trajectory vectors with the same
number p of tracking observations (p was set to 200 to have
a fine trajectory representation). The resampling approach
linearly interpolates the spatial position for timestamps t =
{0, τ, 2τ, ..., T} evenly spaced throughout the flight duration
T , where τ = T

(p−1) . The Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) algorithm [29] was
applied on the set of trajectory vectors, yielding twenty-six
trajectory patterns. The trajectory patterns identified were then
modeled in the form of a Gaussian Mixture Model (GMM)
[30] to create a probabilistic trajectory model. The probability
density function is given by a weighted sum of Gaussian
densities, where each Gaussian component of the mixture
models a particular trajectory pattern:

p(X) =

N∑
z=1

πzN (X;µz,Σz) (2)

where X = {lat, lon, alt, τ} is the multivariate random
variable that represents the multi-dimensional 4D trajectory,
N is the number of Gaussian components in the mixture, µz

and Σz are the mean vector and the covariance matrix of the
Gaussian component that models the zth trajectory pattern
and πz are the components weights in the mixture, which
satisfy:

0 ≤ πz ≤ 1 (3)
N∑

z=1

πz = 1 (4)



With the estimated parameters of the mixture θ =
{πz, µz,Σz}, trajectory generation is performed through sam-
pling from the probabilistic model as follows:

1) Sample z from Z ∼ Categorical(π);
2) Sample x from X/Z = z ∼ N (µz,Σz)

This method is strongly oriented towards operational real-
ism: expert evaluation has been conducted in [10], and both
similarity and statistical evaluations would make little sense
here as the method is explicitly built to optimize these metrics.

b) Results: We present here a physical evaluation based
on the replay of generated trajectories in the BlueSky simu-
lator. We compare two different modelling approaches of the
trajectories for the simulator:

1) based on navigational points: we detect alignments on
official navigational points in the area (by comparing
the track angle of the trajectory and the bearing to the
navigational point, with a tolerance of one degree) and
pilot the simulator with DIRECT TO instructions;

2) based on a line simplification with the Douglas–Peucker
algorithm: we detect the most salient points in the
trajectory and pilot the simulator with DIRECT TO
instructions on those artificially defined way points.

We replayed two sets of trajectories:
1) the reference dataset of real trajectories (without self-

intersections to avoid a well-known limitation of the
BlueSky simulator);

2) a large number of trajectories (5,000) generated with
this GMM-based approach (excluding trajectories from
five self-intersection patterns identified, for the same
reason above).

Not all trajectories replay with the same level of accuracy.
In an attempt to quantify the replicability of trajectories in
the simulator,
• we trim the original trajectory before it aligns on the ILS

(to avoid another limitation of the BlueSky simulator);
• we trim the replayed or original trajectory so as to

compare what was flown during the exact same duration;
then, we compute various trajectory distances between the
two paths based on the traj-dist Python library1, and plot
the distributions of distances for all reconstructed trajectories.

The library implements 9 different metrics with slightly
different distribution profiles: we present in Figure 2 only
two of them, the Dynamic Time Warping (DTW) and the
Symmetric Segment-Path Distance (SSPD). We choose here
a plot of cumulative densities on the same graph, for a fair
comparison between all approaches. We found that:
• trajectory modelling based on line simplification (dashed

lines) tends to yield better reconstructions than when
based on navigational points (solid lines). However,
better reconstructed real trajectories score better when
based on navigational points;

• artificially generated trajectories score very well with a
line simplification modelling, suggesting that the GMM
generates flyable trajectories, but that realism in terms of

1https://github.com/bguillouet/traj-dist
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Figure 2: Cumulative distribution of the distances (DTW and SSPD
metrics) between trajectories (real or generated) and their recon-
struction through the BlueSky simulator using a navigational point
or a line simplification (Douglas–Peucker) modelling. The faster
the curves comes close to 1, the more trajectories are correctly
reconstructed.

alignment on navigational points of STAR procedures is
lacking for some trajectories.

Figure 3 shows the the SSPD distance distributions by ar-
rival trajectory pattern based on reconstructed trajectories with
navigational points. It is interesting to note that the patterns
naturally have different levels of difficulty in reconstruction.
Moreover, generated trajectories that are more poorly aligned
with navigational beacons are more present for some of the
patterns.

Figure 4 focuses on poorly regenerated real and generated
trajectories:

• (with the reference dataset) sequencing in the TMA
involves more than alignment to navigational points:
while alignments on ERMUS, GIPOL and IKL (ILS) seem
operationally sound, the alignement on ZH110 could be
artificial. It also misses the tromboning action and leads
to a higher distance between both trajectories;

• when based on line simplification, the BlueSky simu-
lator faces a limitation about the maximum bank angle
allowed; this parameter is not present in ADS-B and is
hard to deal with in a generic manner;

• (with generated trajectories) matched navigational points
seem particularly artificial and do not reflect the reality
of the possible operations. This may be due to the
many non straight segments forming the trajectory, a
potential limitation with respect to operational realism.
Line simplification yields a decent reconstruction, apart
from the aforementioned bank angle issue.



pattern (from highest to lowest demand)

0
2,000
4,000
6,000
8,000
10,000
12,000
14,000
16,000
18,000
20,000
22,000

Reference GMM

Generation method

SSPD
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To wrap up, this analysis suggests that the proposed
method, which is based on a statistical density representation
of traffic incoming at Zurich airport:

• is able to generate feasible flyable trajectories with
respect to the law of physics, despite being purely data-
driven;

• generates trajectories with segments that can be more
poorly aligned with navigational beacons from STAR
procedures, especially for some particular patterns;

• is able to generate trajectories associated with the main
patterns observed in the airspace, but fails to reproduce
outlier trajectory behaviors harder to reconstruct that can
be seen in practice (see the better scores than with real
trajectories on the Douglas–Peucker line simplification
approach).

Finally, the analysis is limited by the representation capa-
bilities of the chosen simulator.

B. Generation of vertical profiles

a) Methodology: Vertical profile include altitude, verti-
cal rated, and speed of the flight. Undoubtedly, the previously
mention data-driven GMM can be used for the vertical profile
generate. However, we want to make use of different type of
data-driven approach to generate these flights for our analysis.

In [31], a parametric statistical model was introduced to
construct the kinematic models, WRAP (also part of the
OpenAP model), for the entire flight for common airliners.
Here, we make use of the descent part of the WRAP model
to generate vertical profiles for different aircraft types.

For descent flight, WRAP models key parameters such
as constant Mach then constant CAS segments, crossover
altitudes, and vertical speeds at different segments. All these
parameters are generated from a large number of flights and
modeled with parametric statistical models, which allows
random sample to be drawn from a set of predefined distribu-
tions. By combining different key parameters independently

drawn from these models, we can generate trajectories [12]
that resemble descent flight in real operations.

b) Results: In this analysis, we constructed a dataset
with 5,000 randomly generated vertical profiles, with a mix
of aircraft types, descent ranges, and speed schedules. Similar
to the approach of the previous case study, we use BlueSky
to evaluate these generated trajectories. Most importantly,
in order to independently evaluate this trajectories without
involving parameters from OpenAP, BlueSky is configured
with BADA performance model.

Figure 5 plots the vertical profile of a generated trajectory
and of its reconstructed profile through BlueSky: both altitude
profiles fit exceptionally well, which indicates that the vertical
trajectory can be very well reconstructed by the BlueSky
simulator. In terms of speed profile, a significant difference
appears between the two trajectories. This can be explained
by the different default deceleration value used in OpenAP
(−0.2 m/s2) compared to BlueSky (−0.5 m/s2) during the
segment after the constant CAS descent.

Since the vertical position consists of only one parameter
(altitude), the metrics used for evaluation are much simpler.
We present in Figure 6 three evaluation metrics, resp. the
Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and Median Absolute Error (MedAE). These three
metrics are calculated for each pair of generated and recon-
structed trajectories.

In these plots, we can see that most of the generated trajec-
tories have relatively small errors compared to reconstructed
trajectories in the simulator. However, a small number of
outliers still exist. Figure 7 shows the vertical profile for
one of the outliers drawn from the dataset. The most striking
difference lies in the divergence between the two trajectories
at lower altitudes (below 10,000 ft). The generated trajectory
has a higher than desired vertical rate, which is limited by
the performance model in the simulator.



ERMUS

GIPOL

ZH110

IKL

Reference dataset: VLG442_723

Reference

Navigational points

Douglas-Peucker

ML29

ML16

Generated trajectory (GMM)

Reference

Navigational points

Douglas-Peucker

Figure 4: Examples of trajectories failing to reconstruct through the
BlueSky simulator. In the reference dataset (real trajectories), trom-
boning instructions are hard to reconstruct; the maximum bank angle
also becomes a limitation with the line simplification (Douglas–
Peucker) modelling.

V. DISCUSSION

Section IV applies our proposed approach on two existing
trajectory generation methods: the first method generates
4D trajectories based on the identification of main flows in
a given airspace, after sampling from a Gaussian Mixture
Model; the second method focuses on the physical character-
isation of performance for the vertical part of the trajectory
using statistical kinematic models constructed from past flown
trajectories.

While other metrics would be available for purely physical
generation approaches, we focus here on the evaluation of
the physical realism for statistically generated trajectories.
Both approach relies on a fast-time air traffic simulator,
BlueSky, to evaluate the physical realism of our methods.
Even through BlueSky is a well established simulator within
the ATM research community, we acknowledge that this
evaluation approach comes with the a risk of evaluating the
relevance of the method and the performance of the simulator
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Figure 5: An example of generated and reconstructed vertical flight
profiles (166 data points in both trajectories). Generated trajectory
is in Blue, while reconstructed trajectory is in orange.

simultaneously.
Keeping these limitations in mind, we come up with the

following key takeaways:
1) When evaluating a generation method, one shall clearly

state the expectations for the use case (see Sec-
tion III-A) and consider relevant metrics in accordance
with the original requirement (Section III-B);

2) To compare multiple generation methods, one shall
avoid using a metric of which one of the methods
relies on. Further, one should be cautious when using
the metric as objective for improving the generation
method, as the method could become biased towards
the metric;

3) One shall evaluate results from different metrics to
assess whether the generation method is appropriate for
the application being considered. For example, Figure 2
revealed that the generation method was able to repro-
duce well the main patterns observed in the terminal
airspace but was not able to generate outlying trajec-
tory behaviors that are naturally harder to reconstruct.
Therefore, it would be more suitable for an air traffic
flow and capacity management application than for a
Monte-Carlo simulation in collision risk modelling.

VI. CONCLUSION

After an extensive literature review about trajectory gen-
eration methods, in this paper, we detailed the fundamental
elements required to build an trajectory generation evalua-
tion framework: common expectations, objective quantitative
metrics and guidelines to evaluate generation methods. With
case studies, we applied this methodology for evaluating two
generation methods with a new critical eyes. The approach
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Figure 6: Distributions of error metrics used for comparing vertical
profiles of generated and simulated trajectories, showing an average
error of about 100 ft.

helped identifying corner cases and room for improvement
in both methods when considering multiple use cases. More
importantly, the evaluation framework provides an objective
way to compare the performance of different methods whether
a model-driven or data-driven approach is pursued. Future
works shall apply this evaluation framework to objectively
assess and compare the data-driven trajectory generation
performance with new methods.
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