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Abstract—Predicting both optimal and reliable aircraft
turnaround time is one of the most critical tasks in ACDM
flight scheduling plans. Considering the effects of randomness
and fuzziness on the turnaround process duration, we transform
the probability distribution of well-fitted sub-processes into a
cumulated density function, equivalent to the fuzzy membership
function (FMF), then identify the fuzzy membership grade of
each turnaround sub-process by goodness-of-fit. Based on the
Critical Path Method (CPM) technique and fuzzy set theory,
the turnaround time, considering stochastic effects, is evaluated
using the fuzzy critical path method (FCPM). To validate this
calculation, we constructed the FMF from historical data and
compared it with FCPM-based turnaround times. In addition,
we utilize these historical data to generate fuzzy sets of different
arrival delays using Frankfurt airport data of summer 2017 and
conclude that delays are positively correlated with the FCPM-
based turnaround process through a linear regression model.

Keywords—Decision Support System; Airline Ground Opera-
tions; Uncertainty; FCPM; Fuzzy Decision Making

I. INTRODUCTION

In a world with increasing air traffic density and rapid
growth of the global civil aviation industry, despite the
pandemic situation in 2020-2021 [1], considering the need
for extremely cost efficient operations due to critical financial
conditions for the entire ATM industry and, on the longer
run, the return to scarce airport capacities, ground operations
are a challenging task with limited flexibility for airlines. Air
traffic control (ATC) take main responsibility for on-block
times (the time between arriving at the gate and leaving
it for departure).Those have been standardized through the
implementation of sophisticated decision support mechanisms
such as Airport Collaborative Decision Making (A-CDM),
supported at major airports by Arrival Manager (AMAN),
Departure Manager (DMAN) and advanced approach proce-
dures such as optimized trombones as P-RNAV procedures or
Point Merge Systems (PMS). Hence, the turnaround remains
the only time frame within which an airline has major but still
no exclusive control over the operations of its aircraft. Due to

the very complex nature of the turnaround, which involves the
interaction of various stakeholders for multiple simultaneous
processes [2]–[4], a large part of ground operations has yet to
be transferred into the digital era to unlock further potential
for efficiency gains. A practical approach to tackle this issue
is to assess aircraft turnaround time accurately for given
conditions. However, dozens of sub-processes constituting the
aircraft turnaround are uncertain as multiples participants are
involved, including airlines, ground handling agents, airport
operators, air traffic control, etc. Consequently, the airspace
user will have to consider aircraft as stochastic to perform
robust net planning. This is not only because proper schedul-
ing of the turnaround time allows for an efficient integra-
tion of resources in the turnaround process thus effectively
minimizing monetary losses due to flight delays. For the
net perspective, the short and precisely scheduled turnaround
times may increase the airline’s economic efficiency due to
improved aircraft utilization.

The way how these ground handling activities are con-
trolled mostly depends on the individual expert knowledge
of the involved experts from airline operations centers (AOC)
and ramp agents, coordinating the turnaround processes based
on deterministic planning tools and via headset/ telecom-
munication. The introduced concept of information sharing
in the context of Airport - Collaborative Decision Making
(A-CDM) allows to manage timestamps from touch-down
until departure, thus including on- and off-block times per
movement (AONT/AOBT) [5], [6]. Further details to these
processes are gathered – if ever – on airline level, not yet
being shared through A-CDM. Technological support in this
workflow is still limited, depending on the local system
infrastructure. Consequently, in case of disruptions, the scarce
data availability and management capabilities hamper coor-
dination and delay mitigation measures. Also, lead times at
detection of such negative events are often too short to allow
for effective operational delay compensation. Post-operational
analyses of delay codes do not help in identifying workflow
weaknesses, since these codes are often assigned very biased
[7]. Proactive considerations based on A-CDM time stamps



so far are solely applied to the inbound side, preparing for
potential arrival delays by implementing time buffers in the
block times planning allowing to absorb such deviations for
the price of reduced plan efficiency on average [2], [8]–[10].
The accurate integration of process uncertainties and variable
process executions into the aircraft turnaround problem is
the fundamental aim of this paper, using the Fuzzy critical
path method (FCPM). FCPM is different from probabilistic
approaches for critical path analysis. We aim to highlight the
advantages of FCPM, to investigate the incorporation of a
fuzzy duration of activities within the critical path analysis,
and to present a straightforward computational approach for
FCPM.

The paper starts with introducing FCPM in Section II
and the results of its application to an example aircraft
turnaround are described in Section III. Section IV describes
the application of the new method to turnaround control with
considering historical data and different delay sets, and the
results are analyzed and discussed in this section. Section
V draws conclusions and provides an outlook onto different
areas of research.

II. METHODOLOGY

In this section, the problem characteristics are presented,
and it is explained why FCPM is a promising method super-
seding current strategies for the incorporation of uncertainties
in the prediction of stochastic processes such as turnarounds
with their target times. Finally, the underlying mathematical
procedure is introduced concerning a distinct turnaround
process network.

A. Fuzzy numbers and fuzzy sets
The nature of logistic processes can be divided into two

broad categories: Deterministic behavior or uncertainty. The
latter is often further split into randomness and vagueness.
We consequently apply three types of mathematics to study
respective data sets. The first type belongs to the group
of deterministic mathematics, which explores the object in
certainty. There must be some necessary connections between
the objects, which could be modelled through differential
methods. The second type belongs to stochastic mathemat-
ics based on probability theory. Monte Carlo Simulation,
Bayesian Network, or Markov Chains are typical methods to
search for casual relationships between objects. The last type
is found in fuzzy mathematics, studying vague phenomena
[11], [12].This paper focuses on the third type of mathemat-
ics: the fuzzy number.

Fuzzy sets represent an alternative mathematical framework
that provides a solution to the uncertainty arising from the
lack of clear criteria for classifying members [13].

As the range of the inputs are not the same, it is necessary
to make the fuzzy membership function µÃ normalizes the
values to [0,1],

µÃ =

{
U → [0, 1]
u 7→ µÃ(u)

(1)

where u ∈ U and the value of function µÃ is the member-
ship level of fuzzy set Ã, and the function µÃ represents the
membership function of fuzzy set Ã [14],

µÃ = {(u, µÃ(u)) |u ∈ U} (2)
Since the operations in this paper involve only fuzzy

addition and fuzzy subtraction, these two arithmetic rules
are introduced. Assuming that ∀a1, a2, b1, b2 ∈ U , and
Ã = (a1, a2), B̃ = (b1, b2), the fuzzy addition and fuzzy
subtraction can be formulated by (3) and (4):

(a1, a2)(+)(b1, b2) = (a1 + b1, a2 + b2) (3)

(a1, a2)(−)(b1, b2) = (a1 − b2, a2 − b1) (4)

B. Typical Fuzzy Membership Functions (FMF)

Much data with ambiguity and uncertainty in practical
problems can be represented by fuzzy membership functions
(FMF), while there are various types of FMF, such as e.g.,
trapezoidal FMF, triangular FMF, Bell-shaped FMF, Sigmoid
FMF, Gaussian FMF. [15]. In this part, we introduce two
typical fuzzy membership functions, triangular and trape-
zoidal FMF and evaluate which one is more suitable to our
model. These two memberships have been selected due to
their straightforward arithmetic operations.

a) Triangular fuzzy membership functions (FMF):
Supposing the membership function of a triangular fuzzy
number Ã(a, b, c) with the lower limit a, upper limit c and
the a value of b, where a < b < c.

In order to perform the arithmetic operations of two trian-
gular FMFs, (5) and (6) define the addition and subtraction
formulas.

Ã+ B̃ = (a1, b1, c1)(+)(a2, b2, c2)

= (a1 + a2, b1 + b2, c1 + c2)
(5)

Ã− B̃ = (a1, b1, c1)(−)(a2, b2, c2)

= (a1 − c2, b1 − b2, c1 − a2)
(6)

b) Trapezoidal fuzzy membership functions (FMF):
The membership function of a trapezoidal fuzzy number
Ã(a, b, c, d) has the lower limit a, upper limit d, a lower
support limit b, and an upper support limit c, where a <
b < c < d.

In order to perform the arithmetic operations of two
trapezoidal FMFs, (7) and (8) again define the addition and
subtraction formulas.

Ã+ B̃ = (a1, b1, c1, d1)(+)(a2, b2, c2, d2)

= (a1 + a2, b1 + b2, c1 + c2, d1 + d2)
(7)

Ã− B̃ = (a1, b1, c1, d1)(−)(a2, b2, c2, d2)

= (a1 − d2, b1 − c2, c1 − b2, d1 − a2)
(8)

C. Probability-Possibility transformations

Statistics are the extension of mathematics from a specific
to an accidental phenomenon, while fuzzy numbers are the
extension of mathematics from the deterministic to the vague
realm. Reference [12] developed the possibility theory in
which a FMF could be illustrated as a possibility distribution
and stated that the relationship between fuzzy numbers and



possibility distributions could be analogous to the relationship
between random numbers and probability distributions.

Probability theory is the basis for statistics, which focuses
on the study of quantitative laws in chance, i.e., the probabil-
ity that a given element occurs in a universal set [14], while
possibility theory is related to the state of being believed and
plausible [16], and reflects the imprecise information with a
fuzzy membership degree normalized to [0,1].

Many pieces of research have tried to accomplish
probability-possibility distribution transformation in different
ways. Reference [17] put forward several methods to convert
probability distribution into possibility distribution. The most
promising approach was the ”interval scale method”, which
combined the Shannon entropy H(p) the Dempster-Shafer
theory V (p). The former attempted to quantify the uncer-
tainties in decision situations using a probabilistic approach,
while the latter assumed a fuzzy set Ã of ”U-uncertainties”).
Reference [18] established a method for measuring proba-
bility under non-deterministic conditions by discussing the
connection between probability-possibility transitions, confi-
dence intervals, and probability inequalities. Reference [19]
provided a feasible method for transforming statistical data
into a fuzzy rule base in accordance with the “hierarchi-
cal fuzzy rules” and used it for the diagnosis of medical
aphasia. Reference [20] proposed an approach to transform
probability- into possibility distributions via FMF from a
likelihood perspective. The method constructs a standard
fuzzy set, which can be viewed as a triangular or trapezoidal
FMF. For that set, the best parameter combinations were
fitted by the input probability distribution. Reference [16]
put forward another “Hypothesis Test” approach to obtain
fuzzy sets directly from probability distribution by simulating
various decision rules.

D. Probabilistic data of A320 turnaround

The accurate calculation of the target off-block time
(TOBT) for a given flight represents a crucial process to
effectively apply A-CDM. The difficulty arises from the com-
plexity of the prevailing aircraft turnaround and the number
of involved resources and staff members, all impacting the
TOBT and other A-CDM timestamps. The (IATA) ground
operations manual ((I)GOM) for an A320 aircraft lists twelve
related processes (see Fig. 1) which split – according to the
individual interest of the operator – into about 150 individual
sub-tasks and involves up to 30 different actors. Although not
all processes need to be executed in every turnaround (i.e.,
low-cost carriers tend to cater or clean their aircraft less often,
depending on the flight characteristics), there are a number
of mandatory processes, which often characterize the critical
path of the turnaround (red boxes in Fig. 1).

According to the GOM [4] the critical path of a typical
turnaround comprises Fuelling out of the set of candidate
processes running in parallel (Fig. 1). Consequently, other
processes such as cleaning or catering may constitute the
critical path. The probability set is then expressed by stochas-
tic process models [21]. Minimizing the turnaround time
in case of schedule deterioration may consequently imply
interference with several processes to guarantee an effective

schedule recovery. Once these recovery measures are applied,
estimating their impact on the TOBT is found to be complex.

Figure 1: MPM Network Graph of a typical Turnaround with
critical path and main activities

As mentioned before, it is crucial for an airline to con-
stantly monitor every time stamp and in particular the TOBT
considering all uncertainties. As the stochastic interdepen-
dencies are hardly manageable manually, this paper sug-
gests automated decision support transferring the knowledge
about time distributions and resource dependencies of each
individual core process into a mathematical model, which
aggregates all distributions into a single one. To the best of
our knowledge, this approach is deemed to produce more
accurate results than existing - purely stochastic methods
which usually depend on Monte-Carlo simulations or involve
state-transition models (see [3], [8], [22]). Many pieces of
research on modeling TA with uncertainty are mainly based
on probabilistic theories, such as Bayesian networks or Monte
Carlo simulations [23], [24]. Furthermore, only a few attempts
have been made to deal with TA as a project scheduling
problem in an uncertain environment. Furthermore, our model
type can directly compute the total impact time of recovery
measures (translated into parameter adaptations) at a preset
confidence interval without repeating the entire simulation.

To consider the stochastic processing times of each activity,
deterministic GOM values are substituted by fitted Gamma-
or Weibull-distributions as shown in Table I and Fig. 2.
Both distribution types are well-suited as they comprise no
negative time values and have demonstrated a good fit when
matched with data from operational analyses [4], [21]. The
parameters for deboarding, fuelling, catering, cleaning, and
boarding were, thereby, adopted from previous studies of
our chair [4], [21]. All the remaining processes were also
matched to Gamma-distributions, containing the respective
GOM values as 80% quantiles. It should be noted that all
parameters are variables in the model and can be adjusted
to airline-/ airport-specific operational characteristics at any
time.

In this approach, all processes are assumed to be indepen-
dent of each other, as typically executed by different resource
entities. According to Table I, standard operating procedure
(SOP) schedules, for instance, three handling agents for
the cargo processes UNL and LOA, while CLE, CAT, and
FUE are executed by a single servicing vehicle or crew,
respectively. Possible interactions between parallel cabin and
ramp processes are neglected since they are supposed to be
centrally coordinated by the ramp agent. Strategic buffer times
are also omitted, as, in case of delays, they would naturally
be consumed with priority and have no direct effect on the



TABLE I. Stochastic turnaround process distribution [21]

Process/Activity Mean St.Dev.
Abbrev. Name Distribution in min in min

IB In-Blocka - - -
ACC Acceptance Gamma (2.0,1.0) 2.00 1.41
DEB Deboarding Gamma (6.81,1.47) 10.01 3.83
CLE Cleaning Weibull (2.16,11.29) 9.99 4.88
CAT Catering Weibull (2.18,17.37) 15.38 7.44
FUE Fuelling Gamma (9.12,1.64) 14.96 4.95
UNL Unloading Gamma (11.29,1.24) 11.10 3.71
LOA Loading Gamma (15.34,1.24) 15.48 4.38
BOA Boarding Gamma (14.36,1.47) 21.10 5.57
FIN Finalization Gamma (4.0,1.0) 4.00 2.00
OB Off-Blocka - - -

aIB and OB as start and end events have no duration.

Figure 2: Stochastic turnaround standard process distributions

execution of the individual processes [4]. This leaves the
MPM network graph as depicted in Fig. 1, for which the
stochastic processing time will be calculated using FCPM.
Equally to the critical path algorithm, sequential processes
are added with their duration, while parallel processes wait
for their longest (critical) counterpart to be finished before
the next activity can be started. As the resulting function is
not trivial and does not follow a known distribution, it is
necessary to describe it via its constituents.

The most classic project scheduling methods include the
Critical Path Method (CPM) and Plan Evaluation Method
and Review Technology (PERT), both are project manage-
ment techniques based on network analysis to illustrate the
sequence of the task [25].

Critical Path Method (CPM) is a proven solution to a
project scheduling problem, based on network analysis to
illustrate the task sequence when the task duration is de-
termined. Therefore, we combine the CPM with fuzzy set
theory. Fuzziness and randomness in network planning are
given sufficient consideration, i.e., using FCPM to achieve
a more realistic membership degree of the fuzzy network’s
total duration. Reference [26] proposed the combination of
the concept of fuzzy sets with the CPM technique, where
fuzzy sets could be used to characterize task durations under
uncertainty, and CPM was used to illustrate the sequence of
the tasks. Reference [27] tried to express the task duration
in terms of fuzzy number and to find the earliest start time
of the task. In these studies, time parameters of the task
in the fuzzy network were obtained from the forward- and

backward calculation using the CPM technique. However, in
the arithmetic operation of fuzzy numbers, fuzzy number Ã
plus fuzzy number B̃ equals fuzzy number C̃. But, it cannot
be derived that fuzzy number Ã equals fuzzy number C̃ fuzzy
minus fuzzy number B̃. So, direct application of the CPM
technique to a fuzzy set in the backward calculation would
not get to correct results for the latest start and the slack
time. Therefore, [28] considered an ”interactive fuzzy sub-
traction” to construct the fuzzy critical path and viewed that
only the positive part (including zero) of the fuzzy set was
practically meaningful. Reference [29] proposed a general
form for computing the latest start and slack time of a task
to extend backward calculations for all fuzzy networks. [30]
used the FCPM technique to obtain a fuzzy critical path for
aircraft maintenance projects in an uncertain environment by
considering the attitude of decision-makers towards risk.

III. APPLICATION TO TURNAROUND CONTROL

Knowing a reliable target time for any turnaround op-
eration is just the first step towards efficient operations
management of an airline. Due to tight schedules and the
complex itineraries of aircraft, crew, passengers and servicing
resources, potential deviations of the turnaround target time
from the original schedule can cause significant propagation
effects throughout the entire airline network [31], [32].

A. Fuzzify of the A320 turnaround data

Fuzzification of data covers the transformation of a prob-
ability distribution to a possibility distribution. There are
some approaches to implement the probability-possibility
transformation (see [17], [18], [20]), and the Hypothesis Test
Method is tested to preserve the most original information in
the conversion, whose main idea is through the continuous
distribution function of the decision rule α to obtain the
corresponding membership level of a fuzzy set [16]. The
flowchart to conduct the probability-possibility transformation
is as Fig. 3, where x stands for the period covered by each
probability with α significance level.

The p− value data distribution of the test statistic in this
approach could be calculated by (9),

p− value(x) = 2 ∗ (0.5− |0.5− CDFD(x)|) (9)
The p − value refers to the probability that the observed

sample would seem more extreme if H0 is not rejected.
However, if p − value > a, it seems appropriate not to
reject H0 and vice versa. The parameter δ(H0) in (10) is to
ensure that the decision-rule α in the transformation cannot
be rejected H0.

δ(H0)(x, a) =

{
1, if [p− value(x) > α]
0, if [p− value(x) < α]

(10)

Decision rule α is repeated from αmin to αmax and the
probability density distribution function PDFA is summed to
obtain a cumulative distribution function CDFA. Regarding
(10) the possibility distribution could be written as (11).
The possibility distribution is computed as the integral of
the probability distribution from a decision rule α, which



Figure 3: Flowchart of probability-possibility transformation
algorithm

is determined by simulating different probability density
functions.

ΠA(x) =

∫ amax

amin

δ(H0)(x, a) ∗ PDFA(a) da

=

∫ p−value

amin

PDFA(a) da

= CDFA(p− value)− CDFA(αmin)

(11)

where ΠA(x), the possibility distribution, could be treated
as fuzzy membership function µÃ(x) [12].

Knowing each process distribution and its parameters (see
I), the probability density function (PDF) and the cumulative
distribution function (CDF) can be obtained through the
distribution calculator. After implementing the transformation
algorithms as depicted in Fig. 3, the transformation results for
each sub-process duration are presented in Fig. 4, where the
x-axis represents the task duration (in minutes), and the y-
axis represents both the probability of the Probability Density
Function and possibility of Possibility Function. The blue line
represents the possibility function beside the red line which
depicts the PDF of their relative process.

B. FCPM Algorithms

As mentioned in Section I, FCPM is a combination of
CPM techniques and the fuzzy set theory, which is effective
in project scheduling problems with uncertain task durations.
FCPM has two basic principles:

• Principle 1: Only the non-negative part of fuzzy num-
bers has a physical explanation because the uncertain
factor in this paper is time, and as such is always
positive. [28].

• Principle 2: The fuzzy critical path is represented by
the minimal ranking indices of all fuzzy members. In
other words, after calculating the possible fuzzy set of
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Figure 4: Transformation Result for Process Duration (X-axis
shows the duration in Min)

all paths, the one with a minimum flexibility (minimal
ranking indices) is the critical one [33].

To find the best fuzzy membership function between trape-
zoidal and trianglar FMFs described in section II-B, the
Kolmogorov-Smirnov test is used in this paper to compute
a goodness-of-fit for the possibility distribution to ascertain
whether Triangular or Trapezoidal is the best fitted function
for each process. The results are illustrated in Fig. 5.

Table II shows the optimal parameter combinations for each
fuzzy membership function. The K-S test showed stability
between 0.08 and 0.09 for each fuzzy membership function.

In this paper, we choose trapezoidal FMF to describe the
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Figure 5: Result of Goodness-of-Fit of K-S test for each
Process Duration (X-axis shows the duration in Min)

TABLE II. Parameter combinations of FMF for each process

Process Triangular FMF Trapezoidal FMF
ACC (0.24,0.24,6.00) (0.36,0.72,0.96,6.00)
DEB (4.20,6.20,21.00) (4.20,4.20,6.20,21.00)
CLE (1.76,22.00,22.00) (1.76,2.20,3.08,22.00)
CAT (3.40,4.08,34.68) (3.40,4.08,5.34,34.68)
FUE (7.28,8.28,28.56) (7.28,7.28,8.28,28.56)
UNL (7.00,9.00,25.00) (7.00,7.00,9.00,25.00)
LOA (10.88,11.88,32.00) (10.88,10.88,11.88,32.00)
BOA (11.52,28.96,36.00) (11.52,26.16,28.96,36.00)
FIN (1.40,9.00,10.20) (1.40,8.00,9.00,10.20)

whole turnaround duration, since a triangular FMF could be
regarded as a special trapezoidal FMF (when b = c), and
also trapezoidal FMF has a better fitting than the triangular
in some sub-processes, such as Catering with the better K-S
test result.

C. Defuzzify of the fuzzy membership functions

There are different defuzzification methods to derive in a
crisp number from fuzzy membership function. These meth-
ods can turn the parameter combinations of the trapezoidal
FMF into a crisp number to verify if the result of the
conversion is plausible. Setting the trapezoidal fuzzy number
as Ã = [a, b, c, d ], the formula for defuzzification can be
expressed as (12)

Defuzzy(Ã) =
(c2 + d+cd)− (a2 + b2 + ab)

3[(c+ d)− (b+ a)]
(12)

The defuzzification result for each sub-process can be
obtained by building the trapezoidal FMF based on the
optimal parameter combinations illustrated in Table II. As
shown in Table III, empirically, the crisp values of each sub-
process duration that return from the fuzzy sets are realistic
compared to the mean value of each sub-processes in Table
I, indicating that the transformation and the goodness-of-fit
process can be implemented. Therefore, a fuzzy set of the
sub-process duration could be used directly for implementing
the computation.

TABLE III. Defuzzification results for each turnaround pro-
cess

Nr. Process Fuzzy Set (a,b,c,d) Defuzzification
1 IB (0.00, 0.00, 0.00, 0.00) 0
2 ACC (0.36, 0.72, 0.96, 6.00) 2.37
3 DEB (4.20, 4.20, 6.20, 21.00) 9.87
4 CLE (1.76, 2.20, 3.08, 22.00) 9.69
5 CAT (3.40, 4.08, 5.34, 34.68) 13.39
6 FUE (7.28, 7.28, 8.28, 28.55) 14.38
7 UNL (7.00, 7.00, 9.00, 25.00) 13.07
8 LOA (10.88, 10.88, 11.88, 32.00) 17.94
9 BOA (11.52, 26.16, 28.96, 36.00) 25.16

10 FIN (1.40, 8.00, 9,00,10.20) 6.79
11 OB (0.00, 0.00, 0.00, 0.00) 0

D. Calculation of A320 Turnaround using FCPM Method

Following is some primary time symbols in the FCPM [34]:
Aij The task, which is connected between

node i and node j
FETij Fuzzy duration of Aij

FTSij Fuzzy slack time of Aij

FESj Fuzzy earliest time of node j
FLFj Fuzzy latest time of node j
Predj Predecessor tasks
Succj Successor tasks
Pi Path i from the start node to the end node
FCPM(Pi) Fuzzy duration of the path i

in the project
FCPM(Pc) Fuzzy duration of the fuzzy critical path

in the project



First, we set the fuzzy earliest time of the first task as
FES1 = (0, 0, 0, 0), then the fuzzy earliest time of the
predecessor and the fuzzy duration of this task FETij are
added by fuzzy trapezoidal addition using (7) to obtain fuzzy
earliest time FESj of task j, furthermore, there must be the
largest FESj in the forward calculation of all possible paths,
which is considered as the total duration spent on the entire
project. The forward calculation is performed using (13).{

FESj = (0, 0, 0, 0), j = 1
FESj = max{FESi(+)FETij |i ∈ Predj}, j 6= 1

(13)
Then, we set FLFn = FESn, by the definition that the

fuzzy earliest time of the last task is equivalent to the fuzzy
latest time of the last task. In the backward process, FLFj

should be calculated from the end node to the start node in
a reverse order (j = n− 1, n− 2, . . . , 2, 1). Then, the fuzzy
latest time of the successor subtracts fuzzy duration FETij of
this task by trapezoidal fuzzy subtraction (8) to obtain fuzzy
latest time FLFj of this task. Reference to (14), there must
be the smallest FLFj of all possible paths.{

FLFn = FESn, j = n
FLFj = min{FLFk(−)FETjk|k ∈ Succj}, j 6= n

(14)
After that, the task slack time FTSij is the allowable delay

in the task implementation because it does not cause any
delay in the entire project duration. Therefore, there is no
fuzzy slack time in the critical path [30]. The fuzzy slack
time FTSij could be represented as (15).

FTSij = FLF j−(FESi + FET ij) , 1 ≤ i ≤ j ≤ n; |i, j ∈ N
(15)

The fuzzy duration of the path Pi in the project network is
the sum of all fuzzy slack time in all possible paths, which
is formulated by (16).

FCPM (Pi) =
∑

1≤i≤j≤n,|i,j∈Pi

FTSij , Pi ∈ P (16)

The fuzzy critical path refers to the minimal fuzzy set of
all possible paths in the project depicted by (17).

FCPM (PC) = min FCPM (Pi) | Pi ∈ P (17)
The fuzzy critical path method calculation includes the

forward-and backward processes, which possess consistent
procedures with the CPM technique. The fuzzy task duration
FETij is obtained from the goodness of fit result from Table
II.

Table IV shows Fuzzy Earliest Time (FET) and Fuzzy
Latest Time (FLT) of each process. The results of calculation
are obtained using (13) and (14).

Regarding FESj and FLFj , now the fuzzy slack
time,FTSij , can be calculated using (15) and the results are
depicted in Table V.

Reference [35] proposed a decision-aid method concerning
fuzzy sets to identify the fuzzy critical paths as well as the
fuzzy duration for the network by calculating the risk index

TABLE IV. Fuzzy Earliest Time (FET) and Fuzzy Latest
Time (FLT)

Task Fuzzy Earliest Start Fuzzy Latest Finish
IB (0.00, 0.0.00, 0.0.00, 0.0.00) (-76.99, -7.04, 7.04, 76.99)

ACC (0.36, 0.72, 0.96, 6.00) (-70.99, -6.08, 7.76, 77.35)
DEB (4.20, 4.20, 6.20, 21.00) (-49.99, 0.12, 11.96, 81.55)
CLE (1.76, 2.20, 3.08, 22.00) (14.56, 37.36, 45.4, 100.35)
CAT (3.40, 4.08, 5.34, 34.68) (-21.44, 8.40, 19.24, 88.83)
FUE (7.28, 7.28, 8.28, 28.55) (-21.44, 8.40, 19.24, 88.83)
UNL (7.00, 7.00, 9.00, 25.00) (-21.44, 8.40, 19.24, 88.83)
LOA (10.88, 10.88, 11.88, 32.00) (24.76, 46.36, 53.4, 101.75)
BOA (11.52, 26.16, 28.96, 36.00) (14.56, 37.36, 45.40, 100.35)
FIN (1.40, 8.00, 9,00,10.20) (24.76, 46.36, 53.4, 101.75)

TABLE V. Fuzzy slack time in the turnaround process

Nr. Task FTS
(1,2) (IB, ACC) (-76.99, -7.04, 7.04, 76.99)
(2,3) (ACC, DEB) (-76.99, -7.04, 7.04, 76.99)
(2,7) (ACC, UNL) (-48.44, 15.52, 26.80, 82.11)
(3,6) (DEB, FUE) (-76.99, -7.04, 7.04, 76.99)
(3,5) (DEB, CAT) (-83.12, -4.10, 10.24, 80.87)
(3,4) (DEB, CLE) (-70.44, -1.84, 12.12, 82.51)
(7,8) (UNL, LOA) (-48.44, 15.52, 26.80, 82.11)
(8,10) (LOA, FIN) (-48.44, 15.52, 26.80, 82.11)
(6,9) (FUE, BOA) (-76.99, -7.04, 7.04, 76.99)
(5,9) (CAT, BOA) (-83.12, -4.10, 10.24, 80.87)
(4,9) (CLE, BOA) (-70.44, -1.84, 12.12, 82.51)
(9,10) (BOA, FIN) (-76.99, -7.04, 7.04, 76.99)
(10,11) (FIN, OB) (-76.99, -7.04, 7.04, 76.99)

to rank the fuzzy numbers of all possible paths in the project,
here turnaround. The ranking of the fuzzy number is achieved
through the risk index β (0 ≤ β ≤ 1), which reflects the
approach towards the risk of the decision-maker. β > 0.5
indicates an optimistic approach toward the risk, while β <
0.5 illustrates a pessimistic approach towards the risk. The
ranking index β reflects the approach towards the risk of the
decision-maker, which is calculated by (18).

β =

∑
i

∑
j

bij − aij
(bij − aij) + (dij − cij)

 /n (18)

The fuzzy number of all possible paths in the project can
be ranked with the help of the risk index β using (19).

R
(
Ãi

)
= β

[
di − x1

x2 − x1 − bi + di

]
+ (1− β)

[
1− x2 − ci

x2 − x1 + ai − ci

] (19)

The ranking value for each path in the project is determined
through the risk index β, according to this principle, the
path with the minimum risk index is the critical path in the
entire turnaround. According to Table VI the path containing
processes (IB, ACC, DEB, FUE, BOA, FIN, OB) is the
critical path, as expected from literature review mentioned
in Section I, and deviation in each of the processes of this
path can lead to a delay in the whole turnaround.



TABLE VI. FCPM ranking values

Rank Path i FCPM (Pi) RFCPM (Pi)
1 (1,2,3,6,9,10,11) (-461.94,-42.24,42.24,461.94) 0.425
2 (1,2,3,5,9,10,11) (-474.20,-36.36,48.64,469.70) 0.426
3 (1,2,3,4,9,10,11) (-448.84,-31.84,51.40,472.98) 0.433
4 (1,2,7,8,10,11) (-299.30,32.48,94.48,400.31) 0.485

IV. APPLICATION ANALYSIS

In this section, a comparative verification and analysis of
the obtained results are discussed. Furthermore, a comparison
between the FCPM-based turnaround time and historical data
is introduced, the delay influences on the turnaround process
are discussed using linear regression analysis.

A. Description of Historical Data

The historical data for this paper is derived from over
50,000 Lufthansa A320 flights from March to October 2017,
including scheduled and actual turnaround time (TA) for all
flights.

Historical data show a wide range of turnaround times
for A320 daily flights. In addition to delays caused by bad
weather or air traffic control, the flight scheduling plan also
affects the aircraft turnaround. In order to increase the validity
of the statistics, the historical data of turnaround time should
be filtered appropriately. In this paper, flights with turnaround
times more significant than 10 hours will be excluded. Then
the schedule- and actual TA will be sorted in ascending order
to remove further 5% of the historical data from the head
and tail, respectively, due to not ensnaring in unreasonable
and extreme values.

To evaluate the tendency of the data in order to find the
behavior of the actual data, the mean value, median value,
standard deviation, and quartile deviation are calculated. The
mean value of schedule and actual TA are 69.62 j min and
75.90 min, respectively. The median value of the schedule
and actual TA are 60.00 min and 67.00 min, respectively.
The mean value of the schedule and actual TA are 34.87 min
and 33.98 min, respectively.

Quartile deviation is a statistical method that sorts all data
in ascending order and then divides the arranged data equally
into quartiles to measure the dispersion of the data. The value
at the 25% position is called the quartile and is denoted by Q1,
Q2 is the median, and Q3 represents the value corresponding
to the 75% position. The interquartile range IQR is calculated
by (20).

IQR = ∆Q = Q3 −Q1 (20)

B. Comparison between real data and FCPM result

The optimal parameter combinations of trapezoidal FMFs
are identified through optimization and iteration by the
Kolmogorov-Smirnov test in Section III, with these parameter
combinations, the p-value in the K-S test reaches its peak.

Fig. 6 shows the result of goodness-of-fit of the real
data. The blue line represents the real data based on
the data set and the red line depicts the trapezoidal
FMF. After calculating and updating the optimal parameter

combinations under trapezoidal FMF, schedule turnaround
posses (59.64,69.58,69.58,268.38) parameter combination,
with a p-value of 0.036, and actual turnaround has
(9.92,9.92,9.92,248.00) parameter combination with a p-value
of 0.078.
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Figure 6: Transformation Result for real data (X-axis shows
the duration in Min)

At the time of writing this paper, there is no means to allow
direct comparison of several fuzzy sets, especially when they
have overlapping parts in the literature [36]. Several fuzzy
numbers can only be compared if they are defuzzified to crisp
numbers. According to Principle 1 described in Section III,
only the non-negative part of a fuzzy number is practically
meaning. Therefore, there is a preprocessing procedure for the
FCPM-based turnaround time, and only the positive value of
the parameters could be retained. The figure of these FMFs’
comparison is depicted by Fig. 7.

In this paper, we set up a set of delay scenarios based
on historical data to simulate real delays, followed by linear
regression models to predict the trend of different delay levels
at the ”On-Block” point to the FCPM-based turnaround time.
The probability-possibility transformation algorithm is proven
to be useful also for irregular distribution. Fig. 8 shows the
procedure of delay fuzzy sets construction.

Table VI shows the results of defuzzification of different
delay fuzzy sets and their FCPM-based turnaround time.

After defuzzification of different delay fuzzy sets and their
FCPM-based turnaround time, a Simple Linear Regression
(SLR) is used to illustrate the relationship between delay
scenarios and FCPM-based turnaround time, which is de-
picted by Fig. 9 and formulated by (21). The determination
coefficient is R2 = 0.504 (the closer the R2 is to 1, the
model fits the data better). From the 21, the delay scenarios
are positively related to the FCPM based turnaround time.

Y = 231.368 + 2.462x+ ε (21)

V. CONCLUSIONS

The successful application of the fuzzy critical path method
for predicting turnaround target times was demonstrated in
this paper and opened a wide range of possibilities for the
development of controller decision-support systems. First of
all, the new method can calculate the turnaround completion
after a chosen data set and risk of decision-making level in
real-time and with high mathematical accuracy, thus mak-
ing common simulation techniques negligible. Furthermore,
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Figure 8: Flowchart of Constructing Delay Fuzzy Set

compared to some common approaches such as Monte Carlo
simulation, FCPM avoids extensively repetitive calculations
[37]. In day-to-day use, due to shortage of handling resources
or infrastructure which causes the uncertainty in turnaround
time calculation, turnaround time prediction is crucial in
order to maintain flight schedule over the day. One of the
advantages of this algorithm is that it considers simultane-
ously all network processes together based on their individual
uncertainty parameters, the method is highly adaptive to any
operational environment (any airline and any aircraft type)
and has no restrictions on the distribution of parameters and
can be modeled with any kind of real data sets. A small range
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Figure 9: Linear Relationship between Delays and FCPM (X-
axis shows the duration in Min)

of network adaptations in the format of process and sequence
alterations was analyzed inside this paper and showcased
the time-wise considerations an AOC might undertake when
evaluating the effectiveness of potential schedule recovery
actions on a disrupted turnaround. More in-depth analyses
of the individual processes will further investigate whether
the current parameters should be more granularly adapted
to actual weather, traffic, or personnel situations. Finally,
further research will explore how the current prediction can
be translated from a tactical into a real-time support tool so
that the TOBT can be estimated once major disruptions hit
the ongoing turnaround, such as maintenance problems or
missing resources.
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