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Abstract—Air traffic, despite the recent dip due to Covid, is
expected to grow 30-40% year on year. With the potential
inclusion of UAVs (Unmanned Aerial Vehicles) into controlled
airspace over the next decade, it is anticipated that the conges-
tion levels in airspace will increase 10 fold. This paper presents
an AI-based approach to air traffic control, with the aim of
alleviating the load and improving the efficiency of human
agents (air traffic controllers). One of the primary goals of
air traffic control is to safely navigate an aircraft through
controlled airspace using real-time control actions - such as
changes to speed, heading (direction of travel) and altitude of
an aircraft. The safety critical nature of this environment calls
for precise explanations (why take an action) and counterfactual
(why not take an action) explanations, real-time responsiveness,
the ability to present succinct actions to a human agent, while
simultaneously optimizing for air traffic delays, fuel burn rates,
and weather conditions.

This paper presents algorithms and a system architecture
for anticipating separation losses (conflicts in airspace) and a
lattice-based search space exploration AI planner to recommend
actions to avoid such conflicts. The key contributions of the paper
include: (i) fast detection (prediction) of conflicts in a controlled
airspace, and (ii) fast lattice space exploration based AI solver
to produce a set of feasible resolutions for the detected conflicts.
Additionally, this paper discusses how to weight the different
resolutions and how future work on optimisation techniques
could improve the efficiency of the algorithm and address
various known limitations of the current approach from both
technical and human-agent perspective. The evaluations are
conducted against an air traffic simulator, Narsim, showing the
ability to avoid separation losses, while minimizing the number
of actions even at 3 x normal capacity.

Keywords—AI planner; Trajectory analysis; Conflict detec-
tion; lattice-based search space exploration; automation; air
traffic management

I. INTRODUCTION

Expected growth in air transportation, and increasing de-
mand in airspace capacity has lead to a need for more
efficient air traffic management (ATM). Research in ATM has
proposed different solutions to this issue including Airspace
Management and Advanced Flexible use of Airspace [6], Tra-
jectory Based Operations [7], [8], Enhanced tactical conflict
detection and resolution [9], [10]. Many of these prior efforts
attempt to increase level of automation while still preserving
the role of the human agent as the utmost responsible element
in the decision-making process.

In safety critical environments, it is often not sufficient
to rely solely on automation oriented solutions. Therefore
the infrastructure of such systems must be cognizant of
performance of human agents. Cognitive limitations, e.g.,
multitasking, stress, memory, prediction, understanding, etc.
must be accounted for.

Recently, ATM has entered a new era, where novel Artifi-
cial Intelligence (AI) and Machine Learning (ML) techniques
are being explored. A substantial economical effort is spent
in ATM research to integrate and investigate these new tools
and how well they can inter-operate with the human agents
in a safety critical environment. One of the underpinning
challenges when applying AI/ML oriented techniques in this
environment is explainability, i.e., how well the machine
decision can be interpreted and understood by the human
agent. The key challenge is therefore to utilize rich AI/ML
models (e.g., deep learning) while ensuring a high level of
explainability that is required for mission critical applications
like air traffic control.

Considering AI/ML automation for an en-route sector, the
solution must be able to identify possible conflicts, i.e.,
predict aircraft future behaviour, as well as finding solu-
tions to resolve these conflicts. The key underlying approach
developed and explained in this paper - termed Advanced
Autoplanner (AAP) AI model - is to first identify possible
conflicts for all aircraft within a specified en-route sector.
Second, to find resolution for these conflicts by: (i) identifying
safe actions that avoid future conflicts; and (ii) ranking these
safe actions based on their optimality. It is evident that phase
(i) has higher explainability requirements. Accordingly, the
model uses lattice-based search space exploration as an AI
solver that is amenable to both explanations (why take this
action) and counter-factual explanations (why not take this
action). The feasible course of action set, derived by the
model is subject to optimality conditions and prioritization
based on pre-defined rules that closely mimic how an air
traffic controller works in today’s operation. Discretization
of the problem enables us to apply white-box AI models
with better explainability for finding safe actions and black
box AI/ML models including deep learning to learn ranking
of these safe actions and suggest appropriate actions to the
human agents. In this project we have focused on the first
step, i.e. the white-box AI that finds safe actions to resolve



the conflicts. In the future, the second step with black-box
AI/ML models could be added for optimised performance.

The paper describes a detailed evaluation of this approach
using an air traffic control simulator (NarSim [13]). The
scenarios for evaluation were produced in close collaboration
with air traffic controllers with decades of experience. The
evaluations cover 10 scenarios under normal air traffic load
and 10 scenarios under higher air traffic load, where each
scenario covers about two hours of air traffic. Evaluations
are conducted along various dimensions including the ability
to avoid separation loss, reducing track lengths (and thus
fuel burn rate), reducing the total number of actions (while
prioritizing lower cost actions such as ground speed change
and heading change over altitude change), and reducing the
number of actions per unit time (six per minute) so as to not
overload human agents. A video demonstration, summarizing
the findings is available here [14].

II. SYSTEM AND ARCHITECTURE

Supporting the ATM environment requires a highly avail-
able (HA), fault tolerant, and real-time responsive system.
Even though this paper is using only simulations, we designed
our system to operate with responsiveness similar to real-
world scenarios. A key design point is that the system should
perform in dense and complex traffic situations.

The high level architecture is illustrated in Figure 1,
which is comprised of a real-time streaming environment
(Autoplanner-Streams), which is a scalable real-time platform
on IBM Cloud. This platform was chosen because of its fault
tolerance, high availability, and real-time features. We use
databases such as Db2 and Cloudant for providing resilience
in the event of failures. The Streams platform connects to
Narsim instances, where messages of the current state of the
airspace and the aircrafts flow from Narsim to this platform
and recommendations to change altitude, speed, and heading
are provided back to the simulator from the platform. The
communication is over a TCP network socket. This is a fairly
standard HA, fault tolerant, and real-time architecture. In the
Figure 1, the boxes in pink are incomplete and they might be
implemented in future iterations (discussed in Section VII).

A key element to observe from this figure is the different
types of data received from Narsim; the relevant ones for the
AAP are: (a) Radar track, which captures the current location,
altitude, heading, ground speed, ascent/descent rate of a single
aircraft; (b) Flightplan, which is a periodic broadcast that is
the planned path an aircraft is supposed to be on, and (c) No-
fly zones, which are polygonal regions with altitude ranges
that an aircraft is not allowed to fly through without specific
clearance from air traffic control and (d) STCA (Short Term
Conflict Alert).

The Autoplanner AI box in Figure 1, is a key processing
block that determines if and what action needs to be suggested
to the Air traffic controller. The key inputs include: (a)
Flightplan including the waypoints for an aircraft’s planned
3d path, (b) Radar Track including the current observation on
aircraft’s position (latitude, longitude and altitude), ground
speed and heading, (c) No-Fly zones that are represented

as polygons and altitude ranges (though our current imple-
mentation does not explicitly handle them), (d) environmental
conditions including wind speed, bad weather zones, etc. (the
current implementation does not handle them). In addition,
for validation purposes, we use STCA (Short Term Conflict
Alert) from Narsim so that the conflicts that Narsim detects
can be compared with the ones that the AI model detects.

The zoomed in version of the AI model along with the pre-
processing and post-processing steps are shown in Figure 2.
As the reader can see, it consists of three main components.
The data parser, which is the first component, is a pre-cursor
step, which enriches the Radar track with information from
the flightplan as well as aircraft performance data. We note
that the aircraft performance data is static and is loaded at
initialization time.

The second stage of the AI model is to determine future
encounters given the updated state. This is a key design
choice for the system, where unless an observation from the
Radar track is input to the system, it does not determine any
conflicts nor suggest any actions, i.e., the system is event
driven. Given this design choice, it is only needed to evaluate
if the incoming observation is resulting in a state change,
hence it suffices to determine if the aircraft corresponding to
this observation can potentially result in an encounter in the
future. It will be explained in more depth in the later sections
regarding how this is determined.

The final stage of the AI model is to provide action
recommendations if an encounter is detected. We use an
approach where the AI model’s forecaster is simulated with a
search strategy to determine next best actions. These actions
when performed within a certain time period will eliminate
any potential encounters. We determine these actions using
the lattice traversal, which is detailed in the next section.

The system detects and derives resolutions for conflicts,
these actions are then ranked based on ranking criteria.
Ranking criteria take into account the amount of change and
can also provide differentiated weighting based on the type
of change (e.g., speed change is preferred to altitude change).
These ranked actions are then communicated back to Narsim
in a sequential manner, where if Narsim rejects the proposed
action, the next action in the ranked list is communicated.

Finally, the AI model has configuration parameters that
control how far into the future the encounter detection
forecasting can be done, the search radius, and the altitude
search radius. We also provide the option of running mul-
tiple Autoplanners in parallel for providing various options.
Given that the underlying platform scales horizontally, adding
multiple instances of AAP does not hurt system performance
and its real-time responsiveness. These are validated through
exhaustive experimentation.

In the next two sections, we will describe the core algo-
rithmic innovation of this paper. We will show how to detect
loss of separation followed by searching for the successful
actions using a lattice search space technique.

III. DETECTING SEPARATION LOSS

This section describes the approach that we have adopted
for detecting separation loss between any two aircraft. Since



Figure 1: System architecture in Cloud

Figure 2: A deeper view of Autoplanner AI

we take an event driven approach, we evaluate separation loss
on every Radar observation that comes into the system.

Given the current state of an aircraft (with the flight plan)
we determine a 3d track of the aircraft over a time horizon of
length T (typically 20 minutes). The 3d track of an aircraft is
represented as piece-wise continuous 3d line segments. The
points of discontinuity occur at end of an ascent/descent or at
a way point wherein the aircraft needs to orient itself towards
the next waypoint.

The state of an aircraft is updated every second. Separation
loss is defined as llsep on the latitude/longitude dimension (5

nautical miles) and as altsep on the altitude dimension (1000
feet). As the state of an aircraft is updated periodically, the
goal is to efficiently detect separation loss, including time
to separation loss and the closest separation between two
aircraft. This is accomplished as follows:
• Construct the future 3d track of an aircraft based on its

current state and flight path. On the latitude/longitude
dimensions, the movement of the aircraft is modeled as
elliptic arcs to account for the curvature of the Earth.
All distance computations on the latitude/longitude are
performed on the Ellipsoidal Earth. On the altitude



dimension, the movement of the aircraft is modeled using
a constant ascent/descent rate with a target altitude per
the flight plan.

• Project the future 3d tracks onto the latitude/longitude
2d coordinate system and store them in an in-memory
spatial index. Given an updated aircraft state, an updated
2d track is computed and a within distance search is
performed on this index to identify other 2d tracks that
are within llsep on the latitude/longitude dimensions. The
fast in-memory spatial index allows performing millions
of queries per second. This test is guaranteed to have
zero false negatives, i.e., any two aircrafts that will
suffer a separation loss are guaranteed to be identified.
However, there may be false positives, i.e., not all pairs
of aircrafts identified will suffer from a future separation
loss. This is because this test disregards the instantaneous
position of the aircraft on both latitude/longitude and
altitude dimensions. These false positives are eliminated
in the subsequent steps.

• For every aircraft whose 2d tracks are within llsep from
each other, the closest altitude separation between the
aircraft is computed. Aircraft with altitude separation
below altsep are selected. This essentially identifies two
aircraft whose tracks are below llsep distance on the
latitude/longitude dimensions and below altsep distance
on the altitude dimension. Like the previous step, this
step has zero false negatives, but it still has some false
positives because it disregards the instantaneous position
of an aircraft on its 3d track.This step eliminates false
positives due to the altitude changes.

• For every aircraft whose 2d tracks are within llsep and
whose altitude separation is below altsep, the closest
instantaneous separation is computed between them us-
ing fixed point iterations. The fixed point iterations are
guaranteed to converge, since projectile motion along
two great spherical/elliptic arcs have a unique separation
minima. This identifies all aircraft pairs that will have
separation loss, the time to separation loss, and closest
separation between the two aircraft. The time to separa-
tion loss and the closest separation are used to prioritize
resolution actions on the aircraft. At the end of this step
we have zero false positive and false negative rate given
the current state of the aircraft, under an elliptic arc
model of the aircraft trajectory. Since the state of the
aircraft may change in the future (or external factors
such as wind may influence the state), these steps are
applied on receiving every Radar track event from every
aircraft.

IV. STATE AND ACTION SPACE

This section describes the approach that we take to explore
an action space which is a class of optimization techniques
that does a ”clever” exploration of the possible solution space.
The state of an aircraft is represented by a six tuple:

S = [lat, lon, alt, gs, az, ads]

where lat denotes the latitude, lon denotes the longitude, alt
denotes the altitude, gs denotes the ground speed, az denotes

the azimuth (heading) with respect to true North and ads
denotes the ascent/descent speed.

In addition to the instantaneous state of an aircraft, it also
has a flight plan FP represented by a list of waypoints
(coordinates in latitude and longitude) and target altitudes
(when the aircraft is either ascending/descending). Hence, FP
is defined as

FP = [wp1, · · · , wpn], target alt

where wpi denotes the waypoints enroute. Note that
target alt is optional and only applies when ads 6= 0, i.e.,
when the aircraft is ascending/descending.

In this model, there are three dimensions of control for an
aircraft: ground speed, azimuth (heading) and altitude. Action
A is represented as:

A = [δgs, δaz, δalt]

where δgs, δaz, δalt can be positive, negative or zero (no
change).

On applying an action A to an aircraft in state S the state
of the aircraft changes as follows:

S′ = [lat, lon, alt, gs+ δgs, az + δaz, ads′]

FP ′ = [wp1, · · · , wpn], alt+ δalt

where ads′ = default ascent rate of 1000 feet/minute when
δalt > 0, or default descent rate of 1000 feet/minute when
δalt < 0, and zero otherwise. ads is a configurable param-
eter that can be changed based on aircraft characteristics.
The target altitude for the aircraft is alt+δalt. The list of
waypoints associated with the flight plan remains unchanged,
although the list may contain infeasible waypoints due to an
action (e.g., when δaz 6= 0). Note that this model makes a
simplifying assumption that the ground speed and azimuth
actions are instantaneous. However, the relatively slower
altitude change action is not assumed to be instantaneous.

The action space is discretized based on a minimum quanta
of 0.01 mach for δgs, 5◦ for δaz and 1000 feet for δalt.
These are configurable parameters that can be changed by
a subject matter expert with the following tradeoffs. Using
fine-grained quantas increase the search space, potentially
increasing the compute power required to determine feasible
actions; however, using fine-grained quantas help identify
actions that are smaller in magnitude and thus reduce the
deviation from the current flight plan. The action space allows
Ngs, Naz and Nalt quanta of change in each of the three
dimensions, respectively. For example, when Ngs = 10 the
number of quanta of change to the ground speed dimension
is 2 ∗ Ngs + 1 = 21, ranging from {−10, −9, · · · , 0, · · · ,
+9, +10} which correspond to {−0.1 mach, −0.09 mach,
· · · , 0 mach, · · · , +0.09 mach, +0.1 mach} of change to
the aircraft’s ground speed. The action space can be tuned
by altering the definition of one quanta in any of the three
dimensions and by altering the number of quanta of change
permissible in each of these dimensions.

The action space is modeled as a lattice. Figure 3 shows
a lattice with Ngs = 5, Naz = 3, Nalt = 3, i.e., 5 quanta
of action on ground speed and 3 quanta of action on both



the azimuth and altitude dimensions. There is an additional
dimension with values {+1,−1} not shown in this figure.
Hence, each action A = [δgs, δaz, δalt] corresponds to utmost
23 = 8 actions, namely:

1) [+δgs, +δaz, +δalt]
2) [+δgs, +δaz, −δalt]
3) [+δgs, −δaz, +δalt]
4) [−δgs, +δaz, +δalt]
5) [+δgs, −δaz, −δalt]
6) [−δgs, +δaz, −δalt]
7) [−δgs, −δaz, +δalt]
8) [−δgs, −δaz, −δalt]

Note that the number of actions could be smaller than 8 since
one of the dimensions is zero. For example, when δgs 6= 0,
δaz 6= 0 and δalt = 0, there are only four actions since +δalt
= −δalt = 0. For the sake of simplicity, we will leave the
{+1,−1} dimension implicit in the subsequent descriptions.
Also, in subsequent discussions we will denote an action
using integers (e.g., [2, 1, 1]), denoting the number of quantas
of change in each of the three dimensions gs, az and alt.

Figure 3: Action Space Modeled as a Lattice

A lattice consists of a partially ordered set in which any two
elements have an unique supremum and an unique infimum.
Given any two actions A1 = [δgs1, δaz1, δalt1] and A2 =
[δgs2, δaz2, δalt2], action A1 is said to dominate action A2

if and only if (∧ denotes the logical AND operator):

A1 ≥ A2 ⇐⇒ (δgs1 ≥ δgs2) ∧
(δaz1 ≥ δaz2) ∧
(δalt1 ≥ δalt2)

Unlike completely ordered sets it is possible that neither A1

≥ A2 nor A2 ≥ A1 hold, in which case A1 and A2 are said
to be incomparable to each other (denoted as A1 ‖ A2). For
example [2, 0, 0] ≥ [1, 0, 0] and [2, 0, 0] ‖ [1, 1, 0].

Given any two actions A1 and A2 its unique supremum
(lowest upper bound), i.e, the smallest action A such that (A

≥ A1) ∧ (A ≥ A2) and there exists no A′ such that A′ < A
(max(a, b) = a if (a ≥ b); otherwise b):

sup(A1, A2) =[max(δgs1, δgs2),

max(δaz1, δaz2),

max(δalt1, δalt2)]

and its unique infimum (highest lower bound), i.e., the largest
action A such that (A ≤ A1) ∧ (A ≤ A2) and there exists no
A′ such that A′ > A (min(a, b) = a if (a ≤ b); otherwise b:

inf(A1, A2) =[min(δgs1, δgs2),

min(δaz1, δaz2),

min(δalt1, δalt2)]

For example, sup([2, 0, 0], [1, 1, 0]) = [2, 1, 0] and
inf([2, 0, 0], [1, 1, 0]) = [1, 0, 0]. Note that even though
[3, 2, 1] is greater than both [2, 0, 0] and [1, 1, 0], it is not the
supremum since it is not the lowest upper bound. Similarly,
even though [0, 0, 0] is lower than both [2, 0, 0] and [1, 1, 0],
it is not the infimum since it is not the highest lower bound.

In figure 3 a directed arrow → between from action A1

to A2 indicates that A1 < A2. The transitive property of <
relationship holds (α =⇒ β denotes the logical implication,
i.e., if α is true then β is true:

(A1 < A2) ∧ (A2 < A3) =⇒ A1 < A3

Also for any two actions A1 and A2, such that A2 is not
reachable on the lattice from A1 and A1 is not reachable on
the lattice from A2 then A1 ‖ A2.

A lattice is also conveniently represented in levels. Action
A = [δgs, δaz, δalt] with total quanta of change of equal to:

l(A) = |δgs|+ |δaz|+ |δalt|

As shown in the figure level 0 has one action [0, 0, 0] and
level 1 has three actions [1, 0, 0], [0, 1, 0] and [0, 0, 1] and so
on. The total number of possible actions is in the lattice is

num(A) = Ngs ∗Naz ∗Nalt ∗ 23

and the number of levels is

max(l(A)) = Ngs +Naz +Nalt + 1.

A lattice state space naturally allows us to prioritize the
search for safe actions and capture preferences in the air traffic
control domain.
• First, the lattice may be explored in a breadth-first

bottom-up manner. Such an exploration would proceed
in the following order: [0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0],
[0, 0, 2], · · · , where the lattice is explored in increasing
order of level and each level is explored left to right.
This ensures that actions with lower quanta of change
is explored first, naturally capturing the preference to
actions with lower quanta of change.

• Second a lattice structure allows for efficient pruning of
the action space. For instance, if an action Ai is deemed
safe then no action Aj such that Ai < Aj needs to
be explored. For instance, if action [1, 0, 0] is safe, then
actions [2, 0, 0], [1, 1, 0], [1, 1, 0] in level 2 can be pruned.



Indeed the entire sub-lattice whose infimum is [1, 0, 0]
can be pruned from the original lattice (as shown in the
Figure 4.)

• Third, if an action Ai is deemed safe then no action
Aj such that l(Aj) > l(Ai) + threshold. For instance,
if action [0, 0, 1] is safe and threshold = 2 then any
action A whose level is less than or equal to l([0, 0, 1])+
threshold = 1 + 2 = 3 will be explored. Hence, an
action [0, 2, 0] may be explored, while actions at level 4
or above such as [0, 4, 0] and [0, 2, 2] will be pruned.

Figure 4: Lattice Pruning: Red nodes are pruned from the
search space if action [1, 0, 0] is successful

The lattice-based state space exploration’s pruning strategy
is succinctly expressed as follows (∃α denotes the existence
of α and ∨ denotes the logical OR operator):

skip(Aj) = ∃Ai, safe(Ai) ∧
[(Ai < Aj) ∨ (l(Ai) + threshold < l(Aj)]

A lattice-based search space exploration approach naturally
lends itself to both explanations (why take an action) and
counterfactual explanations (why not take an action). In
particular, the minimum separation between the aircraft in
conflict can be identified when an action is recommended.
Similarly, when an action is not recommended, the resulting
conflicts are identified; for example, an attempt to resolve a
conflict between aircraft α and β may result in a new conflict
between α and γ. The cascading effect of such actions are
explicitly addressed in this solution.

Further, it may be infeasible to take actions on aircraft that
are outside the air traffic controller’s sector. In such cases, if
one of the aircraft is currently inside the sector, then actions
are explored only for the aircraft inside the sector. If neither
of the aircraft are inside the sector then actions are explored
the moment the first aircraft enters the sector or the situation
is resolved otherwise (e.g., by actions taken on these aircraft
in other sectors). Finally if no action is deemed safe, then the
action that maximizes the minimum separation between the
aircrafts is chosen.

V. EVALUATION

This section presents the evaluation of the AAP using
Narsim. A variety of scenarios have been constructed in
close collaboration with air traffic controllers with decades
of experience. The results below cover 20 runs. Runs 1-10
were performed with current sector load in the concerned
sector. Runs 11-20 were performed with an increased sector
load. The definition of sector load is the maximum number of
flights at one time in a sector. Each run was approximately 2.5
hours long. In both these scenarios of loads, the AAP found
solutions to address the separation losses in a quick manner
with low costs in most cases. However, given the importance
of safety, we will explore the rare cases when AAP could not
find a solution.

A. Separation Losses

Our analysis indicates that the separation losses can be
linked either with a set climb rate being used when predicting
future conflicts or a congestion problem in the AAP solution.
The problem with climb rate can be solved by using a varying
and more accurate rate of climb rate that consider the aircraft
performance. The congestion problem can be solved by:
• parallelizing search over the lattice space (evaluate mul-

tiple feasible actions in parallel),
• reduce the search space by investigating single dimen-

sional actions first (avoid actions that require changes to
two or more dimensions), and

• suppress state radar track events from being sent to the
AI planner to ease back pressure during congestion.

The separation losses that occurred can be divided into the
below scenario types:
• One aircraft enters the sector while climbing, the other

aircraft is inside the sector (Run 5, Run 16 and Run
17): these separation losses occur when one aircraft has
recently entered the sector and is climbing towards an
altitude above the one that the other aircraft is cruising
at. During the climb lateral separation is lost while there
is less than 1000 feet altitude separation between the
two aircrafts. These conflicts occur because the model
currently uses a default climb rate (1000 feet per minute
ascent/descent) when predicting conflicts. According to
the model’s predictions the flight that is entering the
sector will climb steeper than what it actually does and
therefore it predicts that it will not encounter the other
aircraft. This type of situation can be solved by using a
more accurate rate of climb in trajectory predictions.

• One aircraft enters the sector on the same flight level as
another aircraft inside the sector (Run 12): the separation
loss occurs between one aircraft that has been in the
sector for a while and one that has entered the sector
shortly before on the same flight level. One of the aircraft
is given a climb clearance a short while after they are
both in the sector, this is however not sufficient and
separation is lost, this is due to the same reason as
above regarding set climb rates being used for trajectory
predictions. However, as one of the aircraft had been in
the sector for a while, the model should have issued an



Indicator/Run Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
Sector load 18 18 19 19 19 19 21 18 17 20

# predicted conflicts 28 23 11 12 20 22 15 10 13 6
# instructions 31 32 21 21 21 25 18 18 22 9

Separation losses (< 5 NM) 0 0 1 0 1 0 0 0 0 0
# clearances / minute > 6? No No No No No No No No No No

Track miles AAP active 1.0 1.0 1.0 1.0 0.997 0.999 0.999 1.0 1.0 1.0
/ AAP inactive

# speed instructions 16 18 10 12 12 13 11 10 9 5
# heading instructions 11 11 8 4 7 9 5 6 9 3

# flight level instructions 4 3 3 5 2 3 2 2 4 1
% actions over 3000 feet 39% 41% 24% 67% 33% 36% 56% 44% 50% 56%

or 0.06 Mach or 30 degrees
% clearances with multiple 82% 32% 82% 75% 67% 92% 64% 80% 82% 80%

instruction types

TABLE I. Runs 1-10 - 2.5 hour runs based on current Sector Load

Indicator/Run Run 11 Run 12 Run 13 Run 14 Run 15 Run 16 Run 17 Run 18 Run 19 Run 20
Sector load 25 27 26 25 26 27 29 25 27 26

# predicted conflicts 29 15 38 39 38 43 32 28 25 22
# instructions 35 30 40 29 51 39 38 51 28 34

Separation losses (< 5 NM) 0 1 0 0 1 2 1 1 0 0
# clearances / minute > 6? No No No No No No No No No No

Track miles AAP active 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
/ AAP inactive

# speed instructions 19 15 18 16 24 21 21 28 14 17
# heading instructions 8 11 18 10 18 12 13 19 8 13

# flight level instructions 8 4 4 3 9 6 4 4 6 4
% actions over 3000 feet 43% 33% 30% 34% 37% 38% 45% 37% 39% 41%

or 0.06 Mach or 30 degrees
% clearances with multiple 84% 65% 70% 75% 81% 81% 52% 61% 87% 82%

instruction types

TABLE II. Runs 11-20 - 2.5 hour runs based on increased Sector Load

instruction to this aircraft earlier; it did not due to the
congestion problem mentioned above.

• Two aircraft enter the sector at the same time on the
same flight level (Run 3, 16, 18 and 15): In run 3,
16 and 18 one of the aircraft receives a climb and/or
speed instruction immediately after entering the sector.
However, this is not enough to maintain separation.
This is again due to the model using a set rate for
climb in trajectory predictions. Further, in run 15 no
instructions are issued to solve the conflict between
these two aircraft, this is due to the congestion problem
described above.

B. Number of clearances

It has been important to measure the number of clearances
issued as an assumption has been made that no data link
is available and all clearances need to be communicated by
voice without overloading the radio channel. Based on prior
experiences from air traffic controllers a threshold of six
clearances per minute was set for all voice communications.
In all runs this conditions was met, indicating that it would
be possible to issue the instructions by voice in the scenarios
tested.

C. Track miles

We compare runs on the same scenario with and without
the AAP. In particular, the number of track miles flown when
the AAP AI model is issuing instructions is compared with

a scenario wherein no instructions were issued. The results
show that when the AAP is controlling the flights there is
approximately the same number of track miles flown as when
there are no instructions issued. This shows that the AAP
model does not add a large number of track miles in order
to achieve separation. In a few instances we observe that the
number of track miles are lower when using the AAP: this is
because when the AAP has issued a heading instruction, it can
give a direct route clearance to a point further along the flight
plan after the conflict is solved. In future versions of the AAP
it may be investigated to use shortcuts (i.e., skip waypoints)
with the goal of reducing track miles even when no conflicts
have been detected. Currently the AAP only explores the
possibility of skipping waypoints when attempting to bring
an aircraft back to the original flight plan after the aircraft
has been issued a heading clearance.

D. Type and magnitude of instructions

There were roughly 40% instructions associated with quite
a large delta compared to the current trajectory, at least 3000
feet altitude change, speed change of Mach0.06 and/or 30
degree change in heading. This is due both to the fact that
currently the model is not allowed to give clearances to flights
that are outside of the sector and for flights that are in the
sector it uses a 10 minute time horizon for searching for
conflicts. Because of this, instructions are sometimes given
with short notice and therefore sometimes results in quite a
large delta being required to maintain separation. We believe



that this can be solved by the model searching for conflicts
earlier than what it does today.

E. Illustrative Scenarios

We demonstrate three scenarios from several experiments
that were conducted using the Narsim simulator where the
decisions of the AAP are elaborated.

1) Scenario 1: Simple Speed Change: The first scenario
illustrated in Figure 7 shows two aircrafts LFV050 and
LFV042 heading into the sector. The AAP determines a loss
of separation nine minutes into the future and as soon as
LFV042 enters the sector, it issues a slight increase of speed
to Mach 0.78 (by 4 knots). This results in a conflict resolution.

Figure 5: Scenario 1: Speed change

2) Scenario 2: Multiple changes at once: The second
scenario involves a potential loss of separation between
three aircrafts, LFV915 (entered from South West), LFV900
(entered from North), and LFV911 (entered from East). The
orientation of the scenario images are North is to the top of
the page. The AAP determines loss of separation 10 minutes
in advance and provides a clearance of increased speed and
turn five degrees to the right to LFV900 to avoid a conflict
with LFV915. This ensures that the separation between these
two aircrafts goes from 6.1 nautical miles to 13 nautical
miles. At the same time, LFV911 is issued a climb to 41000
feet to avoid a conflict with LFV915. Once the conflicts are
resolved, LFV900 is issued a clearance to its next waypoint
(in the original route). This demonstrates a successful multiple
actions to multiple aircrafts to avoid a conflict involving three
aircrafts as well as the AAP’s ability to return the aircraft to
its original route.

Figure 6: Scenario 2: Multiple changes at once

3) Scenario 3: Multiple clearances: Finally, the third sce-
nario showcases what happens when the instructions are not
followed by the pilots. In this case, LFV957 has a potential
future loss of separation with LFV005. LFV957 is given a
clearance by the AAP to turn by five degrees. However, the
pilot only turns two degrees, which increases the predicted
minimum separation from 2.9 nautical miles to 4.4 nautical
miles. This is still below the minimum allowed separation
of 6.1 nautical miles. The AAP identifies the situation and
issues a further clearance of turn five degrees to the right,
again the pilot only turns by two degrees. Even though this
increases the predicted separation to 5.8 nautical miles, it is
not enough to achieve the minimum allowed separation. The
AAP finally turns LFV957 by a few degrees to achieve the
required buffer. Note that the AAP acts on LFV957 only as
LFV005 was outside the sector at the time of taking actions
on LFV957.

In the illustrations, we only show the moments when
separation losses are resolved and not the entire sequence
of actions. The reader can view the entire video on YouTube
for a detailed explanation of the above scenarios.

VI. RELATED WORK

Artificial Intelligence and Machine Learning within Air
Traffic Management is a highly active research domain. Many
papers have been published in the last years on how to op-
timize the air transportation management using novel AI/ML
techniques. In [10], the authors describe how reinforcement
learning is used to resolve two dimensional conflicts in a way
that encaptures the preferences of the air traffic controller.
There are several other approaches similar to [10] that use

https://www.youtube.com/watch?v=S9prUdwECh8


Figure 7: Scenario 3: Multiple clearances

reinforcement learning [2]–[5]. However, our approach is
based on trust in the AI models with high explainability [15]
as to why a particular action was suggested and how it will
result in the resolution of conflicts. This is a fundamental
requirement that is not addressed by other approaches.

The European research project SESAR [1] is funding
AI/ML related projects in order to prepare and gradually
transition to a more advanced and efficient aviation. EASA
- the European Union Aviation Safety Agency has initiated
the so called Artificial Intelligence Roadmap [6] to ensure a
safe approach to introduce novel AI/ML techniques into the
aviation sector, and to tackle the challenges that lies within
the future work in this domain.

“The Artificial Intelligence Roadmap establishes the
Agency’s initial vision on the safety and ethical dimensions
of development of AI in the aviation domain”. This is very
much the basis for our trusted and explainable AI models.

In addition there are collaborations around the world be-
tween universities, research institutes and government entities
setting the pace and the goals for the development of future
techniques and technologies. One example is The Flexible
Automation project, F AUTO, which is a cross domain
research project which explores the use of flexible automation
in today’s and future control room environments to enhance
human-automation collaboration. Involved partners are the
Air Navigation Services of Sweden and Linköping University
for the Air Traffic Control (ATC) domain, Uppsala University
and The Swedish Transport Administration for the train
control domain, and Linnaeus University and The Swedish
Maritime Administration for the Vessel Traffic Service (VTS)
domain.

VII. CONCLUSIONS AND FUTURE WORK

Given the task of managing aircraft separation in an en-
route sector the following conclusions were made on the
performance of the AAP:

The AAP is capable of autonomously issuing clearances
to aircraft while flying through the sector and to do so
without overloading the radio frequency and/or adding a large
amount of track miles. In simulation runs, there have been
some separation losses, our analysis indicates that this can
be explained by a set rate of climb being used for trajectory
predictions and problems with congestion.

In the future this could be avoided by adjusting the aircraft
performance data used or through access to the actual aircraft
data. Further, the congestion problems can be solved using a
plethora of measures. The AI model may evaluate multiple
actions in parallel or reduce the search space by investigat-
ing single dimensional actions first to lessen or even avoid
congestion. The driving Streams application can optimize the
critical radar track path to reduce backpressure faster and it
may suppress radar track data sets from being sent to the
AI model to immediately realign the application with current
data after congestion resolves.

An important aspect of future work involves the exploration
of the time dimension. The current model uses a fixed horizon
of 10 minutes when searching for future conflicts. Within
this time horizon, the model proposes clearances that are
immediately acted upon. Future work should explore the
ability of taking actions at a certain time in the future to
enable further optimization. This would avoid creating near
term conflicts while addressing future conflicts in a timely
manner.

Other factors that should be considered in the future are
inclusion of weather parameters such as convective winds and
no-fly zones. To bring back the flights that have been acted
on by the Autoplanner to its original flight plan should also
be considered in future work. Another aspect is to ensure
that actions can be taken when aircraft enter a sector with
separation loss and when aircraft loose separation in the
sector. It should also be considered to include issuing of direct
routes and to adjust the input regarding ranking of actions and
which actions that can be used in the same clearance.

Future work should also explore the possibility to incorpo-
rate active learning to improve ranking of actions. This can
be done through feedback accrued over long periods of many
flight hours. Deep learning approaches could be explored to
learn hidden factors in decisions made by ATCOs and use
their rich experience to improve the suggested actions. Finally,
human-in-the-loop simulations should be performed, where
controllers issue the instructions that the model proposes.
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and Sami Mourad and Pablo Pedemonte and Ramya Raghavendra and
John Richards and Prasanna Sattigeri and Karthikeyan Shanmugam and
Moninder Singh and Kush R. Varshney and Dennis Wei and Yunfeng
Zhang, One Explanation Does Not Fit All: A Toolkit and Taxonomy of
AI Explainability Techniques, https://arxiv.org/abs/1909.03012, 2019

[16] Sofia Rydell, Advanced Autoplanner Final report, 2021-03-24,
https://fudinfo.trafikverket.se/fudinfoexternwebb/pages/PublikationVisa
.aspx?PublikationId=4600


	Introduction
	System and Architecture
	Detecting Separation Loss
	State and Action Space
	Evaluation
	Separation Losses
	Number of clearances
	Track miles
	Type and magnitude of instructions
	Illustrative Scenarios
	Scenario 1: Simple Speed Change
	Scenario 2: Multiple changes at once
	Scenario 3: Multiple clearances


	Related work
	Conclusions and Future Work
	References

