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Abstract—The assessment of the fuel burn and emissions impact of 
airport surface operations is a key part of understanding the 
environmental impacts of aviation. These assessments are needed 
at two levels: the analysis of inventories (the total amount of fuel 
burned and emissions discharged over some period of time), and 
the analysis of spatial distributions (the amount of emissions 
experienced at a particular location within or near the airport). 
While the availability of taxi times for the operations of interest is 
sufficient for inventory analysis, the analysis of spatial 
distributions requires estimates of where on the airport surface an 
aircraft is located as it consumes fuel. In this paper, we show how 
a data-driven queuing network model can be developed in order 
to estimate the time that an aircraft spends at different congested 
locations on the airport surface. These models are useful both for 
spatial distribution analysis and for predicting taxi times in the 
absence of measurements (e.g., for projected demand sets). We use 
measurements of Ultra Fine Particles (UFPs) at Los Angeles 
International (LAX) airport to demonstrate that the proposed 
model can help predict the measured emissions at different 
monitoring sites located in the vicinity of the airport. In the 
process, we show how one could develop a machine learning model 
of the spatial distribution of airport surface emissions, given 
pollutant measurements, air traffic demand, and prevailing 
weather conditions. Finally, we develop a clustering-based method 
to evaluate the generalizability of our surface operations modeling 
framework.  

Keywords—Airport surface operations; queuing; fuel burn; 
environment; emissions; AEDT 

I. INTRODUCTION 

There is a need for accurate airport surface operations, fuel 
and emissions modeling to support the objectives of a range of 
aviation stakeholders. For example, Air Navigation Service 
Providers such as the Federal Aviation Administration (FAA) 
or Eurocontrol need airport surface models to help develop safe 
and efficient procedures and to assess the impacts of new 
technologies. As environmental impacts of aviation take on 
increasing importance, such models are needed to support 
airport fuel burn and emissions (e.g., for air quality and noise) 
impact studies. Many industry-standard models used for 
estimating surface fuel burn and emissions make simplifying 
assumptions which introduce errors into the calculations and 
decrease their utility. The availability of increased amounts of 

operational data and modern analysis techniques provides an 
opportunity to develop enhanced modeling approaches to 
increase the accuracy and validity of airport surface models for 
these applications.  

Two categories of analyses are important when considering 
the environmental impacts of airport surface operations: 

 
 Inventory analysis: The objective of such an analysis is to 

determine aggregate total fuel burn or emissions over a 
period of time for current or potential future scenarios. 
These analyses often support higher level analysis 
objectives, for example to assess system-wide fuel and 
emissions impacts of different procedures or technologies. 

 Spatial distribution analysis: This type of analysis requires 
more fine-grained models that reflect where on the airport 
surface fuel and emissions are released and is relevant for 
assessing spatial and temporal impacts of fuel burn and 
emissions. Applications of such analyses include the 
assessments of impacts on communities near to an airport. 

 
In this paper, we present approaches for developing airport 

surface operations models that can support spatial distribution 
analysis, which requires the modeling of not just the total fuel 
burn (or emissions) over some time period, but also a 
determination of the location on the airport surface at which the 
fuel burn and emissions occur.  

Section II provides background information on current 
models typically used for these types of analyses. Section III 
briefly summarizes prior work on improving surface models for 
inventory analyses. Section IV presents an approach for 
modeling the location of fuel burn and emissions using queuing 
models in order to support spatial distribution analysis 
enhancements and also presents an approach using clustering to 
guide model validation efforts. In Section V, we demonstrate 
the proposed approach through a case study of fuel burn and 
emissions analysis at Los Angeles International Airport (LAX), 
using monitoring site measurements of Ultra Fine Particles 
(UFPs) or nanoparticles with an aerodynamic diameter of 
0.1 µm (100 nm) or less. In doing so, we also a present an 
approach to integrate pollutant monitoring site measurements, 
when available, into environmental impact analyses. Finally, 
Section VI concludes with the key takeaways of this work. 



II. CURRENT AIRPORT FUEL BURN & EMISSIONS MODELS 

The current software tool used by the U.S. government for 
assessing fuel burn and emissions is the FAA’s Aviation 
Environmental Design Tool (AEDT) [1]. AEDT was developed 
as a single tool to replace a suite of existing models for 
predicting aviation environmental impacts. The previous legacy 
models included the: 

 
 Integrated Noise Model (INM) [2], used for obtaining 

noise estimates 
 Model for Assessing Global Exposure to the Noise of 

Transport Aircraft (MAGENTA) [3], used for 
determining the global impact of aircraft noise 

 Noise Integrated Routing System (NIRS) [4], used for 
comparing the noise impact between different routes and 
procedures 

 Emissions and Dispersion Modeling System (EDMS) [5], 
used to estimate emissions on the airport surface 

 System for Assessing Aviation’s Global Emissions 
(SAGE) [6], which predicted global totals of fuel burn and 
emissions across all commercial flights, or alternatively 
the impact from a single aircraft. 
 

A tool similar to AEDT is EUROCONTROL’s Advanced 
Emission Model (AEM), which is used to estimate aircraft fuel 
burn and emissions [23]. AEM is a part of Fuel Burn and 
Emission Inventory System (FEIS) used by EUROCONTROL 
for annual inventory analysis, which helps drive policy 
decisions for the European Environmental Agency [23]. 
Another commercial tool that has been used to estimate flight-
specific fuel burn and emissions is Piano-X [24].  In addition to 
these industry tools, researchers have proposed various 
enhancements and standalone models to improve the estimation 
accuracy (a recent review can be found in [25]).  
     The work presented in this paper focuses on recommended 
enhancements to surface fuel and emissions models, using 
AEDT as the exemplar case and focusing on impacts of fuel 
consumption and emissions on air quality impacts.  

III. FUEL & EMISSIONS INVENTORY ANALYSIS 

In this section, we present a brief discussion about our 
proposed enhancements for inventory analysis, and readers can 
refer to our earlier paper [7] for a more detailed discussion. As 
mentioned earlier, inventory analysis involves determining the 
aggregate fuel burn and emissions over a period of time. The 
current taxi phase model in AEDT calculates fuel burn as the 
product of a baseline taxi fuel burn rate and a nominal taxi time, 
as illustrated in the top portion of Figure 1. Emissions are 
calculated by multiplying the resulting total fuel burn by an 
emissions index [8] for the emissions species of interest. The 
estimated baseline taxi fuel burn rate for a given aircraft type is 
based on a constant engine specific 7% thrust level (and 
resulting fuel flow rate) during taxi, determined from engine 
manufacturer certification data. This can be significantly 
different than the actual fuel burn characteristics during 
operational conditions for a given aircraft because of factors 
such as the age of the engine (as the engine gets older the 
amount of fuel it burns changes), as well as pilot technique (e.g., 
choosing a slightly higher or lower taxi thrust setting or “riding 
the brakes” instead of throttling down the engines when coming 
to a stop on the airport surface). The nominal taxi times are 
often based on the standard certification Landing and Take-Off 
(LTO) cycle which assumes 26 minutes of taxi time on the 
airport surface, typically broken into 19 minutes taxi-out and 7 
minutes taxi-in. Different airports may have very different taxi 
times depending on topology, configuration, congestion levels, 
etc. which can lead to a large range of different taxi times. In 
addition, the current AEDT approach uses simplified 
assumptions regarding emissions (but no explicit modeling of 
fuel burn) contributions from the pushback and engine start 
events, including engine and Auxiliary Power Unit (APU) 
contributions [9]. These events can be significant contributors 
to the overall surface fuel burn and emissions, and therefore 
need to be modeled accurately.  

New data availability and modeling techniques provide 
opportunities to make model enhancements to the taxi fuel burn 
rate, taxi time and pre-taxi (gate and engine start) elements 

  
 

Figure 1. Fuel & Emissions Inventory Analysis Model Baseline & Enhancements 



shown in the bottom portion of Figure 1. In our previous work 
[7], we had proposed enhancements in each of these elements 
which are summarized below. 

A. Enhanced Taxi Fuel Burn Rate 

The recent (limited) availability of Flight Data Recorder 
(FDR) data provides direct observability of engine fuel flow 
rates during realistic operational conditions in order to address 
many of the shortcomings identified above with previous 
baseline fuel flow models. Using FDR data, we have developed 
models for the mean baseline fuel flow rate as a function of the 
mean values of the ambient temperature (θ∞) and pressure (δ∞) 
ratios (these input features are used for consistency with the 
Boeing Fuel Flow Method [9]). Table 1 shows the proposed 
model equations for different aircraft types in our dataset, 
where  𝑚ሶ  represents the ICAO Databank fuel burn index 
during taxi-out. The table also shows a comparison of the error 
statistics of the taxi-out fuel burn obtained using our proposed 
model and the current AEDT model, evaluated over an 
independent test set. The error statistics indicate that the 
proposed models are more accurate than the current AEDT 
model, and the reduction in mean absolute error is up to about 
93% for some aircraft types.  

 

B. Enhanced Total Taxi Times 

Airport-specific taxi out times are available in current 
versions of AEDT but these can be outdated. For this part of the 
study, recent taxi-out data were collected from the FAA’s 
Aviation System Performance Metrics (ASPM) database [10]. 

This dataset contains flight-specific taxi-out times, available to 
the nearest minute. ASPM data from flights across 25 major US 
airports was aggregated for dates between October 2016 and 
September 2017, to provide a recent model of the distribution 
of taxi out times at a given airport. The boxplot in Figure 2 gives 
a side-by-side comparison of all the airport taxi-out 
distributions across the 25 airports studied (which were 
clustered into 6 sets of airports with similar taxi characteristics: 
see [7] for more details). The 19-minute taxi-out simplification 
is provided as a reference, along with the error between this 
assumption and median of each of the distributions. The 19-
minute default taxi-out time assumption is intended to represent 
average airport taxi time. This chart shows that the errors in this 
estimate vary from 0% to 72.7% for these particular airports, 
which is one reason why users typically do not use the 19 
minute default taxi time. By using recent historical data at an 
airport, the error resulting from predicting the taxi-out time for 
a given flight can be decreased drastically. This analysis could 
be updated regularly to reflect evolving taxi time behaviors, 
and/or extended to taxi-in operations and to other US or 
international airports as needed. 

 

C. Enhanced Pre-Taxi Fuel Burn 

In order to establish a more accurate model of the fuel burn, 
the fuel consumed by both the engine and APU during the “pre-
taxi” phases at the gate, enhanced estimates from push-back and 
engine startup have been developed. The engine start-up fuel 
burn was obtained using the FDR data, and the APU fuel burn 
was determined from [11] and through discussions with an 

 
Figure 2. Enhanced Taxi-out Times Based on Recent ASPM Data [7] 

Table 1. Proposed Model for Baseline Fuel Flow Rate and Error Statistics 



experienced commercial pilot. The fuel burn totals for the 
gate/pushback/engine start processes were aggregated over all 
the flights of a given aircraft type available in the FDR data as a 
statistical approach to building the fuel burn histograms from 
historical data. The resulting pre-taxi fuel burn distributions for 
the types studied are shown in Figure 3, as the solid curves. The 
relationship between fuel burn and aircraft weight was then 
investigated as a means to predict the pre-taxi fuel burn of 
aircraft types not within the FDR dataset. The total fuel burned 
during gate/pushback/engine start was seen to be linearly related 
to the weight of the aircraft type, and this correlation was used 
to then predict the approximate fuel burn for aircraft types not 
available in the FDR data set. The result of this process for a 
number of wide-body aircraft are presented as the dashed lines 
in Figure 3. 

 
Figure 3. Pre-taxi Fuel Burn Estimates by Aircraft Type [7] 

  

IV. FUEL & EMISSIONS SPATIAL DISTRIBUTION ANALYSIS  

The ideal approach to determining spatial distributions of 
fuel and emissions from airport surface operations is shown on 
the top portion of Figure 4. Fuel burn as a function of time and 
location would be available from FDR data (as used in the 
previous analysis) given that time, fuel flow for each engine and 
latitude and longitude locations are then readily available. 

Multiplying by emissions indices for the species of interest 
would then enable emissions as a function of time and location 
on the airport surface to be easily determined. This is often 
accomplished by deploying air quality monitors at strategic 
locations around the airport and its perimeter in order to quantify 
emissions impacts. 

In practice, FDR data is not routinely available and 
approximations are needed to the different elements outlined 
above. These are illustrated in the bottom half of Figure 4. The 
enhanced taxi fuel burn rates from the analysis detailed in the 
previous Section can be used again here.  

The taxi time by airport location is more critical for this type 
of analysis because of its sensitivity to the accuracy of the 
amount of time spent (and emissions created) at different airport 
locations. The updated taxi time analysis from the previous 
section does not apply for this type of analysis because it only 
represents total taxi time. To determine the amount of time spent 
by the aircraft at different locations on the airport surface, one 
can utilize trajectory data from airport surface radar data (e.g., 
Airport Surface Detection Equipment (ASDE-X)). However, 
airport surface radar data is insufficient if one is interested in 
evaluating fuel burn and emissions under infrastructure changes 
and different airport operating conditions (such as traffic levels, 
runway usage patterns etc.) not seen in historical operations. 
Performing such what-if analysis under different operating 
conditions is the primary use case for airport environmental 
assessment tools such as AEDT. Therefore, one needs to 
develop traffic models of the airport surface that are capable of 
estimating the time spent by the aircraft at different airport 
locations given the airport operating conditions as the input. 
Queuing models have been shown to be able to reflect surface 
traffic congestion at airports.  

In the remainder of this section, we discuss (1) the 
development of an airport queuing model built on FDR or radar 
data, or even data on the pushback, takeoff, landing and gate-in 
times when available, and (2) a method based on clustering 
analysis to evaluate the generalizability of queuing models of 
surface operations.  

  

 
Figure 4. Fuel & Emissions Spatial Distribution Analysis Ideal & Practical Models 



A. Development of Airport Queuing Model 

When developing a queuing model for an airport, the queuing 
locations on the surface must first be known. To this end, we 
use airport traffic density from surface radar data (e.g., ASDE-
X) to create heat maps, where hot spots within the image 
correspond to locations of airport surface congestion. To 
illustrate this, ASDE-X flight track data from Los Angeles 
International Airport (LAX) was analyzed. This data contained 
details on aircraft trajectories such as latitude, longitude, and 
time, recorded at 1 second intervals. In order to identify airport 
dynamics during congested periods, we considered data only 
from the time periods when the taxi-out time was greater than 
99th percentile of the taxi-out time calculated from ASPM data. 
For all time windows containing a mean taxi-out time greater 
than the 99th percentile, the ASDE-X data was aggregated and 
interpolated to a 500-by-500 cell grid laid on top of the airport, 
where the value of a grid point represented the number of flight 
track points at that spot. A flight in a queue at a particular grid 
point increased that grid point’s count every second. The count 
at each grid point was then normalized by the number of flights 
which passed over that location. Therefore, when plotting the 
point density of the grid as a heat map image, bright spots 
represent locations where aircraft were queued over a given 
period of time. The heat map for sample data at LAX from 
February-April 2012 (see later for why this period was selected) 
is shown in Figure 5. Queuing spots are seen as bright yellow 
in the image, where markups have been added to the image to 
highlight what different queuing spots represent from an 
operational perspective. For example, queues are seen for 
flights departing on both runway 24L and runway 25R, as well 
as for flights arriving on the remaining two runways which then 
must cross an additional runway to reach the terminal regions. 
Such details inform what queue spots need to be considered 
when developing a queueing model for LAX. A similar 
approach could be applied at any other airport of interest to 
determine what queuing model elements are appropriate. 

 

 
Figure 5. Data Density Heat Map for LAX Airport 

(Analysis Period 2/1/2012 – 4/30/2012) 
 

The objective of the queuing model is to determine 
macroscopic quantities of interest such as queue length and 
taxi-out time as a function of demand (pushback-time) and 
other parameters such as meteorological conditions. We next 

focus on developing the queuing model for West-flow runway 
configuration (24L, 25R|24R, 25L) at LAX, that represents the 
most frequently used configuration with around 90% of the 
operations during the period considered in our analysis (Feb 1 
– Mar 15, 2012).  

In Figure 5, we see that departing flights are queued up 
predominantly near the departure runways. Therefore, the taxi-
out process was represented using a single queue, one for each 
departure runway as shown in Figure 6. After pushback, the 
taxi-out flights enter the departure runway queue after spending 
an unimpeded gate-to-runway time. Note that we use airline-
specific unimpeded taxi-out time (terminal-to-runway) as a 
surrogate for the unimpeded gate-to-runway travel time in this 
paper due to the lack of gate information in the ASPM data. 
However, this assumption serves as a good approximation as 
will be shown later in the model validation. Additionally, the 
unimpeded times are determined as the 10th percentile of the 
taxi-out time distribution for each airline-runway pair. 

 

 
Figure 6. LAX Taxi-out Queuing Network Representation 

(West-Flow Configuration) 
 

The dynamics for the evolution of the queuing process is 
obtained using a fluid-flow model, which is a continuum 
approximation to the discrete queuing process. Such a fluid-
flow model for the queuing process has been used earlier to 
accurately predict the queue lengths and taxi-times for major 
airports [12]. The dynamics governing the evolution of the 
departure runway queue is as follows: 
 

 
 
where, xi represents the queue length of the ith departure 
runway, and i is the average unimpeded travel time from the 
gate to the ith departure runway, ui represents the pushback rate 
to the ith departure runway, Ci is a positive parameter that 
depends on the coefficient of variation of the service time 
distribution of the server [12] and i be the mean service rate of 
the departure runway server. The parameters of the service time 
distribution of the runway server are determined from 
operational data [13]. The pushback rate is computed as the 
number of aircraft pushing back from the gate in a given time 
interval (5 min in this paper). The time delay in the dynamics 
accounts for the travel time from the gate to the departure 
runway. The queue length can be predicted by integrating the 
dynamics forward in time with appropriate server parameters 
and pushback rate. The wait times of aircraft entering the queue 
are determined using the predictions of queue length and time-
varying mean service rates [12]. The taxi-out time is then 



determined as the sum of the unimpeded gate-to-runway time 
plus the waiting time in the queue. 

Figure 7 shows a comparison of the predicted and observed 
LAX departure runway 24L queue length for a typical good 
weather day (March 7, 2012) in the test data set. The data 
corresponds to a time-based definition of queue length, in 
which an aircraft is said to be in the runway queue if it has spent 
unimpeded gate-to-runway time after pushback but is yet to 
take-off. The time-based definition of queue length is validated 
by comparing against the physical queues seen at the airport 
using trajectory data. The deviation was found to be small, with 
a mean absolute error of 0.6. 

 
Figure 7. Queue Length Comparison Between Model 

Predictions and Data for LAX (March 7, 2012) 
 
The taxi-out times for this particular day, averaged over 15-

min windows, are shown in Figure 8. These figures show a good 
match between the model predictions and observed values. 
Aggregate error statistics of the taxi-out time prediction for 
individual flights were computed for an independent test set of 
6,536 departures over a 9-day period. Here, the errors are 
computed as the predicted taxi-out time minus the actual value. 
The mean error was found to be 0.9 min and mean absolute 
errors was found to be 3.9 min, which are small relative to the 
mean taxi-out time of 14.2 min. These results indicate that we 
can predict the congestion level and locations on the airport 
surface to a good degree of accuracy. Although the focus of the 
discussion above was departure movements, a similar approach 
can be adopted for arriving aircraft as well. 
 

 
Figure 8. Taxi-out Time Comparison between Model 

Predictions and Data for LAX (March 7, 2012) 
 

B. Generalization of Queuing Models to Other Airports 

There are many major airports around the world where 
surface operations assessments could be needed, and tailoring 
the fuel burn and emissions model to each airport individually 

would be infeasible. Rather than developing a queuing model 
and validating the framework for every major airport, we use 
clustering to determine groupings of airports with similar 
features. We then note that validated queuing models exist in 
the literature for representative airports in each group, 
suggesting that the approach generalizes well to a large number 
of airports.  

For this approach, we used k-means clustering algorithm 
[14]. The features used for the clustering algorithm were chosen 
with the intent to capture major differences between airports: 

 
 Mean, standard deviation & skew of taxi-out delay: The 

taxi-out time delay was calculated as the difference 
between the unimpeded taxi-out time (the 10th percentile 
of the taxi-out time for that year, for that airport), and the 
actual taxi-out time, for each flight. The mean value of the 
taxi-out time delay is useful in determining if an airport 
typically has a lot of delayed flights, but the standard 
deviation and skew of this distribution yield additional 
insight. For example, an airport may not experience high 
delay on average, and thus have a “normal” mean taxi-out 
time delay, but the delay distribution could be skewed 
indicating periods still exist where departing flights 
experience high delay.  

 Mean taxi-out time: While the previous three features 
consider the level of congestion on the airport surface, this 
serves as a metric for measuring the size of the airport.  

 Number of runway configurations: The number of runway 
configurations can vary greatly between airports. For 
example, at LAX the majority of annual air traffic 
operations are performed in the same configuration. In 
contrast, Boston Logan International Airport (BOS) has 
multiple configurations that are commonly utilized, with 
seasonal traffic patterns from weather effects. This feature 
measures how many configurations account for the top 
75% of annual operations, each of which could have very 
different queue dynamics and locations. 

 Percentage of operations in Visual Meteorological 
Conditions (VMC):  This accounts for weather impacts. 
 

For all of these features, the data was obtained from ASPM. 
This database contains flight level information such as taxi-out 
time, and airport information such as the weather operating 
condition which is updated hourly. The full 2018 dataset was 
pulled for the ASPM Core 30 airports [15], and used to calculate 
the six features identified above. Each feature was normalized 
across all 30 airports, by subtracting out the mean value and 
dividing by the standard deviation. This step prevents improper 
weighting between features which have differing magnitudes 
(e.g., the mean taxi-out time delay will always be a much larger 
number than the percentage of operations in VMC, but is not a 
necessarily more important feature). To determine k, the sum of 
the squared error was plotted against chosen k values, and the 
knee in this curve was seen to be at 7 clusters. Repeated use of 
k-means can sometimes yield varying results on the same set of 
data due to randomized initial centroids used at the start of the 
algorithm. To account for this, the k-means algorithm was 



repeatedly applied to our dataset for one million iterations, to 
ensure the final clustering result was consistent. To further 
verify the fit of the final clustering result, we used the Silhouette 
coefficient [16], where a larger value for the Silhouette 
coefficient corresponds to clusters which better fit the data. The 
silhouette coefficient plot for our final clustering results are 
shown in Figure 9, which show the final clustering is a good fit 
given the all positive scores. 
 

 
Figure 9. Core 30 Airport Clusters 

 
Additional insight into why certain airports were paired 

together can be gleaned from looking at the mean feature values 
across the airports in each cluster: Figure 10. Features with 
values close to zero are within the normal range when compared 
against all 30 airports, while a largely negative or positive 
feature indicates that the feature is significant for the airports in 
that cluster, and one of the drivers for why those airports were 
paired. For example, airports in cluster 2 contain features that 
are relatively normal, but the number of commonly used 
configurations is high, and the percentage of operations in 
VMC condition is a bit low. The airports in this cluster, such as 

BOS and DEN, are airports that often switch configuration due 
to weather effects. For such airports, the model would need to 
consider the current airport configuration, and potentially the 
season of the year, when making taxi-time, fuel burn, and 
emissions predictions. In contrast, cluster 6 contains airports 
with lower than average taxi-out time and delays, and the 
highest percentage of operations in VMC condition. The three 
airports in this cluster are HNL, PHX, and LAS – all airports in 
locations with consistently good weather throughout the year, 
and minimal surface congestion.  

The cluster results presented here provide a way to 
categorize the airports in a way that differentiates their 
operational characteristics. We note that queuing models have 
been developed and validated at airports in many of the clusters, 
especially ones where the driving features are related to 
congestion and delays (Figure 10): Cluster 1 (LAX in this 
paper, CLT [12], DFW [12]), Cluster 2 (BOS [17]),  Cluster 4 
(EWR [12], PHL [17]), and Cluster 7 (JFK [17], LGA [17]). 
Consequently, it is reasonable to believe that such queuing 
models are effective in representing surface operations for 
airports with different layouts, levels of congestion, and 
operating environments and that airports in a given cluster have 
similar characteristics.  

V. VALIDATION: MODELING EMISSIONS DISPERSIONS AT LAX 

The airport traffic models (such as the queuing model 
presented earlier) provide the total taxi-time as well as the wait 
time in the congested regions on the airport surface. Using such 
models or flight trajectories (if available), one can obtain a 
spatial distribution of fuel burn on the airport surface by 
multiplying the residence time of flights at a particular location 
with the engine-specific fuel flow rate (as detailed earlier). 
Further, the spatial distribution of fuel burn can be used to 
compute the spatial sources of emissions by multiplying the fuel 
burn with the corresponding engine-specific emissions index 
for each pollutant [8]. 

To illustrate that one could develop a model to estimate the 
pollutant concentrations around an airport, we develop an 
emissions dispersion model for LAX. Note that this exercise 

Figure 10. Core 30 Airport Cluster Feature Values 



was carried out to check if one could correlate the airport 
surface traffic with the pollutant concentrations recorded at the 
monitoring sites around the airport and we do not follow the 
typical methodology for dispersion computation as done in 
industry toolboxes (as shown earlier in Figure 4). Figure 11 
shows the locations of the four emissions monitoring sites 
(called AQ, CN, CE, CS) around LAX that was considered in 
the analysis. The monitoring sites are located 500-5000ft from 
the airport boundary. The emissions data consists of pollutant 
concentrations of CO, NOx, SO2, PM2.5 and ultrafine particles 
(UFP, i.e., PM with diameter less than 100nm) sampled every 
minute for the period Feb 01 – Mar 16, 2012.  

 

  
Figure 11. Location of LAX Emissions Monitoring Sites 

 
Figure 12 shows the median pollutant concentrations of CO 

and NOx at the four emissions monitoring sites around the 
airport evaluated over the period considered in our analysis.  
 

 
Figure 12. Pollutant Concentrations of CO and NOx at the 

Four Emissions Monitoring Sites 
 

We notice that the pollutant concentrations are higher during 
the night compared to the day, which does not follow the trend 
in air traffic movements. The unexpected discrepancy between 
the day-time and night-time pollutant concentrations is because 
of various factors including changes in mixing height and  smog 
formation in the Los Angeles region [18]. Therefore, the 
variations in the pollutant concentrations in Los Angeles region 
are largely influenced by other external factors such as 
photochemical reactions, but not by the airport traffic. This 
makes these pollutants a bad signal to analyze the 
environmental impact of airport operations. One needs to note 

that the impact of smog formation or other background sources 
is not specific to LAX but could impact other airports as well 
[19]. Therefore, there is a need to consider other pollutants that 
correlate well with airport traffic to better understand the impact 
of airport operations. 

Figure 13 shows the median of the counts (normalized by 
the sum of the counts over the entire period) of aircraft 
movements (arrivals and departures) on the airport surface and 
UFP particle number concentrations corresponding to particle 
diameter of 10nm at CE site for the period Feb 01 – Mar 16, 
2012. We notice a good correlation between the traffic counts 
and the UFP concentrations. This shows that UFP 
concentrations are a good signature for studying the influence 
of airport traffic. The particle size diameter from aircraft 
emissions are much lower than vehicular emissions or other 
sources, and are thus an excellent candidate for analyzing the 
impact of airport operations [20]. Additionally, the particulate 
matter diameter depends on the aircraft thrust setting, which 
helps us isolate taxi emissions from other phases of flight [21]. 
In our analysis, we considered 10nm UFP concentrations 
because it corresponds to a diameter lower than the particulate 
matter from vehicular sources (which tend to be greater than 
30nm) [20]. Unlike PM2.5 or other pollutants, currently there 
is no regulation on UFP, but recent studies indicate UFP can 
have serious health consequences given their smaller size [22]. 
 

  
Figure 13. Normalized Counts of Aircraft Movements and 

10nm UFP Concentrations 
 

We develop a model for 10nm UFP concentrations as a 
function of airport traffic and the meteorological data to 
illustrate an emissions dispersion model. In particular, we 
develop a temporal model and a spatial model. 

A. Temporal Model 

In the temporal model, we estimate the 10nm UFP 
concentrations at one of the monitoring sites using historical 
data from the same monitoring site, and a set of inputs that 
depend on the airport traffic and meteorological conditions. For 
illustration, we present a model that was trained using data from 
the CE site that is located to the east of departure runway 25R 
(see Figure 11). We consider a regression model of the 
following form: 

𝑌 ൌ 𝑓ሺ𝐶,,𝑊ாௐ,𝑊ேௌ,𝑇, 𝑆ௗሻ 
Here, 𝑌 denotes the normalized 10nm UFP concentrations 

sampled at every 15-min interval. 𝐶, represents the traffic 
counts weighted by the baseline aircraft fuel flow rate for 
arrivals (𝑘 ൌ 𝑎) or departures (𝑘 ൌ 𝑑) in the queue (𝑚 ൌ 𝑞) or 
actively taxiing aircraft (𝑚 ൌ 𝑡), that have been assigned one of 
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the southern runways (25R, 25L). 𝑊ாௐ and 𝑊ேௌ represent the 
wind speed along East-West and North-South directions, 
respectively. 𝑇 and 𝑆ௗ denote the ambient temperature 
and solar irradiance, respectively. The regression function, 𝑓ሺሻ, 
is determined using Gaussian Process Regression (GPR) with 
70% of the data (1657 samples) used for training the model and 
the rest being used for testing the model. The input features 
were selected based on careful feature engineering, and we skip 
the details here for conciseness. For example, we found that the 
magnitude and direction of wind play a significant role in 
emissions dispersion as one might expect. Additionally, we 
found that departure and arrival traffic using runway 25R have 
a significant influence on the pollutant concentrations at the CE 
site, and including other traffic did not improve the model 
performance. Figure 14 shows the model predictions along with 
95% confidence intervals, and the actual data from an 
independent test set. We see a good match between the model 
predictions and actual data. The mean error and mean absolute 
error evaluated using the test set was found to be 0.009 and 
0.038, respectively. Here the errors are computed as the 
difference between the estimated normalized UFP 
concentrations from the model and the data.  

 
Figure 14. Predictions of the Normalized UFP 

Concentrations Using Temporal Model 

B. Spatial Model 

The spatial model allows us to estimate the UFP 
concentration at any location around the airport. The model is 
trained using data from multiple monitoring sites, and we 
consider the spatial component (location) of emission sources 
by accounting for the distance between the various sources and 
the location where the pollutant concentration needs to be 
estimated. Here the sources represent the queuing traffic and 
actively taxiing traffic for each runway. The input features 
include traffic at different sources weighted by the baseline fuel 
flow rate, distance between source and monitor, bearing 
between wind vector and position vector of monitors, 
temperature and solar irradiance. Additionally, we include 
time-delay terms of the input features (previous two 15-min 
intervals) to account for advection of pollutants from the source 
to the monitor. For illustration, we present a model that was 
trained using data from two monitoring locations (CE and CS 
sites) and test the performance of the model using data from a 
different location (CN site) that is located to the east of runway 
24L. The model was determined using GPR. Figure 15 shows 
the model predictions along with 95% confidence intervals, and 
the actual data from an independent test set. We see a good 
match between the model predictions and actual data. The mean 
error and mean absolute error evaluated using the test set was 

found to be 0.013 and 0.039, respectively. However, the 
temporal model performs better than the spatial model because 
it is trained on data from the same monitor, but the advantage 
of the spatial model is that it can estimate the UFP 
concentrations at any location around the airport. Overall, these 
results indicate that queuing models that estimate the airport 
traffic can be used to predict the UFP concentrations around the 
airport. Therefore, this framework shows us that we can 
estimate the environmental impact of taxi operations, without 
the interference from other background sources of emissions. 

 
Figure 15. Predictions of the Normalized UFP 

Concentrations Using Spatial Model 

VI. CONCLUSIONS 

This paper has discussed characteristics of airport surface 
models suitable for environmental impact analyses. Models 
suitable for inventory and spatial distribution analyses have 
been presented. For inventory analyses, a set of enhancements 
to currently used industry standard models have been presented 
in terms of baseline taxi fuel burn rate, taxi time and pre-taxi 
fuel burn elements. For spatial distribution analyses, a queuing 
model to estimate the spatial distribution of the airport traffic 
has been presented, which in turn can be used as inputs to an 
emissions dispersion model. The queuing model is helpful to 
analyze airport operations for different demand sets or in cases 
where granular trajectory data is unavailable. A machine 
learning approach has been presented to estimate the spatial 
distribution of UFP concentrations around an airport given the 
airport traffic and meteorological conditions. UFP 
concentrations were found to exhibit good correlations with the 
airport traffic, and they served as an excellent signature to 
assess the environmental impact of airport operations, unlike 
other standard pollutants (such as CO and NOx) that are 
significantly influenced by other background sources. To 
demonstrate the practical applicability of our framework, we 
developed and validated the models using actual operational 
data from LAX. We also presented a clustering approach to 
categorize the different airports and show the general 
applicability of the modeling approach. The analysis presented 
in this paper is intended to provide insights to improve toolkits 
for environmental impact assessment such as AEDT in the 
future. Finally, key limitations and future research directions 
are outlined below. 

A. Key Limitations of the Modeling Approach  

 Limited availability of FDR data: Due to privacy concerns, 
airlines typically do not share FDR data. As a result, there is 
a limited availability of FDR data across aircraft and engine 



types, thereby making it challenging to develop fuel burn 
models that covers all the operational aircraft types.  

 Airports with multi-region traffic congestion: In this paper, 
we considered departure runways to be the primary 
bottlenecks that cause taxi-out delays. However, at certain 
airports, additional taxi-out delays might arise from 
congestion in the ramp areas (or deicing pads). The queuing 
model presented in this paper could be extended to 
accommodate such multi-region congestion [12].  

 Airport infrastructure changes: Airport air-side 
infrastructures such as runways and taxiways can undergo 
changes. Therefore, one needs to keep track of the 
infrastructure changes, and appropriately update model 
parameters. Further, infrastructure changes could lead to 
different traffic hot-spots on the airport surface, which 
might need a detailed traffic analysis using flight trajectory 
data as shown earlier in Figure 5.  

 Limited availability of aviation emissions sensor data: 
There is limited openly available emissions sensor data 
recorded at locations close to the airports. To develop 
accurate emissions dispersion model, one needs access to 
pollutant concentrations at multiple locations around the 
airport with reasonable data resolution.  

B. Future Research Directions 

In this paper, we considered UFP concentrations instead of 
the other commonly reported pollutant species because UFP 
concentrations were found to be well correlated with airport 
surface traffic even in the presence of other background sources 
(unlike other pollutants). An interesting research direction is to 
develop models to infer concentrations of standard pollutant 
species (such as CO, NOx) emitted from aviation-related 
sources using UFP concentrations. Further, one could integrate 
the queuing model and emissions model presented in this paper 
to obtain an emissions inventory and dispersion model for 
airport environmental impact assessment. 
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