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Abstract—Recent advances in Artificial Intelligence and Machine 
Learning are being harnessed to solve increasingly complex 
problems across a variety of domains, including Air Traffic 
Management. Application of these methods to the domain of 
Traffic Flow Management, however, remains a challenge as it is 
first necessary to effectively represent the dynamics of weather 
forecasts – and the uncertainty in the resulting constraints – within 
the construct of the decision-making process. In this paper, we 
propose a novel approach for capturing weather forecast 
uncertainty in a reinforcement learning process that generates 
Traffic Flow Management strategies in a real-time environment. 
Specifically, we leverage Monte Carlo Tree Search to explore and 
evaluate potential traffic management actions against an ensemble 
of weather futures. The results demonstrate that under the 
assumptions of the operational environment developed and the 
objective defined, the algorithm can generate effective solutions 
for managing uncertain constraints, adapt to changing 
information, and do so in a real-time context. 

Keywords- artificial intelligence; reinforcement learning; traffic 
flow management; sequential decision making; decision support 

I.  INTRODUCTION 
Within the National Airspace System (NAS) and across Air 

Navigation Service Providers (ANSPs) globally, there is a 
recognized need to leverage new automation technologies to 
create a more robust and efficient Air Traffic Management 
(ATM) system capable of providing services to both current and 
new airspace users. A key component of the Federal Aviation 
Administration’s (FAA’s) future vision for operations is the 
application of Artificial Intelligence (AI) based methods to 
improve prediction accuracy and inform decisions in real-time 
[1]. 

AI’s recent return to prominence has been driven by the 
successes of Google’s DeepMind in winning against world class 
champions in Go [2] and StarCraft [3]. As such, researchers in a 
variety of domains including ATM have sought to employ AI 
techniques to address long-standing challenges. Much work has 
focused on the use of Machine Learning (ML) techniques for 
prediction and analysis such as for predicting taxi-out times [4], 
analyzing air traffic flows [5] [6], predicting runway occupancy 
times [7], predicting aircraft delays [8], designing operationally 
acceptable reroutes [9], and predicting Ground Delay Programs 
(GDPs) [10]. 

However, research investigating the use of AI for real-time 
control of aircraft (nominally, in a human machine team 
context), is more limited. Reference [11] develops an AI agent 
that can sequence taxiing aircraft at a hypothetical airport, using 
a Deep-Q-Network – a prominent type of Deep Reinforcement 
Learning (DRL) algorithm. Reference [12] trains a DRL 
algorithm to maintain aircraft separation in congested airspace, 
albeit assuming no uncertainty in either the known information 
or the result of the actions taken. The approach developed in [13] 
incorporates uncertainty into the conflict avoidance and 
separation assurance problem by assuming a normal distribution 
on the resulting state of an aircraft after executing the agent-
prescribed action. Reference [14] builds upon this work to learn 
controller-specific resolutions with the goal of gaining greater 
operational acceptance. 

Developing an AI agent to create Traffic Flow Management 
(TFM) strategies represents a new frontier in this evolution and 
is the focus of this paper. The goal of TFM is to balance demand 
with available capacity. Designing TFM strategies provides an 
ideal use case in that 1) today’s operation remains experience-
driven with limited decision support tools, 2) TFM is a planning 
process that can have significant impacts on efficiency but is not 
a safety-critical operation (i.e., as separation assurance is 
provided by Air Traffic Control (ATC)), and 3) despite 
significant previous work, a single satisfactory approach for 
providing real-time decision support has remained elusive. 

The challenge of designing TFM strategies – which 
comprise a time series of Traffic Management Initiatives (TMIs) 
– is that the planning horizon, especially for some TMIs, may be 
several hours and both weather and traffic forecast uncertainty 
remains high at these look ahead times (LATs). Furthermore, 
weather forecast uncertainty, which can be characterized by an 
ensemble of deterministic weather futures generated through 
varying parameters in physics-based models, is not well 
represented using standard statistical distributions. Given the 
complexity of the network effects, the decision on when to 
implement which combination of management actions is not 
intuitive. 

The need for sequential decision-making approaches (i.e., 
methods that account for the dynamics of uncertainty in the 
timing of decisions) to address challenges in the TFM space has 
been long recognized. One prominent approach has been to 
leverage stochastic mixed-integer programming algorithms to 
address GDP planning [15-18]. In these earlier works, the 



planning scenarios for which the strategy is optimized are 
constructed by the authors, as opposed to derived from the 
underlying dynamics of the forecasted weather. Reference [19] 
used similarly constructed scenarios to evaluate a proposed 
change to the GDP slot assignment logic, from the airline 
perspective. Research into the derivation of scenarios from 
weather forecasts have similarly made significant progress; 
however, these papers did not fully connect the decision-making 
challenges under uncertainty to the scenarios derived [20] [21]. 

In our previous work [22], we developed an Advanced 
Planning Framework (APF) – a decision tree that was derived 
from an ensemble weather forecast product to directly capture 
the range of potential weather-induced constraints – and 
examined its utility for designing TMIs; however, while the 
preliminary results showed promise, the investigation was 
limited due to computational considerations. Applying the APF 
to the strategic flight cancellation problem showed that 
improved decision skill could be achieved with a longer decision 
clock and a smaller decision space [23].  

In this paper, we revisit the problem of generating TMI 
strategies that adapt under changing forecast information. 
Leveraging insights from the APF, we implement our Monte 
Carlo Tree Search (MCTS) based on the evolution of the 
forecast ensemble members, which allows a more precise 
estimation of future expected costs under different selections of 
trial TMIs. While the planning aspect leverages the forecast, the 
propagation of the model, including the impact of any TMI, is 
assessed against observed capacities, replicating the challenge 
of managing demand in the presence of forecast uncertainty. To 
demonstrate the proposed approach, our case study focuses on 
managing arrivals into Atlanta Hartsfield International Airport 
(ATL). Using historical forecasts and observed data, we 
generate TMI strategies for a subset of scenario days spanning 3 
non-consecutive months in 2019, chosen to capture different 
weather (and therefore, forecast) phenomena.  

The remainder of the paper is organized as follows. Section 
II details the environment for our case study, including the 
scenarios generated, TMIs considered, simulation model, and 
metrics used to assess the results. Section III describes the 
MCTS approach, including the process for leveraging the 
forecast data. Section IV presents the results, and Section V 
provides additional discussion on the future directions for this 
work. 

II. CASE STUDY  
Our case study focuses on designing TMIs to manage arrival 

demand into ATL under uncertain weather and potentially 
degraded capacity conditions. As shown in Figure 1, our 
representation abstracts the arrival routes into a four corner-post 
configuration common at ATL. The four corner-posts, termed 
fixes for the remainder of the paper, are labeled as Northwest 
(NW), Northeast (NE), Southwest (SW), and Southeast (SE) and 
are positioned 40 km from the airport, which is shown in the 
center of the circle. 

In this section, we describe the development of the scenarios, 
the TMI options permitted, the queuing simulation that 
propagates the demand, and the metrics used to evaluate 
performance. 

A. Scenario Generation 
Each scenario corresponds to a historical day, where 

scenario data was generated for the period between January 1, 
2015 and January 1, 2020. Each scenario contains a time history 
of demand at each resource (the four fixes and the airport) and 
the capacities – both derived from forecast and observation – for 
these resources. For the remainder of this paper, we will refer to 
capacities derived from observed data as actual capacities. 

1) Demand 
To obtain traffic data at each of the fixes, the first filed flight 

plan for each flight arriving to ATL is extracted from Aggregate 
Demand List (ADL) data and contains the flight ID, origin 
airport, original estimated time of departure (OETD), and 
original estimated time of arrival (OETA). Using Jeppesen data, 
each published Standard Terminal Arrival (STAR) route for 
ATL was mapped to one of the four fixes shown in Figure 1. As 
such, any flight with a flight plan containing a published STAR 
could be automatically assigned to a fix. For flights without a 
STAR, we assigned the most common fix used by that flight’s 
year, flight ID, aircraft type, or origin airport, based on the data 
available.  

The estimated time en route (ETE) is calculated as the 
difference between the OETA and OETD. To compute the fix-
to-airport transit time, we conducted a historical analysis of 2018 
track data and used the median value. The scheduled time of 
arrival at the fix is the OETA less the fix-to-airport transit time.  

2) Airport Capacity 
Airport capacities were derived from an analysis of Aviation 

System Performance Metrics (ASPM) runway configuration 
data from 2015-2019, where the most common configuration 
was 26R 27L 28 | 26L 27R. Reference [24] provides the Airport 
Arrival Rates (AAR) for each of the four meteorological 
conditions: Visual MC (VMC), Low VMC (LVMC), Instrument 
MC (IMC), and Low IMC (LIMC), where the published hourly 
rates were divided by four and rounded down to provide the 15-
minute values shown in Table 1. The ceiling and visibility rules 
described in Table 1 were taken from [24] and [25]. 

Table 1. Meteorological Conditions for ATL Case Scenario 

Category 
Visual 

MC 
(VMC) 

Low 
VMC 

(LVMC) 

Instrument   
MC     

(IMC) 

Low 
IMC 

(LIMC) 

Rate per 
15 min 33 31 27 24 

 
Figure 1. Depiction of ATL Corner Post Configuration  

 



Ceiling 
and 

Visibility 
conditions 

ceil ≥ 
3600 ft 

and 
vis ≥ 7 

SM 

ceil <  
3600 ft  

or 
vis < 7 

SM 

ceil < 1000 
ft  
or 

vis < 3 SM 

ceil < 
500 ft 

or 
vis < 1 

SM 

To compute the applicable MC rate, we used Automated 
Surface Observing System (ASOS) and Meteorological 
Terminal Air Report (METAR) data to identify the observed 
ceiling and visibility for each 15-minute period and recorded the 
associated rate as the capacity for the airport at that time. 

3) Fix Capacities 
As noted, the corner post fixes represent an aggregation of 

arrival routes and thus do not have a published nominal capacity. 
To estimate these values, we analyzed the historical arrival 
throughput in each quadrant and computed the 95% percentile 
value, as shown in Table 2.  

Table 2. Nominal Fix Capacities per 15-minute time bin 
Fix NW NE SW SE 

Capacity 10 10 7 7 

To compute the weather-impacted capacities, we leverage 
Corridor Integrated Weather System (CIWS) nowcast to provide 
measurements of Vertically Integrated Liquid greater than or 
equal to 3 mm of surface accumulation (VIL3+) in the 80 NM 
area surrounding the airport for each 15-minute period. We 
compute the weather-impacted capacity of fix 𝑖 at time 𝑡 (𝐶!,#$) 
as a fraction of the nominal capacity (𝐶!%) using the relationship 
provided in [26]. For our purposes, however, we limit the 
capacity reduction to 50%, as shown in Equation 1. 

Here, 𝑁!,#&'( is the number of grid points in the enlarged quadrant 
with VIL3+ weather, and 𝑁! is the number of grid points 
captured by the quadrant. The values computed represent the 
actual fix capacities for the scenario. 

4) Predicted Capacities 
Each scenario includes a set of predicted resource capacities 

which will be used by MCTS to generate TMI actions, as 
opposed to the actual capacities which are used by the 
simulation. Specifically, we leverage the Short-Range Ensemble 
Forecast (SREF), which consists of 26 deterministic trajectories 
of weather variables at hour-long intervals. It is assumed that 
each member of the ensemble is equally likely to occur and, 
together, the ensemble members span the space of future 
outcomes [27]. Furthermore, a new SREF is issued every 6 
hours. 

To compute the predicted AAR, we identify the SREF grid 
cell that contains the airport center. Using the ceiling and 
visibility variables, we can directly calculate the MC for the 
hour. To obtain the 15-minute predictions, we divide the hourly 
rate by four, rounding down to the integer.  

To compute the predicted fix capacities, we identify the 
proportion of SREF grid points in the extended 80-km quadrant. 
However, as the SREF does not contain VIL measurements, we 
use the reflectivity values to approximate VIL3+ using the 

relationship described in [28]. Using a threshold of reflectivity 
>38 dBZ to identify VIL3+ conditions, we compute the weather-
impacted capacity using Equation 1. Again, the value is divided 
by four and rounded down to the integer to generate 15-minute 
capacities. 

The resulting predicted capacity ensemble contains 26 
members, where each member contains the 15-minute integer 
capacities for each of the five resources (airport and four fixes). 

B. Traffic Management Intitiatives 
Two types of TMIs are considered in this case study: GDPs 

and metering. 

1) Ground Delay Program 
A Ground Delay Program (GDP) is a strategic TMI that 

delays flights on the ground prior to departure. The GDP is 
defined by four parameters: 

• Rate:  The maximum quarterly arrival rate for flights. 
• Scope:  The scope defines the set of origin airports whose 

departures are subject to delays by the GDP. 
• Start time:  The start time of the GDP expressed in local 

time at the destination airport. 
• Duration:  The duration of the GDP. 

For the case study in this paper, the scope was set to include 
all departures. 

The GDP implementation was based on the logic of Flight 
Schedule Monitor (FSM) [28] and incorporates the option to 
cancel or revise (i.e., alter the parameters of an existing GDP) an 
existing GDP or to revise a GDP. Arrival slots are generated in 
accordance with the specified GDP rates and a ration-by-
schedule logic is used to assign slots based on their scheduled 
arrival times (OETA). Controlled arrival times (CTAs) and 
controlled departure times (CTDs) are computed based on the 
assigned arrival slot times and the flights’ ETEs.  

In the case of revisions, delay is released (to the extent 
possible) from flights no longer included in the revised GDP and 
re-assigned based on the new slots, where flights that were 
impacted by the previous GDP have precedence over flights that 
were not included. Additionally, flights can be exempt for 
several reasons (scope, departure time), and exempt flights are 
assigned slots before any other groups. In contrast to non-
exempt flights, exempt flights take up slots and are assigned 
CTDs and CTAs but are not delayed.  

2) Metering 
The metering TMI is intended to represent coordinated air 

delay assigned to flights prior to arrival in the terminal airspace. 
Each fix can have a separate “metering TMI” that is defined by: 

• Rate: The permissible arrival rate per 15 minutes. This 
rate is translated into a new time of arrival at each 
corner-post fix. 

• Start time:  The start time of the rate restriction. 
• Duration:  The duration of the metering program in 

minutes.  
A flight’s actual fix crossing time can be delayed relative to 

the scheduled crossing time by Air Traffic Control (ATC), 
metering, or some combination of the two. When a fight’s fix 

𝐶!,#$ = 𝐶!% ×max *+1 − 2
𝑁!,#&'(

𝑁!
/ , 0.54 1 



crossing event is processed by the simulation, the scheduled 
crossing time – call it 𝑡) – is compared to the previous flight’s 
crossing time at the fix – call it 𝑡*. If the time gap 𝑡) − 𝑡* 
between flights exceeds the minimum time constraint imposed 
by both the fix capacity and the current metering restriction (if 
any), then the flight crosses the fix at the scheduled time without 
any delay. Otherwise, the flight’s fix crossing time is delayed by 
the smallest amount such that both the fix capacity and metering 
time constraints are satisfied. Note that delay is first attributed to 
the metering restriction (if any), and any additional required 
delay is attributed to ATC. Note that while the metering TMI 
cannot be canceled, the agent may override the current metering 
parameters at any fix by simply implementing a new metering 
action. 

C. Simulation Model 
The simulation is a bi-level queuing model [29], where each 

fix has an associated queue which then feeds the airport queue. 
The arrival time of each flight to each fix is defined by the 
scenario demand data. While these times may change due to the 
implementation of a TMI, this impact occurs prior to the time 
period where the flight would arrive at the fix. As such, the 
simulation proceeds with the current inventory list and processes 
flights based on the actual capacities associated with each 
resource. The simulation terminates when all flights have passed 
the airport queue or after 24 hours.  

D. Metrics 
1) Delay and Reward Function 

The total delay accrued for each flight is the sum of the TMI 
Ground Delay (𝑑+), TMI Air Delay (𝑑,), and ATC-induced 
Delay (𝑑-). The TMI Ground Delay for a flight is calculated as 
the difference between the CTD and the OETD. TMI Air Delay 
is measured as the difference between the scheduled fix arrival 
time and the assigned fix arrival time resulting from the metering 
TMI. ATC-induced delay is the total queuing delay imposed by 
the simulation, capturing both queues at the fix and at the airport. 

The reward function is defined to minimize the delay impact 
for the entire scenario, where delay impact represents a non-
linear aggregation of the three components of delay. Using 
Subject Matter Expert (SME) guidance, the delay impact for 
each type of delay was defined as a piece-wise linear function to 
capture not only the difference between sources of delay but how 
the duration of the delay changes the impact. These relationships 
are shown in Equations 2-4 and depicted in Figure 2.  

𝐼+= 7

10 ⋅ 𝑑+	 𝑑+ ≤ 2
20 + (𝑑+ 	− 2) 2 < 𝑑+ ≤ 15
35 + 2 ⋅ (𝑑+ − 15) 15 < 𝑑+ ≤ 60
1000 𝑑+ > 60

 2 

𝐼,= 7

10 ⋅ 𝑑, 𝑑, ≤ 1
10 + 2 ⋅ (𝑑, − 1) 1 < 𝑑, ≤ 15
40 + 3 ⋅ (𝑑, − 15) 15 < 𝑑, ≤ 30
2000 𝑑, > 30

 3 

𝐼-= C
5 ⋅ 𝑑- 𝑑- ≤ 15
75 + 10 ⋅ (𝑑- − 15) 15 < 𝑑- ≤ 30
3000 𝑑- > 30

 4 

Viewing Figure 2, we see that for flight specific delays that 
are less than two minutes, ATC-induced delay (magenta line) 

induces the least delay impact; however, as ATC delays 
increase, delay impact grows at the fastest rate and for 30 
minutes or more a large penalty is assigned to represent the 
disruption of potentially requiring a diversion. For flight-
specific delays between two and ten minutes, metering delay 
(orange line), induces the least delay impact and increases more 
slowly than ATC delay, but still assigns a large penalty for 
delays over 30 minutes. GDP delay is the least impactful for 
delays over 10 minutes and does not have a large penalty 
assigned at higher delay values. 

The reward function computes the negative of the total delay 
impact for all flights (𝑓), as shown in Equation 5. 

𝑅𝑒𝑤𝑎𝑟𝑑 = −KL𝐼.
+ + 𝐼., + 𝐼.-M

.

 5 

2) Airport Utilization 
While the selection of the TMI strategy is determined solely 

based on the reward function described above, we are also 
interested in measuring how efficiently the selected strategy uses 
available capacity. To compute this, we define the Airport 
Utilization at time 𝑡 (𝐴𝑈#) and the total airport utilization for the 
scenario as (𝐴𝑈) as shown in Equations 6 and 7, respectively. 

Here, 𝑁𝐴# is the number of aircraft that process through the 
airport queue in time 𝑡, 𝐴𝐷#/ is the number of aircraft that were 
originally scheduled to arrive in that time period, as determined 
by each flight’s OETA, and 𝐴𝐴𝑅# is the actual airport capacity, 
or AAR, at that time. The total airport utilization is the average 
over the airport utilization at each time step, where T is the total 
number of time steps in the scenario. Note that in cases where 
the denominator of Equation 6 is zero (e.g., there was no 
scheduled demand), we set 𝐴𝑈# = 1. 

3)  Forecast Uncertainty 
The predicted capacity ensemble described in Section II.A 

captures the information used by MCTS to plan TMI actions. As 
it is important to distinguish the planning skill relative to the 
certainty of the forecast information, we compute the 
informational entropy associated with each resource using the 
first SREF issuance of each scenario day [30] [31]. 

𝐴𝑈# = 𝑁𝐴#/min	(𝐴𝐷#/, 	𝐴𝐴𝑅#) 6 

𝐴𝑈 = 	∑ 𝐴𝑈## /T 7 

 
Figure 2. Delay Impact vs. Delay Minutes 

 



For each resource, there are a finite number of capacity levels 
available at each time. Using the airport as an example, one of 
four MC levels may be assigned at each time bin for each 
member. If instead of viewing the 26 members individually, we 
compute the number of members assigned to each capacity bin, 
we can evaluate the spread of information across both capacity 
bins and time periods. Specifically, if we define 𝐸0# to be the 
number of ensemble members with capacity level 𝑗 in time bin 
𝑡, we can compute the normalized probability distribution across 
resource levels and time bins using Equation 8. 

𝑝0# =
𝐸0#
∑ 𝐸0#0

	∀𝑡 8 

Note that the denominator is equal to 26 in our example. The 
entropy associated with that resource’s forecast is then defined 
as shown in Equation 9, where 𝑇 is the total number of time bins. 

𝐻 = −
1
𝑇KK𝑝0,#𝑙𝑛	(𝑝0,#)

#0
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III. TFM AGENT 
In the AI domain, the agent refers to the automation that 

identifies and selects the action (i.e., TMI) to implement with the 
goal of maximizing a reward, which in this work corresponds to 
minimizing delay impact. In this paper, the agent uses MCTS to 
select the best action at the current (hourly) decision time 𝑡 
which the agent estimates will achieve the lowest future 
expected delay impact. During the one-hour decision duration 
allotted for planning, MCTS is applied to build a tree that 
estimates the optimal adaptive TMI policy with respect to the 
possible future capacity trajectories as derived from the capacity 
ensemble. The policy is adaptive over the target planning 
horizon in the sense that the best action at time 𝑡 takes into 
account future contingencies, i.e., downstream TMI actions that 
could be triggered by future observed capacities. Note, however, 
that the time 𝑡 tree is used to select only the time 𝑡 action, and a 
new tree is built to select the action at each subsequent decision 
time. As is depicted in Figure 3, the agent’s action at time 𝑡 
results in an updated system state, which is used to initialize the 
topmost “root” node of the time 𝑡 + 1 tree.  

At decision time 𝑡 we use MCTS to select an action with the 
goal of reducing future expected delay impact. Our MCTS 
algorithm is initialized by defining a root node 𝑁 at depth 𝑑 =

0.	The root node’s state reflects the current state of the TFM 
environment at time 𝑡, which accounts for all actions taken up to 
time 𝑡, all actual capacities observed up to time 𝑡,  and the impact 
on the flight schedules. At the root node, we assume that all 26 
members of the capacity ensemble are equally likely, as they 
were derived from the SREF which relies on that assumption. 
Furthermore, we assign all 26 members to the same partition 𝑆% 
for root node 𝑁, since – relative to the root time 𝑡 – no capacities 
have been observed to distinguish one member from another.  

Before optimizing over TMI actions, we first construct a 
“baseline” tree from the root downward that captures the space 
of possible futures when no TMI actions are taken. The possible 
futures are enumerated in tree form as follows: From the root 
node, first identify which members in the capacity ensemble 
remain consistent over the next hour. Here, two members are 
said to remain consistent if and only if their binned capacities 
are identical across all 5 resources over the 4 (15-minute 
separated) observations in the next hour. For the airport 
resource, the capacity bins are aligned with the four MC 
capacities. For the NW and NE fixes, 6 capacity levels (integral 
values between 5 and 10, inclusive) may be present in the 
forecast. For these two resources we define 5 capacity bins, 
where the lowest two capacities are binned together. For the SW 
and SE fixes, 5 capacity levels (integral values between 3 and 7, 
inclusive) may be present. For these resources we define 4 
capacity bins, where, again, the lowest two capacities are binned 
together. This approach is similar to that used in [23]. 

Ensemble members that are consistent over the next hour are 
placed into the same partition at depth 𝑑 = 1, and associated 
with each partition we create a child node of the root. If we let 
𝑁 represent the root, then 𝑁 = 𝑃𝑎𝑟𝑒𝑛𝑡(𝐶) for all child nodes 𝐶. 
For the baseline tree construction, the parent-to-child transition 
also assumes that no TMI action is taken. For simplicity, we 
represent this action as 𝑎_. We apply this branching process 
recursively to each child to create a complete tree. Note that we 
terminate the branching process when the child node depth 
reaches a predefined target value of 𝑑,-1 = 5 – or the child 
node represents a terminating state of the simulation, whichever 
comes first. By limiting the depth of the tree in this way, we 
ensure that the MCTS algorithm will focus its policy search on 
more immediate actions (here, over the next 5 hours) where the 
future – and hence action impact – is more certain.  

The next step is to initialize a value function at all nodes in 
the baseline tree. This process begins at the leaf nodes of the 
baseline tree with depth 𝑑,-1 and propagates upward to the root. 
Assuming that a given leaf node 𝑁 does not represent a 
terminating state of the simulation, we estimate the value 𝑉%,-2  of 
action 𝑎_ at the node by performing a rollout from 𝑁. In our 
MCTS implementation, a rollout simulates the current node state 
to the completion of the simulation, such that all future actions 
default to 𝑎_. In particular, the rollout is executed over all 
ensemble members in 𝑆% and their resulting future rewards are 
averaged to obtain 𝑉%,-2 . The optimal action at node 𝑁 is given 
by 

𝑎%∗ = argmax
-
𝑉%,- 10 

where the argmax is taken over all actions 𝑎 explored at node 𝑁. 
In the baseline tree, 𝑎%∗ = 𝑎_ since no other actions have yet been 

 
Figure 3. Overview of MCTS Decision Process 

 



explored. The corresponding optimal value at node 𝑁 is denoted 
𝑉% = 𝑉%,-!∗ . Next, we use dynamic programming to recursively 
update parent node values at action 𝑎_:   

𝑉%,-2 = K
1
𝑤4

L𝑟̅4,-2 +	𝑉4,-2M
4∈46!789:;(%,-2)
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Here 𝑤4 denotes the proportion of ensemble members in 𝑆% 
that appear in child 𝐶, and 𝑟̅4,-2  denotes the immediate reward 
received when action 𝑎_ is taken at node 𝑁 and we assume the 
capacities over the transition from 𝑁 to 𝐶 are the average 
capacities (by resource) over the ensemble members in 𝑆4. Just 
like with the leaf nodes, we let 𝑎%∗ = 𝑎_ represent the optimal 
action at each subsequent parent node 𝑁 until the recursive 
process terminates at the root. A notional illustration of the 
resulting baseline tree is depicted in Figure 4, where we use 
𝑑,-1 = 2 for the sake of simplicity. 

Once the baseline tree is constructed, the MCTS algorithm 
explores new actions in an effort to improve upon the baseline 
policy. Our specific MCTS implementation is inspired by a 
MCTS algorithm developed for the Combinatorial Multi-armed 
Bandit problem [32]. In that paper, the authors propose a 
factored 𝜖-greedy strategy to balance the tradeoff between 
exploration – i.e., randomly sampling new actions – and 
exploitation – i.e., resampling actions that are known to be good 
– when the action space is combinatorially large. As discussed 
in the next section, our problem’s action space falls into this 
category, admitting more than 74 million possible actions at 
each decision time. This is because the joint action space is 
expressed as the product of the 5 resources’ individual action 
spaces.  

Given a baseline tree, each iteration of our MCTS algorithm 
proceeds as follows. First, the 𝜖-greedy strategy described in 
[32] is used to select an action at the root node 𝑁. Subject to 
user-defined probabilities, the strategy either (i) greedily selects 
the current best action 𝑎%∗ , (ii) randomly samples a joint action 
uniformly from the list of joint actions previously taken at the 
node, (iii) greedily selects an action for each resource 
(independently), or (iv) randomly samples an action for each 

resource uniformly (independently). The greedy approach of 
option (iii) is based on the “naïve” assumption that the joint 
action value function 𝑉 can be decomposed as a sum over value 
functions of the independent resource-specific actions. In 
practice, this assumption need only hold loosely for the sampling 
strategy to perform well [32].  

If the action 𝑎 sampled at root node 𝑁 by the ϵ-greedy 
strategy has not been sampled before, then we create new child 
nodes of 𝑁 based on the partitioning of 𝑆% over the next one 
hour transition. From these child nodes we conduct rollouts, 
initialize their value functions, and recursively update the 
parent’s value function for the action 𝑎 just sampled. 

On the other hand, if the action 𝑎 has been sampled before, 
then we sample an existing child 𝐶 ∈ 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑁, 𝑎) such that 
each child has probability 𝑤4 of being selected. We carry out the 
ϵ-greedy strategy from the child just as before. In general, the 
forward sampling process continues until we either sample a 
previously unexplored action or reach a leaf node corresponding 
to a terminal simulation state. In both cases, we perform 
recursive value function updates back up the tree to the root 
node, effectively backtracking the forward sampled path along 
the way. This process of forward sampling followed by rollout 
and backpropagation is repeated until 1 hour has passed, after 
which the agent implements the action  𝑎%∗ = argmax

-
𝑉%,- 

based on the value function estimates at the root node 𝑁.  

IV. RESULTS 

A. Experimental Design 
To evaluate the performance of the TFM agent, we generated 

TFM strategies for three non-consecutive months: June, 
October, and December 2019. For each scenario day, the agent 
was provided with the capacity ensemble and had an hour to 
generate the recommended action for the upcoming hour. For 
the two TMIs described in Section II.B, we permitted the agent 
to select among the TMI parameter values listed in Table 3. 

Table 3. TMI Parameter Options 
TMI 

Parameters Start Time  Duration  Rate 

GDP {60, 120, 
180, 270} 

{120, 180, 
240, 300} 

{0.5, 0.6, 0.7, 
0.8, 0.9} 

Metering {30, 60} {30, 60, 90} {0.5, 0.6, 0.7, 
0.8, 0.9} 

As shown in Table 3, the TMI start time (in minutes) 
specifies the offset between the decision time and the start of the 
program. For the GDP, this offset can dictate which flights will 
receive ground delay as flights within 30 minutes of their OETD 
will be exempt. The duration (in minutes) specifies how long the 
TMI will be in effect and the rate specifies the fraction of 
nominal 15-minute capacity that will be imposed as the rate. In 
addition to these options, the agent can opt to take no action, 
cancel, or revise an existing action. Note that while only two 
TMIs are defined and only a handful of parameter values are 
considered for each, the resulting design space has more than 74 
million discrete choices at each time step. 

 
Figure 4. Notional depiction of baseline MCTS tree with max depth 

equal to two, for simplicity. Dashed lines represent rollouts from leaf 
nodes of the tree. Note that all transitions from parent to child involve 

the “no TMI” action 𝒂h. 



B. Single Day Evaluation 
Before presenting the results for the 3-month period, we first 

analyze two separate days in greater detail to highlight both the 
capability of the model and the challenges wrought by forecast 
uncertainty. To evaluate the impact of forecast uncertainty, we 
compare the results generated by the MCTS as described in 
Section III with a MCTS implementation that was provided the 
actual capacity values. While having a perfect prediction of 
future capacity is unrealistic, this comparison provides the lower 
bound on the delay impact that can be achieved. 

1) June 10th 2019 
The 10 June scenario day highlights the TFM agent’s ability 

to respond to uncertain capacity imbalances as well as adapt the 
strategy as new observations are acquired. Figure 5 shows the 
capacity forecasts for each of the five resources, where the 26 
ensemble members are shown using colored lines. The black line 
in Figure 5 corresponds to the actual capacities of the resources. 
Note that all times are relative to the start of the simulation; hour 
zero is 6AM local time at ATL. 

Figures 6 and 7 show the TMIs – abbreviated as GDP or M-
fix for metering at the specific fix – accumulated delay by 
source, and delay impact for the MCTS under forecast 
uncertainty and with perfect information, respectively. 
Comparing the two plots, we readily notice that with perfect 
information (Figure 7), the capacity imbalance is managed 
solely through metering (shown as orange delays), whereas the 
strategy shown in Figure 6 contains both metering and GDP 
TMIs (shown as blue delays). Referring to Figure 5, however, 
we see that the forecasted capacities at the airport, NE and NW 
fixes are sustained at a rate below that of the actual capacity and 
with such an agreement between the members, the MCTS 

determines the best strategy is to respond to the forecasted 
imbalances. 

While unnecessary control is less than desirable, it is worth 
highlighting two behaviors. First, in Figure 6 we note that two  
GDPs are issued; on closer inspection, we see that the 2nd GDP 
issued at hour 9 is a revision of the first GDP, raising the rate. 
As such, the TFM agent effectively adapts to the changing 
information regarding the delays and capacities observed. In 
addition, while the total delay is higher in Figure 6, the delay 
impact is much closer to that achieved with perfect information. 
Given that delay impact and not total delay is the objective 
sought by the agent, these results conform to our performance 
expectation.  

2) June 8th 2019 
The 8 June scenario day is challenging not only because of 

the significant capacity reduction that occurred but also because 
this reduction was not well forecasted, as shown in Figure 8. 
Viewing Figure 8, we note that the underlying assumption about 
the ensemble, namely that it spans the space of future outcomes, 
does not hold on this day as the actual capacities are lower than 
any of the forecasted values for several time periods at multiple 
resources. 

Figures 9 and 10 show the delay and delay impact under 
forecast uncertainty and with perfect information, respectively. 
With perfect knowledge (Figure 10), a multi-hour strategy 
consisting of both GDP and metering actions across all four 
fixes, starting at hour three, can effectively reduce the delay 
impact associated with this scenario. 

 When basing its decisions on forecast information, 
however, the TFM agent is not able to proactively act to 
successfully reduce the large delay impact. Instead, metering 
actions are used to mitigate some of the impact as the 
implementation times are shorter and therefore can be issued 

 
Figure 5. June 10th Forecasted and Actual Capacities 

 

 
Figure 6. June 10th MCTS TMI Strategy under Uncertainty 

 
Figure 7. June 10th MCTS TMI Strategy with Perfect Information 

 



closer to the time of the constraint. Thus, while the overall delays 
are lower, much of the imbalance is not managed by the TMIs 
and instead handled tactically by ATC, resulting in significantly 
higher delay impact at hour 6. Again, while there is no 
expectation of perfect information in TFM planning, having a 
forecast that captures the range of future outcomes is critical and 

without it, the results generated by any decision support systems 
will suffer from these discrepancies. 

C. Analysis of Three Months of Testing Data 
Given the insight provided by our detailed case-day 

analyses, we next evaluate the TFM agent’s performance across 
our three-month testing period. For each scenario day in the 
period, we compute the delay impact, airport utilization and 
forecast entropy, as described in Section II.D. Figure 11 displays 
these results.  

Viewing Figure 11, we see that across the three-month 
testing data, the agent is able to keep delay impact to a value 
similar to the June 10th case day, with two exceptions. The first 
peak corresponds to the June 8th day examined in the previous 
section while the second day corresponds to June 22nd. It is worth 
noting that on this day, even with perfect information and pro-
active action, the delay impact is similar to that obtained by the 
TFM agent under uncertainty, 140,356 verses 156,155, 
respectively.  

By examining the second plot in Figure 11, we see that the 
delay impact values do not fluctuate with respect to the forecast 
uncertainty (2nd plot in Figure 11). Furthermore, the airport 
utilization remains high with minimum values greater than 95%, 
implying that the agent is not over-controlling the scenario. 
Taken together, these results demonstrate that the MCTS can 
effectively respond to uncertain capacity information when 
generating TMI strategies. 

V. DISCUSSION 
In this paper, we described the development of a MCTS-

based TFM agent capable of designing TMI strategies that 
directly capture the complexities associated with weather 
forecast uncertainties and adapting to changing information in a 
real-time context. By leveraging the ensemble forecast to design 
the decision tree, the agent was able to readily evaluate how 
potential strategies would evolve under the different forecast 
futures. Furthermore, by limiting the decision time to one hour 
for the next recommendation, we demonstrated that such an 
approach holds promise for real-time applications. That said, 
there are several aspects of this challenging domain that require 
additional investigation. The remainder of this section provides 
some discussion on these important directions. 

The decision to embed the forecast information into the 
structure of the tree search resulted in a computationally 
tractable framework in which to evaluate the enormous design 
space associated with this problem. However, as our analysis of 
the June 8th scenario showed, this reliance can result in missed 
opportunities if the forecast does not reflect the range of 
potential future outcomes. One approach to mitigate these 
situations is by introducing a data assimilation function that 
takes as input both (i) an ensemble member’s capacity forecast 
and (ii) observed capacity values at each resource on the current 
day and returns a “corrected” forecast that aims to minimize the 
error between it and the day’s remaining capacity values. 
However, the training of such a function (e.g., as a neural 
network) would require a wealth of historical data, and there is 
no guarantee that the resulting capacity projections would 
satisfy physics constraints in the way that the original ensemble 
members do. As a result, we believe the development of 

 
Figure 8. June 8th Forecasted and Actual Capacities  

 
Figure 9. June 8th MCTS TMI Strategy under Uncertainty 

 
Figure 10. June 8th MCTS TMI Strategy with Perfect Information 

 



improved physics-based ensemble forecasting models may be a 
better long-term solution. 

In addition, any automation designed to provide 
recommended strategies in a real time environment requires a 
well-defined objective function. For AI algorithms, however, it 
is imperative as the automation is not simply evaluating and 
ranking candidate solutions but effectively encoding what a 
good solution entails. Even if the automation could ensure 
optimality, if the objective does not truly reflect the priorities of 
the operational environment, the results generated will not 
provide substantive decision support.  

While the MCTS-based agent developed in this paper was 
able to learn a TMI strategy for a given scenario, it was not able 
to generalize this information across scenario days. A natural 
next step is to replicate the success of AlphaGo [2] and 
AlphaStar [3] by combining MCTS with DRL to iteratively 
learn neural network-based policy and value functions. 
Specifically, the value network could generate more accurate 
future expected rewards than the current simulated rollouts – 
which are limited, in part, by assuming no TMIs are used from 
the current time onward – and the policy network could be used 
to sample actions during the search based on which performed 
best under similar historical conditions. Yet, there exist 
fundamental differences between the games played by AlphaGo 
and AlphaStar and the TFM domain. First, whereas the self-play 
nature of games like Go enable the agent to generate samples 
that are specifically targeted to address shortcomings in the 
agent’s current policy network, in the TFM context the range of 
samples is limited to the weather behavior observed in the static 
historical training set. In practice, the training set may not 
capture the range of weather events that may be encountered on 
future days, and so the policy network may generalize poorly 
outside of the training set. This is a particular concern since 

impactful weather days – where decision support is most needed 
– are comparatively rare in historical data.  

The MCTS results presented in this paper overcome a major 
challenge noted in our previous APF research [22] [23] in that 
the TFM agent can generate recommendations in a real-time 
context. But beyond efficiency gains, this approach can be 
extended to incorporate additional learned responses, something 
that neither the APF nor related research [15-21] could 
accommodate. First, the MCTS can be paired with an expert 
policy model – a separate ML algorithm that leverages historical 
data to inform the search and value updates. The expert policy 
would function analogously to the DRL-based policy network 
discussed but would be trained independent from and prior to 
the execution of MCTS. Secondly, by incorporating 
observations through data assimilation, subsequent tree 
constructs could be optimized to account for knowledge gained. 
Finally, the approach could incorporate a DRL algorithm, 
encoding the relationship between operational situation, TMI 
strategy, and positive outcome in neural network-based policy 
and value functions. As such, there are many future directions 
that can be evaluated to achieve the automation enhancements 
essential to achieving the future vision for TFM. 
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