
Fourteenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2021)

Robust CDO Trajectory Planning under
Uncertainties in Weather Prediction

Shumpei Kamo, Judith Rosenow, Hartmut Fricke
Institute of Logistics and Aviation

Technische Universität Dresden
Dresden, Germany

{shumpei.kamo, judith.rosenow, hartmut.fricke}@tu-dresden.de

Manuel Soler
Department of Bioengineering and Aerospace Engineering

Universidad Carlos III de Madrid
Leganés, Spain

masolera@ing.uc3m.es

Abstract—Uncertainties are inherent in aircraft trajectory plan-
ning. Trajectories designed under deterministic hypotheses can
cause significant performance degradation or constraint viola-
tion if the actual situation significantly differs from the assumed
conditions. This study proposes computational strategies to plan
a robust trajectory in terms of weather prediction, focusing on
continuous descent operations. The members of the Global En-
semble Forecast System are used as a set of weather scenarios to
reflect the nature of uncertainty in weather prediction along the
flight execution. A robust optimal control problem is formalized,
which simultaneously considers a set of trajectories for each
of the weather scenarios while minimizing the expected value
of the overall operational costs. Numerical simulations prove
that the generated trajectories are robust for the predicted set
of weather scenarios without violating the imposed constraints.
Simulations with various cost index settings and preset required
time of arrival further show that the proposed robust optimal
control can cope with these varying operational settings.

Keywords—Robust aircraft trajectory optimization, robust
optimal control, global ensemble forecast system, continuous
descent operations

I. INTRODUCTION

Recent growing air traffic volume and resulting concerns of
its environmental impact have motivated the authors to search
for improved trajectory management strategies granting ef-
ficient and environmentally friendly missions. In particular,
reduction of fuel burn, noise and gaseous emission are key
performance indicators in the Europe’s vision for aviation
Flightpath 2050 [1] and the related research programmes
by SESAR (Europe) [2], CARATS (Japan) [3] and NextGen
(United States) [4]. In Europe, the European Union (EU) for-
mulated the Single European Sky (SES) performance scheme
to comply with the above expectations [5]. In these long-term
plans, Continuous Climb / Descent Operations (CCO / CDO)
are considered to be crucial components to contribute to these
goals, enabling low to idle thrust settings by continuously
descending, and avoiding level flight segments especially at
low altitudes [6–8]. In 2018, Eurocontrol assessed the CDO’s
benefit pool for Europe and reported it in [9]. According to
the report, 2017 traffic data showed that the average time in
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level flight from Top of Descent (ToD) performed by non-
CDO flights were 217 seconds and the per-flight savings by
potential CDO implementation were estimated to be 46 kg in
fuel, 145 kg in CO2 emission and 20 BC in fuel costs. The
report also estimated CDO can reduce noise emission by 1-
5 dB per flight. Considering these benefit estimations, CDO
and the Optimized Profile Descents (OPDs), the correspond-
ing concept of NextGen, are listed in the roadmaps as one of
the key measures to allow the Air Traffic Management (ATM)
systems becoming more efficient and eco-friendly [2–4].
These more recent types of descent have been implemented
in several regions across the world following these plans [10–
12].

Trajectory optimization contributes to facilitating the CDO
and maximizing its potential benefit. Studies on simulating
and optimizing a descent trajectory, which eventually led
to the CDO, have been carried out intensively in the last
decade [11, 13, 14]. Necessity of re-optimizing the trajectory
has also been raised in [15, 16] by examining deviation
of the aircraft’s energy state from the planned reference
trajectory as a useful trigger for re-optimization. However,
to the best of the authors’ knowledge, these prior research
works assumed deterministic scenarios and ignored impact of
uncertainties. Yet, an optimal trajectory for a deterministic set
of environmental conditions can lead to significantly higher
costs than expected or can even become infeasible. Robust
trajectory planning shall avoid these phenomena by providing
a trajectory being compliant to unstable conditions.

Robust aircraft trajectory planning has recently become a
field for intensive research and several applications for ATM
have been proposed. González-Arribas et al. formalized a
robust optimal control problem for cruise flight with uncertain
wind situation by employing Ensemble Prediction Systems
(EPS) [17] and confirmed the method could reduce the
impact of uncertain wind on the planning, taking reference
to one year of trajectory data and multiple origin-destination
pairs [18]. This robust planning method was extended in [19]
to the consideration of exposure to convection and cost-index
based profiles. Franco et al. proposed a probabilistic trajectory
predictor based on the probabilistic transformation method
where they modeled a process to transform uncertainties
from ground speed to estimated flight time and fuel burn



by convolution [20]. A different approach was followed by
Legrand et al. [21], who solved the robust planning problem
with dynamic programming. Recently, González-Arribas et
al. proposed a heuristic method based on parallel Graph-
ics Processing Unit (GPU) computation [22], finding robust
trajectories in computational times that are compatible with
real operations (∼1 sec.) and considering not only the level
flight, but including step-climbs and step-descents. These
prior works have revealed importance of robust trajectory
planning, however limited to the en-route phase of flight. To
gain a comprehensive insight of how much robust planning
is beneficial, attention should be paid to all flight phases.
Especially, the descent phase holds potential for fuel burn
reduction if CDO can be optimally executed as presented
in [8]. Therefore, this study deals with robust trajectory
planning to enhance capability and applicability of CDO to
practical operation.

Considering the above, this study proposes computational
strategies to plan a robust trajectory for CDO. We focus on
in-flight trajectory planning carried out at flight deck and
consider a pre-tactical planning horizon of at least 1-2 hours
prior to reaching ToD. This research covers the trajectory
optimization from cruise altitude down until reaching the
Final Approach Fix (FAF). Weather prediction is taken as an
uncertainty source and the members of the Global Ensemble
Forecast System (GEFS) are used to reflect the nature of
uncertainty in weather prediction along the flight execution.

The proposed trajectory planning is intended to be used
for in-flight trajectory update triggered by significant change
in weather prediction or assignment of a Controlled Time of
Arrival (CTA) by Air Traffic Control (ATC). For a cruise tra-
jectory, in-flight and mid-term planning has been investigated
in [17, 23]. Important to note that unconsidered uncertainties
can make the aircraft deviate from the planned trajectory at
execution. It is out of scope for this study to investigate the
impact of adhering to the planned trajectory or a tactical
re-optimization strategies during execution. Some interesting
studies on these topics can be found in [15, 16].

II. MODELS

A. Weather Models

Global Ensemble Forecast System (GEFS) is a set of
weather forecast scenarios provided by the National Oceanic
and Atmospheric Administration (NOAA) available on-
line [24] and we utilize the version 11.0. GEFS consists of
21 separate weather forecasts called ensemble members. Each
member is obtained by perturbing the initial conditions of the
weather dynamics (known as the ensemble Kalman filter) to
represent uncertainties in the model [25]. Small perturbations
in the initial conditions evolve and lead to different weather
states as time evolves. The forecasts are updated every 6
hours. Data are provided in a GRIdded Binary (GRIB2)
format, where they are given at a position in the horizontal
plane (specified by combination of latitude and longitude)
and at a pressure level for at time of publication. The grid
resolution is horizontally 1 ° for the latitude and longitude,
and vertically 100 hPa. More detailed investigation of the

GEFS and its application to cruise-trajectory planning can be
found in [23].

We utilize the GEFS data to obtain the ambient tempera-
ture, the pressure level and the wind speed vector along the
estimated flight positions. The wind speed vector takes the
horizontal components u and v, which are positive for the
west-to-east wind flow and the south-to-north flow, respec-
tively. GEFS does not contain the vertical wind component
as it is usually one order of magnitude smaller than the
horizontal component.

In order to apply the gridded GEFS data to the trajectory
optimization problem, it is useful to increase the grid density
by approximation. The simplest way is the linear interpolation
connecting to each grid point. However, this method provides
a function unable to be differentiated at any grid point, which
is incompatible with the method we develop. As we discuss
in III-C, we utilize the pseudospectral method, where the
optimal control problem is transcribed into a Non-Linear
Programming (NLP) problem and the discretized problem is
numerically solved by the Sequential Quadratic Programming
(SQP). The SQP requires the second derivatives of the models
in the optimal control problem. Therefore, at least the second
derivatives of the models must exist. To this end, we use
second-order polynomial approximation, which is simple but
guarantees a suitable mathematical function.

In the following, we follow two steps to derive the weather
model: 1. interpolating the GEFS data and 2. finding the
relationship between the pressure altitude and the geometric
altitude. As for the second step, GEFS data and the flight
dynamics (Equation of Motion: EoM) use different quantities
to specify the vertical location: the former uses the pressure
level pl while the latter uses the geometric altitude h above
the Mean Sea Level (MSL) (Sec. II-B). In order to relate
them, we need a transformation between pl and h.

For the first step: interpolation, we start it by limiting
the 3D region for which to interpolate the data. The GEFS
specifies the horizontal grid location with the longitude λ and
the latitude φ, whereas the vertical location with the pressure
level pl. With the hypotheses we make in Sec. II-B, where
λ is fixed and φ strictly increases as time evolves, we can
expect the following horizontal region to fly

λ = λ0

φ0 ≤ φ ≤ φf (1)

, where the subscripts 0 and f respectively denote the
initial and final conditions of the optimal control problem
(Sec. III-A). As for the vertical region, we expect

pllow ≤ pl ≤ plup (2)

, where we choose the lower and upper bounds pllow and
plup to cover the height from the FAF to the cruise level.
We interpolate the GEFS data only for this region. Generally
speaking, some difficulties occur when a region for modeling
is too wide. For instance, if we try to capture phenomena
in detail for a wide range, it inevitably requires high degree
of polynomials, leading to unwanted oscillation. The limited
region for approximation can make it possible to model details
while avoiding use of high-degree polynomials.



We interpolate the GEFS data of the ambient temperature
and the wind speed components for the limited region.
Considering the computational costs, we adopted the second-
order polynomials. Introduction of advanced approximation
techniques, such as spline approximation, will be one of our
future works. The polynomial approximation looks like:

y(s) (φ, pl) =

2∑
i,j=0

c
(s)
y ij φ

i plj (3)

, where y(s) is the approximation for the s-th member of
GEFS and is either the temperature T or the wind speed
components u, v. The polynomial coefficients c(s)y ij are calcu-
lated by the least square method. The longitude λ is removed
from (3) since we assume it is constant. A specific functional
approximation is obtained for each ensemble member.

We then move to the second step: the transformation
between pl and h. For this purpose, we utilize another data
in GEFS: the geopotential height hgp. This quantity is given
in a grid format so it also can be expressed using (3):

h(s)gp (φ, pl) =

2∑
i,j=0

c
(s)
hgp ij

φi plj . (4)

This study ignores the difference in the gravity dependency
on latitude and altitude, and therefore assumes h and hgp are
identical. If we substitute h(s)gp in (4) with h(s) and solve it in
terms of pl, the pressure level can be obtained as:

pl = fpl

(
h(s), φ

)
. (5)

fpl is the function of h(s) and φ that is obtained when we
solve the equality. (5) serves as a transformation law between
h and pl and the aircraft altitude obtained from the EoM can
be related to the pressure level. In this study, we adopt the
second order polynomials for (3) so fpl can be obtained as a
closed form:

fpl =
−B −

√
B2 − 4AC

2A
(6)

where

A = c
(s)
hgp 02 + c

(s)
hgp 12φ+ c

(s)
hgp 22φ

2

B = c
(s)
hgp 01 + c

(s)
hgp 11φ+ c

(s)
hgp 21φ

2

C = −h(s) + c
(s)
hgp 00 + c

(s)
hgp 10φ+ c

(s)
hgp 20φ

2. (7)

Among the two solutions of (5), we take the one with the
negative sign in front of the square root (6), as it produces
reasonable value for pl. If we use higher-order polynomials,
fpl is obtained through numerical solution.

Applying (5) to (3), we eventually obtain the approximation
y(s) as a function of φ and h(s):

y(s)
(
φ, h(s)

)
=

2∑
i,j=0

c
(s)
y ij φ

i f jpl

(
h(s), φ

)
. (8)

Three of the four quantities we are aiming to approximate, the
ambient temperature T and the wind speed components u and
v, are obtained by (8), while the other quantity, the pressure

Figure 1: Approximation surface for the wind speed of a
member of GEFS. Red dots are the data from GEFS and
the blue surface is the approximation surface.

TABLE I. Relevant parameters of the WGS-84 Earth Model

Parameter Notation Value Unit
Equatorial radius a 6,378,137.0 m

Polar radius b 6,356,752.3142 m
Reciprocal of flattening 1/f 298.257223563

Eccentricity e 0.081819190842622

level, is approximated by (5). Another quantity required for
trajectory calculation, the air density ρ, is obtained by the gas
equation

ρ =
pl

RT
. (9)

after approximating pl and T . Fig. 1 shows wind speed data
of a member of GEFS and the corresponding approximation
surface for an example.

B. Flight Performance Models

In this study, we consider an aircraft as a dynamic system
whose states are governed by a set of a point-mass EoM and
are controlled through control inputs. We express the aircraft
position in the geodetic coordinates (or the latitude-longitude-
altitude coordinates) to align it with the grid expression of
the weather model (Sec. II-A). We align our model with
ISO 9300 or DIN 9300. We utilize the North-East-Down
(NED) coordinates on the surface of the earth to describe the
aircraft velocity [26], and the components of the wind speed
model u and v are positive for the west-to-east wind flow and
the south-to-north flow respectively. Details about deriving
the EoM can be found in [26, 27]. We utilize the WGS-
84 earth model defined by National Imagery and Mapping
Agency (NIMA) [28], which [26] employs to derive the EoM
in the geodetic coordinates. It is an ellipsoidal earth model
characterized by the parameters listed in Table I.

We make five hypotheses when we model the aircraft’s
EoM. The first to third hypothesis is related to the aircraft. We
assume the aircraft flies in the northern hemisphere exactly
from the south to the north where the longitude is fixed, the
azimuth is zero and the latitude strictly increases as time



evolves. Thus, the aircraft kinematics can be simplified and
only the change of latitude φ and altitude h specifies the
change of the aircraft position. The first hypothesis allows
us to assume the bank angle always kept zero. The third
hypothesis is that the change of the flight path angle is small
enough to be kept zero γ̇ ≈ 0. These three hypotheses result
in ignoring the aircraft’s lateral dynamics. They also lead to
the equilibrium of the forces in the direction of lift as:

L = mg cos γ −mv̇ sin γ. (10)

The lift force is calculated by (10) and the lift coefficient CL
by

CL =
2L

ρV 2S
=

2 (mg cos γ −mv̇ sin γ)
ρV 2S

. (11)

The fourth and fifth hypotheses are for modeling the wind
speed. The result of the above hypothesis, ignoring the air-
craft’s lateral dynamics, allows us to neglect the u component
of the wind speed. For the fifth, we assume the weather
forecast kept constant along the optimization. It means that
the weather model II-A does not change over time but does
change with only the aircraft position: latitude φ, longitude λ
and altitude h. When we model the weather, we approximate
the latest data available at the planning and assume it will not
change during the execution.

With these hypotheses, the EoM for a point-mass aircraft
is expressed as

d

dt


V
φ
h
m

 =


FT−D
m − g sin γ − dv

dt cos γ
V cos γ+v
Rµ+h

−V sin γ
−FC

 (12)

, where the true air speed (TAS) V , the latitude φ, the
geometric altitude h and the aircraft’s gross mass m form the
aircraft state variables, whereas the thrust FT , the flight path
angle with respect to the air γ and the speed brake δSB are
the control inputs to close the set of equations. We ignore the
effect of the flap and slat controls on the aircraft dynamics.
Rµ stands for the radius of curvature of the meridian’s ellipse
in the WGS-84 earth model and is given as a function of the
latitude φ [26]:

Rµ (φ) = a
1− e2

(1− e2 sin2 φ)3/2
. (13)

Parameters a and e are specified in Table I. The drag force
D is modeled as:

D =
1

2
ρV 2S (CDclean + CDSB δSB) (14)

where CDclean and CDSB are taken from the Base of Aircraft
Data family 4 (BADA4) [29]. D is a function of φ, V, h,m, γ
and δSB as CDclean is a function of the Mach number
M = V/

√
κRT and the lift coefficient (11), and all the

weather quantities are functions of φ and h (Sec. II-A). The
fuel consumption model

FC = CAC pl T−1 CF (15)

is also taken from BADA4, where CAC is a specific constant
and the fuel coefficient CF is a function of V , FT and T :

CF = CF (V, FT , T ) . (16)

With the same discussion as we did for D, FC is a function
of φ, V, h and FT . We consider the change of the wind speed
(dv/dt) in the TAS dynamics in (12). Detailed derivation of
the wind speed gradient will be discussed later in this section.

So far, we have the time t as the independent variable for
our formalization. From the optimal control viewpoint, this
means t is required to be in the same domain [t0, tf ] for any
of the state variables. As we see in Sec. III-C, we eventually
aggregate the EoM to cover the dynamics for all the weather
scenarios to create the robust optimal control problem. In the
robust formalization, the necessity of t being in the same
domain means the total flight time from the initial position to
the FAF is fixed in every member of the trajectory ensemble.
However, the authors are interested in variation in the total
flight time due to uncertainties. Therefore, we stop having t
as the independent variable. Instead, we treat the latitude φ,
another variable which strictly increases as time evolves, as
the new independent variable. It is reasonable to let φ in the
same domain [φ0, φf ] over the set of scenarios as the initial
and final positions are fixed in the optimal control problem we
consider. We perform this transformation of the independent
variable by applying the chain rule

d

dt
=

d

dφ

dφ

dt
(17)

to (12). dφ/dt is obtained from the second equation of (12).
φ is now treated as the independent variable so it is removed
from the left hand side of the EoM. Instead, t, which is now
not considered as the independent variable, is regarded as a
state variable and included in the EoM:

d

dφ


V
t
h
m

 =
Rµ + h

V cos γ + v


FT−D
m − g sin γ − dv

dt cos γ
1

−V sin γ
−FC

 .

(18)
We also need to calculate the time derivative in the first

equation in (18). Since we ignore the time evolution of the
weather while executing the optimal control process, the time
derivative dv/dt is caused by the change of the aircraft
position as
d

dt
v (φ, h) =

∂v

∂φ

dφ

dt
+
∂v

∂h

dh

dt
=
∂v

∂φ

dφ

dt
+
∂v

∂h

dh

dφ

dφ

dt
. (19)

Then, the corresponding part in (18) can be rewritten as

− Rµ + h

V cos γ + v
· dv
dt

cos γ = − dt
dφ
· dv
dt

cos γ

= −
(
∂v

∂φ
+
∂v

∂h

dh

dφ

)
cos γ.

(20)

In (20), ∂v/∂φ and ∂v/∂h can be obtained by differentiating
the wind speed approximation (8), whereas dh/dφ come from
the third equation in (18).

For quick reference, Table II summarizes the major hy-
potheses we have made to derive the models.



TABLE II. Major hypotheses made in this study.

Weather Aircraft
Time evolution ignored South to north flight
Vertical wind ignored Lateral dynamics ignored
u component ignored γ dynamics ignored

Figure 2: A sketch of the phases and the constraints in the
deterministic multiple-phase optimal control problem. The
symbols in red represent the given parameters.

III. ROBUST DESCENT TRAJECTORY PLANNING

A. Deterministic Trajectory Planning as a Basis

We first formalize a deterministic trajectory optimization
problem to form a basis of the robust optimization. It is
carried out by applying the multiple-phase optimal control
theory to the trajectory planning problem as the authors dis-
cussed in [30]. Overview of the phases and the corresponding
constraints are shown in Fig. 2 for reference.

In the present study, we have three phases: the cruise
(represented by c), the descent until 10,000 ft (d1) and the
further descent to FAF (d2). In the c phase, the aircraft is to
maintain the initial altitude but is allowed to change its speed.
When it goes into the d1 phase, it reduces its thrust to low
level and leaves the cruise altitude. After passing 10,000 ft,
the aircraft enters the d2 phase lasting until the target FAF,
where an additional constraint for the Calibrated Air Speed
(CAS) is imposed.

In the optimal control problem, we have vector and scalar
decision variables. The former are the state vector x =
{V, t, h,m}T and the control vector u = {FT , γ, δSB}T ,
whose components are functions of the independent variable
φ. The latter are the initial latitudes φ<p>0 and the final
latitudes φ<p>f for each phase p. In the present study, we
specify the initial and final latitudes of the whole phase:

φ<c>0 = φ0, φ<d2>f = φf . (21)

Values of φ0 and φf are listed in Sec. III. The present optimal
control problem aims to determine these decision variables to
minimize the objective functional.

The objective functional we consider includes the total
operational costs consisting of the time-related costs and
the fuel costs. The time costs are defined as the costs [BC]
charged for the flight time for the considered three phases
represented by the final time t (φf ). Linear relationship is

assumed between the time costs and the final time through
a coefficient Ct [BC/s]: (Time costs) = Ct t (φf ). The coef-
ficient is modeled with the cost index CI = Ct/Cf [kg/s],
where Cf denotes the current fuel price [BC/kg]. Applying Ct
to the time costs expression result in:

(Time costs) = CICf t (φf ) . (22)

As for the fuel costs, they are defined as costs [BC] charged
for the fuel burn FB [kg] for the considered flight phases.
The costs are assumed to be proportional to the fuel burn
through the fuel price Cf . In Sec. II-B, we defined FC as
the instant consumption of the fuel at a given time. Thus, FB
is calculated as:

FB =

∫ tf

t0

FCdt =

∫ φf

φ0

FC
dt

dφ
dφ

=

∫ φf

φ0

FC
Rµ + h

V cos γ + v
dφ = −

∫ φf

φ0

dm

dφ
dφ

= m (φ0)−m (φf ) (23)

, where FC is transformed to the negative change of m
using the fourth equation in (18). FB finally result in the
difference between the initial mass and the final mass. Note
that the initial mass m (φ0) is specified as m0 with the initial
conditions we will discuss in (28). Consequently, the objective
functional J is expressed as:

J = CICf t (φf ) + Cf {m0 −m (φf )} . (24)

The optimization problem has several constraints. First,
the trajectory is governed by EoM (18). To facilitate the
robust formalization in Sec. III-C, we call the components
of the right hand side in (18) fV , ft, fh, fm, respectively and
we define the dynamics vector f = {fV , ft, fh, fm}T . The
dynamic constraints are expressed in a generic form as:

dx

dφ
= f (x,u, φ) . (25)

We assume the dynamics f is unchanged throughout the
considered phases.

The second type of constraints is the phase-link conditions.
These are a set of equations that connects trajectories at the
edge of successive phases. For the latitude as an independent
variable, the end of the leading phase and the beginning of
the following phase must be at the same latitude:

φ<c>f = φ<d1>0 , φ<d1>f = φ<d2>0 . (26)

Combined with (21), the number of scalar decision variables
for the present optimal control problem, which is originally
six, is reduced to two. We take the final latitude for the
first two phases φ<c>f and φ<d1>f as the remaining decision
variables. The same kind of phase-link conditions are also
imposed on the state variables:

x
(
φ<c>f

)
= x

(
φ<d1>0

)
, x

(
φ<d1>f

)
= x

(
φ<d2>0

)
(27)

These linkage conditions guarantee continuous connection
between successive phases. It is important to note that this
study does not impose these conditions on the control inputs



u. This means we allow instant change of control at a phase
edge.

The state vector x is also required to meet the initial and
final conditions. The initial condition specifies the states at
the very beginning:

x (φ0) = x0. (28)

x0 is a given vector from which the trajectory is generated.
Unlike the initial conditions, the final conditions are basically
only imposed on V and h:{

V
h

}
(φf ) =

{
Vf
hf

}
. (29)

For (28) and (29), x0, Vf and hf are the given parameters and
their values are in Table III. We also consider the Required
Time of Arrival (RTA) at the FAF to evaluate how the CTA
issued by the ATC affects the optimal trajectory. When the
RTA (tRTA) is imposed, the final state of t is constrained as:

t (φf ) = tRTA. (30)

The rest of the constraints are the path constraints. For the
phase p, they are expressed as:

x<p>l ≤ x (φ) ≤ x<p>u , u<p>l ≤ u (φ) ≤ u<p>u (31)

, where the subscripts l and u denote the lower and the upper
bounds, respectively. All the bounds are given in Table IV.
These constraints, imposed both on the states and controls,
define the possible range for the variables to keep their values
in. This prevents the trajectory from getting infeasible in terms
of flight performance. In this sense, these constraints can also
be called a “flight envelope”, emphasizing the aerodynamic
aspects. In addition to these path constraints, we also require
the CAS to maintain slower than 250 kt in the d2 phase (below
10,000 ft). Therefore, the following restriction is added for
the latitude in φ<d2>0 ≤ φ ≤ φf :

CAS(V, h, φ) ≤ 250kt. (32)

This constraint comes from the FAA regulation (14 CFR §
91.117) which bans flying faster than 250 kt (Indicate Air
Speed: IAS) at 10,000 ft or lower. In (32), we regard CAS
as a representative of IAS. Conversion law from TAS (V ) to
CAS is taken from BADA4 [29].

To summarize the discussion, the deterministic optimal
control problem is formalized as: find the states x and
controls u and the phase-edge latitudes φ<c>f , φ<d1>f to
minimize the total operational costs (24) subject to the aircraft
dynamics (25), the phase-link conditions (26), (27), initial and
final conditions (28), (29), (30) and the path constraints (31),
(32).

B. Definition of “Robustness”

Optimization in the presence of uncertainty has been stud-
ied intensively in the last decade both for static systems
to seek the optimal values of the variables and also for
dynamical systems to find the optimal control law as a
function (optimal control). There are two different attitudes to
deal with uncertainties in an optimization problem [31]. One
is the stochastic optimization, where the Probability Density

Functions (PDFs) of the targeted uncertainties are assumed
to be known and introduced to the optimization problem. An
example of stochastic optimal control applied to ATM can be
seen in [32], where the stochastic optimization is applied to
the aircraft conflict detection and resolution problem. Another
is the robust optimization. Unlike the stochastic optimization,
robust optimization does not assume the PDFs are known
but instead it assumes sets of data representing the targeted
PDFs, or so called the uncertainty sets [33]. The optimization
problem is then formalized so that all the constraints are
not violated for any realization of the uncertainty sets [31].
Application of the robust optimal control to ATM can be
found in [17], where a cruise trajectory is optimized under
wind speed uncertainties.

This study employs the robust optimal control to deal
with the CDO trajectory planning under weather uncertainty.
The reason for this is mainly due to the nature of GEFS
data, where different sets of predicted weather situation are
provided instead of PDFs.

In the development of robust optimization, several types
of measure of robustness have been proposed [34]. The
most common way of robustness measures is achieved by
optimizing the problem for the worst case. This strategy picks
up a scenario which makes the worst costs and optimizes
the problem for it. Such costs are expressed with the Max
function and thus this type of method is also called the Min-
Max method. However, a solution optimized for the worst
case, which usually happens rarely, is often too conservative
for the rest of the cases and leaves room for improving
the solution. To improve this issue, another definition of
robustness has also been proposed. It regards a robust solution
as the one that is optimized for the moments of the overall
costs covering any realization of the uncertainty sets: such
as the expected value (the first moment) or the variance (the
second moment) or even higher [17].

This study employs the latter definition of robustness. We
call a trajectory “a robustly optimized trajectory” when it is
feasible for any predicted weather scenario given by GEFS
and is optimized for the expected value of the costs covering
all the scenarios. All the constraints are treated as hard
constraints so that the optimal trajectory is flyable in any
weather scenario, or resistant to changes of weather within
the uncertainty range provided by GEFS data.

C. Robust Trajectory Planning

In this section, we formulate a robust optimal control prob-
lem for robust trajectory planning based on the deterministic
formalization discussed in Sec. III-A. We assume a situation
where the pilot and ATC are able to use the ensemble forecast
from GEFS. We regard the members of GEFS as possible
realizations of the uncertain weather during the flight they are
planning. The 21 members of GEFS form a set of weather
scenarios predicted to happen during the planned flight. To
generalize the discussion, we use Ns as a number of weather
scenarios. Ns = 21 for the GEFS version 11.0.

We first prepare the variables. We basically consider the
aircraft states and control inputs that are different for a
different weather scenario. So we explicitly express the state



and control vectors for the weather scenario s with the
superscript (s) as x(s),u(s). On the other hand, the latitude
φ as the independent variable stays common in a different
scenario so it does not have the superscript (s). We apply the
EoM (25) to each weather scenario s:

dx(s)

dφ
= f

(
x(s),u(s), φ

)
. (33)

Note that we assume the aircraft dynamics does not change
in a different scenario, which is the same hypothesis for a
different phase p, and therefore the dynamics vector f =
{fV , ft, fh, fm}T does not contain the superscript (s). Now
we obtain a set of EoMs for Ns different weather scenarios.
We call the set of trajectories generated from the set of
EoMs “a trajectory ensemble”. The trajectory for the weather
scenario s is the s-th member of the trajectory ensemble. Then
we aggregate the set of EoM as:

d

dφ

 x(1)

...
x(Ns)

 =

 f
(
x(1),u(1), φ

)
...

f
(
x(Ns),u(Ns), φ

)
 (34)

or more detailed expression as:

d

dφ




V (1)

t(1)

h(1)

m(1)


...

V (Ns)

...
m(Ns)




=




fV
(
x(1),u(1), φ

)
ft
(
x(1),u(1), φ

)
fh
(
x(1),u(1), φ

)
fm
(
x(1),u(1), φ

)


...
fV
(
x(Ns),u(Ns), φ

)
...

fm
(
x(Ns),u(Ns), φ

)



.

(35)

If we define the aggregated state and control vectors as X =[
x(1) · · ·x(Ns)

]T
,U =

[
u(1) · · ·u(Ns)

]T
, we can rewrite the

aggregated set of equations with simpler expression:

dX

dφ
= f (X,U , φ) . (36)

Next, we extend the other constraints. According to our
definition of robustness (Sec. III-B), the solution must strictly
satisfy all the imposed constraints under whatever weather
scenario. It means that no deviation from the flight envelope
is allowed. This mathematically stands for all the constrains
being hard. Therefore, we impose exactly the same constraints
for each scenario.

The phase-link conditions for φ are the same as (26). For
x of the scenario s, they are:

x(s)
(
φ<c>f

)
= x(s)

(
φ<d1>0

)
x(s)

(
φ<d1>f

)
= x(s)

(
φ<d2>0

)
. (37)

The initial and final conditions for the scenario s are

x(s) (φ0) = x0. (38){
V
h

}(s)

(φf ) =

{
Vf
hf

}
. (39)

The right hand side of (38) and (39) do not contain the
superscript (s) and therefore the common initial and final
conditions are applied to each of the weather scenario. In
terms of RTA, we require the mean arrival time at FAF to
meet the time constraint:

Ns∑
s=1

Pr(s) t(s) (φf ) = tRTA. (40)

Pr(s) denotes the probability for the weather scenario s to
occur. In this study, we assume each GEFS member coming
from perturbation in the initial condition is equally probable
and Pr(s) = 1/Ns for all s. Then, (40) is re-written as

1

Ns

Ns∑
s=1

t(s) (φf ) = tRTA. (41)

The path constraints for the phase p are

x<p>l ≤ x(s) (φ) ≤ x<p>u , u<p>l ≤ u(s) (φ) ≤ u<p>u (42)

, where the common lower and upper bounds are imposed for
each weather scenario. The CAS limitation for the d2 phase
becomes:

CAS(V (s), h(s), φ) ≤ 250kt. (43)

In addition to these constraints coming from the determin-
istic optimal control problem, we introduce another type of
constraints specific to the robust formalization. Considering
that the planned trajectory is meant to be followed by the pilot
or the FMS, we make the airspeed and the vertical trajectory
common throughout the considered sets of weather scenarios.
This is helpful as the pilot only needs to expect the unique
profiles to follow with whatever scenario realized. To this
end, we make V and h as unique variables for any of the
weather scenarios. Together with the common independent
variable latitude φ, h determines the unique vertical path. For
the scenarios 2 ≤ s ≤ Ns, the uniqueness constraints are:

V (s) (φ) = V (1) (φ) , h(s) (φ) = h(1) (φ) . (44)

, which require the trajectories to be identical to those for the
scenario 1.

Lastly, we formalize the robust objective functional. Ac-
cording to our definition of robustness (Sec. III-B), the
solution must give the minimum of the expected value of
the total costs as:

Jexp = E [(total costs)] =
1

Ns

Ns∑
s=1

(total costs)(s)

=
1

Ns

Ns∑
s=1

CICf t
(s) (φf ) + Cf

{
m0 −m(s) (φf )

}
.

(45)

The initial mass m0 is common over the trajectory ensemble
whereas the final time t(s) (φf ) and mass m(s) (φf ) can have
different values in a different ensemble member.

To summarize the discussion, the robust optimal control
problem is to find the aggregated states X and controls U
and the phase-edge latitudes φ<c>f , φ<d1>f to minimize the
total operational costs (45) subject to the aggregated aircraft



TABLE III. Initial and final conditions. “Free” means the final
condition is not imposed on the variable.

Variable Initial Final
φ [deg] 50 53
V [kt] 460 230
t [s] 0 Free
h [ft] 35,000 5,000
m [kg] 63,700 Free

TABLE IV. Lower and upper bounds of the path constraints
for each phase.

c phase d1 phase d2 phase
Variable Low Up Low Up Low Up
V [kt] 230 470 230 470 230 470
t [s] 0 3,000 0 3,000 0 3,000
h [ft] 35,000 35,000 10,000 35,000 5,000 10,000
m [kg] 54,200 63,700 54,200 63,700 54,200 63,700
FT [N] 0 123,000 0 12,300 0 12,300
γ [°] 0.0 0.0 -5.0 0.0 -5.0 0.0
δSB [-] 0.0 0.0 0.0 1.0 0.0 1.0

dynamics (36), the phase-link conditions (26), (37), the initial
and final conditions (38), (39), (41), the path constraints (42),
(43) and the uniqueness constraints (44).

The proposed optimal control problem is discretized by the
Legendre-Gauss pseudospectral method. The resulting NLP
problem is numerically solved by IPOPT [35], an open-source
software package for large-scale nonlinear optimization and
we utilize IPyOpt [36] as a Python interface for it. We have 20
pseudospectral nodes for each phase to balance the solution
quality and the computing time.

IV. NUMERICAL SIMULATION

We carried out series of numerical simulation to validate
the proposed robust trajectory planning. We consider a sce-
nario where a medium-range aircraft with 63,700 kg gross
mass flies at constant altitude and at 4° longitude from 50° to
53° latitude (south-to-north flight), which covers basically the
territory of Germany. The simulation starts at 50° (latitude)
and at 460 kt (TAS), and maintains 35,000 ft. We assume
the FAF is located at 53° latitude and at 5,000 ft altitude
and the simulation is terminated if the aircraft reaches there.
The distance to go between the initial aircraft position and
the FAF is 182 NM. The TAS is required to be at 230 kt
when arriving at the FAF. The initial and final conditions
and the path constraint are set according to Table III and IV.
The upper bound of TAS is set to be 10 kt higher than the
initial TAS so that the aircraft can accelerate during the cruise
phase. The maximum thrust of the aircraft is assumed to be
123000 N. In the d1 and d2 phases, small thrust (at most 10%
of the maximum thrust) is allowed to be applied. We utilize
the GEFS published on the 22nd of September 2020 at 0:00.
We use a fuel price of 528.48 $/ton published by IATA [37]
for 26 March 2021.

Fig. 3 shows the robust trajectories of the TAS V and the
altitude h for the case where CI = 0 without RTA imposed,
and Fig. 4 depicts the histories of the corresponding control
inputs: the thrust T , the path angle γ and the speed brake
input δSB . The vertical lines show the phase edges. As seen
in Fig. 3, the TAS and altitude trajectories are common for

Figure 3: Robust trajectories of TAS and altitude (CI = 0,
RTA not imposed). Unique trajectories are calculated.

Figure 4: Robust trajectories of control inputs: thrust, flight
path angle and speed brake (CI = 0, RTA not imposed).
Variation in trajectory appears over the 21 weather scenarios.

any of the 21 weather scenarios, reflecting the intention of
(44). The aircraft decelerates while keeping its altitude in
the c phase, and descends straightly down to the FAF in
the d1 and d2 phase. At the very end of the d2 phase, the
aircraft reduces its TAS rapidly to meet its final condition at
230 kt. The ToD location is 104 NM to the FAF. As for the
other state variables (t,m), the control variables (Fig. 4) and
other relevant variables such as fuel burn, the trajectories are
different for a different weather scenario. All the state and
control variables meet the initial, final and path constraints
for any weather scenario and thus this robust trajectory is
always feasible. The average fuel burn for the considered
phases is 549.6 kg and its standard deviation is 2.9 kg, while
the average flight time is 1935 s and its standard deviation is
5.3 s. We call this trajectory a reference trajectory.

Fig. 5 shows the change of the robust TAS and altitude
trajectories dependent on the cost index CI , without RTA
imposed. Trajectories with larger cost indexes have a longer
cruise phase and consequently a steeper descent, and the
overall speed is higher. The ToD location for CI = 80 comes
24.3 NM later than that for CI = 0. The flights with larger
CI , maintaining higher speed during the descent phase, briefly
fly horizontally at the end of d1 phase (starting at around
25 NM prior to the FAF) to rapidly reduce the airspeed so as
to meet the CAS limitation for the d2 phase (43). During these
level flight segments, additional thrust is not used and thus
additional fuel burn is not caused: just the exchange of the
kinetic energy and the potential energy is performed. Fig. 6



Figure 5: Change of the robust TAS and altitude trajectories
dependent on the cost index CI (RTA not imposed).

Figure 6: CI -dependent relationship between the average
flight time and the average fuel burn.

shows the CI -dependent relationship between the average
flight time and fuel burn of 21 weather scenarios from the
initial aircraft position to the FAF. A larger CI , putting more
weight on the flight time in the objective functional (45),
results in less fuel time instead of increased fuel burn. In the
CI = 80 case, 713 kg of fuel is burnt (30.0 % more than
in the reference case) whereas the flight time was 1518 s
(21.6 % less).

Fig. 7 depicts the change of the robust TAS and altitude
trajectories dependent on the RTA, with CI = 0, where the
intervals of the selected RTAs are 60 s. As seen in the figure,
a later RTA causes a longer cruise and lower overall speed.
The ToD location for RTA = 2050 s comes 4.5 NM later
than that for the reference trajectory without RTA imposed,
whereas 0.5 NM earlier for RTA = 1840 s. Both the speed
and altitude profiles look similar to those of the reference

Figure 7: Change of the robust TAS and altitude trajectories
dependent on the RTA (CI = 0).

Figure 8: RTA-dependent relationship between the average
flight time and the average fuel burn.

trajectory (Fig. 3), reflecting the objective of minimizing the
fuel burn only. No level flight segment is found in the robust
trajectories. Fig. 8 shows the relationship between the average
flight time and fuel burn, changing with the RTA. The vertical
line indicates the flight time of the reference trajectory and
thus the aircraft in the cases to the right are required to arrive
at the FAF later than the optimal time and vice versa. In the
latest RTA= 2050 case where the flight time is required to be
extended by 5.9 %, 559.6 kg of fuel is burnt which is 1.8 %
more than in the reference case. In the earliest RTA= 1780
case with 8.0 % less flight time, the fuel burn is 566.3 kg
(3.0 % more).

V. CONCLUSION

This study proposes computational strategies to plan a
robust trajectory for CDO under uncertainties in weather
prediction. The ensemble weather prediction of GEFS is
utilized to create a set of weather scenarios and the data
are interpolated using the second order polynomials. A de-
terministic multiple-phase optimal control problem is built to
form a basis of the aimed robust optimal control problem,
considering the longitudinal aircraft dynamics. We formal-
ize a robust optimal control problem by aggregating the
state and control variables as well as the aircraft dynamics
for each of the weather scenario to create an aggregated
EoM. In order to facilitate pilot’s following of the robust
trajectory, the TAS and altitude profiles are made common
over the weather scenarios. Unlike conventional worst-case
optimization, the proposed robust optimal control minimizes
the expected value of the costs for the considered set of
weather scenarios. Results of numerical simulation show that
robust CDO trajectories with deterministic TAS and altitude
can be obtained. They minimize the average operational costs
without violating the imposed constraints, which meets the
definition of robustness we define for this study. Simulation
with different CI and RTA shows the proposed robust optimal
control can cope with these varying operational settings.

Our future works are mainly in two directions. First, we
will extend the models further, including the 4D flight dy-
namics, advanced weather-data approximation (e.g. b-spline),
more realistic speed brake model, time evolution of weather.
Secondly, we will focus more on temporal uncertainties of
a trajectory leading to loss of capacity and predictability. To
address these issues, ATC’s objectives will be introduced to



the robust optimal control problem, considering punctuality
of flight. Methods will be developed to deal with a resulting
multiple-objective optimal control problem.
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[35] A. Wächter and L. T. Biegler, “On the implementation of a primal-
dual interior point filter line search algorithm for large-scale nonlinear
programming,” Mathematical Programming, vol. 106, no. 1, pp. 25–27,
2006.

[36] E. Xu, “IPyOpt - Python interface for the interior point optimzer COIN-
OR IPOPT.” [Online]. Available: https://gitlab.com/g-braeunlich/ipyopt

[37] “Jet Fuel Price Monitor,” International Air Trans-
port Association (IATA), Tech. Rep. [Online]. Available:
https://www.iata.org/en/publications/economics/fuel-monitor/

AUTHOR BIOGRAPHY
Shumpei Kamo is a Ph.D. candidate and a research associate at Technische Universität
Dresden. He studied aeronautics and astronautics at The University of Tokyo, Japan
and received his bachelor and master degrees of engineering in 2015 and 2017,
respectively. He joined TU Dresden in 2018 and is focusing on trajectory planning
with uncertainties in the CDO-Speedbrakes project. His research interests include
robust trajectory planning, multi-objective optimization and decision-making support.

Judith Rosenow studied Hydrology at Technische Universität Dresden from 2003 to
2008 where she specialized in Meteorology during her diploma thesis. In 2016 she
finished her Ph.D. at Technische Universität Dresden with focus on optical properties
of condensation trails aiming the possibility of optimizing a flight trajectory with
respect to minimum climate impact of the generated contrail. Since 2014 she is
a project leader of the projects MEFUL and ProfiFuel at Technische Universität Dresden.

Hartmut Fricke studied Aeronautics and Astronautics at Technische Universität
(TU) Berlin where he received his doctor in ATM. In 2001 he finished his
Habilitation on Integrated Collision Risk Modeling. Since December 2001, he is
a professor for Aviation Technologies at TU Dresden and director of the Institute
of Logistics and Aviation. In 2006 he was appointed Member of the Scientific
Advisory Board to the German Federal Minister of Transport (BMVI). In 2012
he was elected scientific expert to DFG German Research Foundation. In 2013 he
became SESAR External Expert, in 2020 member of the innovation board of the BMVI.

Manuel Soler received a Bachelor’s and a Master’s degree in Aeronautical and
Aerospace Engineering from the Universidad Politcnica de Madrid. In 2013, he
completed a Doctorate Degree in Aerospace Engineering from the Universidad Rey
Juan Carlos. Since 2019, he is an Associate Professor with the Universidad Carlos III
de Madrid, Getafe, Spain, where is the Director of the PhD Program in Aerospace
Engineering. His research interests focus on optimal control, stochastic processes,
meteorology, and climate change with application to Air Traffic Management (ATM).
He is the coordinator of SESAR H2020 projects ALARM and START. He has been
awarded with the SESAR Young Scientist Award in 2013 and the Luis Azcarraga Award
by EnAire in 2016 and 2019.


