
Fourteenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2021) 

Exploring Future UDPP Concepts through 

Computational Behavioral Economics

David Mocholí González 

Nommon Solutions and 

Technologies 

Madrid, Spain 

david.mocholi@nommon.es 

Rubén Alcolea Arias 

Nommon Solutions and 

Technologies 

Madrid, Spain 

ruben.alcolea@nommon.es 

Ricardo Herranz 

Nommon Solutions and 

Technologies 

Madrid, Spain 

ricardo.herranz@nommon.es 

 

 

 
Abstract— This paper presents an agent-based modelling (ABM) 

approach aimed at enabling a rigorous and comprehensive study 

of flight prioritization mechanisms in the context of demand and 

capacity imbalances. The implemented model adopts the paradigm 

of agent-based computational economics, as a particularly suitable 

framework for the representation of features that are not properly 

captured by classical approaches, such as bounded rationality or 

hyperbolic discounting. The main components are described, 

including a simplified network environment, the agents, the 

applied behavioral rules and the included prioritization 

mechanisms: SFP, E-SFP and slot auctioning. Finally, a 

comparative performance analysis of the prioritization concepts is 

presented, evaluating their impact on punctuality, cost-efficiency, 

equity and robustness in the presence of non-rational behaviors. 

Results show how SFP, counterintuitively, worsens the baseline 

performance in some scenarios, due to unexpected network effects, 

while the slot auctioning concept provides the best performance. In 

general, behavioral biases worsen performance of the mechanisms; 

however, the auction mechanism results are not significantly 

affected by the modelled behavioral biases. 

Keywords-flight prioritization mechanisms; agent-based 

modelling; behavioral economics, bounded rationality; hyperbolic 

discounting; network effects; punctuality; cost efficiency; equity. 

I.  INTRODUCTION 

When a demand-capacity imbalance is predicted during the 

Air Traffic Flow Management (ATFM) tactical phase, the flights 

are regulated at airports. Each of the flights involved in the 

regulation receives a slot (ATFM slot) in a new reference-time 

list for departure. These slots are currently assigned following 

the First Planned First Served (FPFS) policy, which is widely 

accepted by all the stakeholders involved because it minimizes 

the total delay while preserving equity constraints [1]. However, 

this solution is far from being optimal from the point of view of 

Airspace Users’(AUs) cost [2]. 

Nowadays, AUs are able to swap ATFM slots under certain 

circumstances. However the level of flexibility provided by this 

mechanism is rather limited. The User Driven Prioritization 

Process (UDPP) concept was born within SESAR with the aim 

of improving existing fligth prioritization mechanisms, 

searching for extra flexibility for AUs in the frame of the 

Collaborative Decision Making (CDM) philosophy. Some of the 

earliest solutions proposed by SESAR UDPP are already being 

deployed, while newer concepts are currently being investigated 

[3]. Nevertheless, there is still room for improvement in both the 

development of advanced mechanisms and the modelling 

techniques used for their examination. 

II. BACKGROUND AND MOTIVATION 

Most existing studies about flight prioritization mechanisms 

make use of normative economic models that predict the 

behavior of the system under idealized circumstances, such as 

perfect information and agents’ rationality. However, these 

conditions are often not fulfilled in the real world, where 

decisions are made in the presence of incomplete or uncertain 

information, and the rationality is limited. 

Agent-based modelling (ABM) presents a way to overcome 

these issues allowing the observation of the emergent behavior 

(e.g., network effects) arising from agents’ interactions in a 

bottom-up process [4], combining formality and rigour with the 

minimization of disadvantages such as strong hypothesis 

dependency. Generally, an agent-based model is a computer 

model consisting of a number of software objects, the agents, 

interacting within a virtual environment. The agents, have a 

degree of autonomy, react to and act on their environment and 

on other agents, and have goals that they aim to satisfy. 

ABM has prominent synergies with behavioral economics, 

where deviations from the assumed theoretical behavior play an 

outstanding role. The convergence of agent-based modelling and 

behavioral economics into computational behavioral economics 

provides a natural framework to incorporate behavioral 

economics insights about human and institutional behavior into 

operational simulation models [5].  

Computational behavioral economics constitutes a 

particularly suitable framework to represent and simulate market 

instruments and other flight prioritisation mechanisms. 

Agent-based modelling has been successfully used to study 

different types of markets, such as radio spectrum auctions [6] 

and electricity markets [7]. In the air transport domain, 

agent-based modelling has been used to study problems such as 

the use of combinatorial price-setting auctions for primary 
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allocation of airport slots [8] and the introduction of competition 

in ATM through the auctioning of licenses to operate en-route 

air navigation services [9]. 

III. AGENT-BASED MODEL 

A. Overall Description 

The model simulates a day of air traffic operations, where 

the Network Manager takes care of flow management and 

airlines make decisions on how to deal with the delays imposed 

in congestion situations. The model comprises three main 

elements: 

• The simulation environment, which provides the 

network characteristics for the agents to operate in. 

• The agents. Two types of agents are considered, 

representing the main actors of the simulation: the 

Network Manager and the airlines. 

• Exogenous variables, which represent arbitrary 

external conditions that affect the model but are not 

affected by it. They include fuel prices and air 

navigation charges. 

The simulation comprises four main stages: 

• In the first stage, with some time in advance (e.g., 2 

hours), the Network Manager estimates the future 

demand for all the sectors within a given period of time 

(e.g., 15 minutes). This expected demand is checked 

against the corresponding declared capacity, i.e., the 

number of flights allowed inside that area during the 

mentioned period of time (occupancy counts). If the 

Network Manager detects an imbalance between 

demand and capacity in a certain sector or group of 

sectors (hotspot), it will initiate a regulation and the 

excess demand will be displaced over time.  

• In the second stage delays are calculated. Flights 

involved in the hotspot are delayed at the origin airport 

and assigned new take-off times through ATFM slots. 

At this stage we distinguish two different resolution 

paradigms that differentiate some prioritization 

mechanisms from others: First Planned First Served 

(FPFS) and Auctions. In the simulations based on the 

FPFS principle, the Network Manager sequences the 

flights in the order in which they would have arrived at 

the constrained airport or sector according to the 

information included in the filed flight plans. The 

simulations based on the auction paradigm do not 

restrict the initial slot position of the flights to any 

given order; the final sequence of the flights is a result 

of the successive auctions of all the slots identified 

inside the hotspot. 

• The third stage comprises the airlines’ decision 

process. Once the affected flights receive an initial 

ATFM slot, the airlines evaluate all possible actions 

available with the objective of reducing the cost of 

delay associated with all their affected flights within 

the hotspot. The number and complexity of airlines’ 

actions depend on the level of flexibility provided by 

the flight prioritization mechanisms being simulated. 

• Finally, the fourth and last stage covers the study and 

subsequent acceptance or rejection of each of the 

requests sent by the airlines by the Network Manager. 

Once this process is completed, the delays are 

definitive and the airlines can update the flight plans of 

their affected flights accordingly. 

The first stage is repeated iteratively for each of the time 

windows into which the simulation time is divided. Whenever 

an imbalance is detected, the second, third and fourth stages are 

performed. The simulation finishes when the temporal horizon 

is reached. 

B. Simulation Environment 

1) Airport Configuration 

The defined network consists of 5 different airports, which 

comprise a mix of hubs and secondary airports.  

2) Sector Configuration 

The process of sector definition comprises the virtual 

division of the airspace. Thus, the provision of air traffic services 

is decomposed into tasks with manageable workload. Our 

network decomposition in air traffic volumes consists of two 

different types of sectors. First, 9 en-route sectors are modelled, 

defining the different airspace structures crossed by the flights 

after the departure and before landing. Additionally, one extra 

sector is defined around each airport simulating a Terminal 

Manoeuvring Area (TMA). 

 

Figure 1. Network topology 

An illustration of the resultant network topology is shown in 

Figure 1. The blue circles define the airports, labelled with 

letters, the white circles designate the id of each particular sector, 

and the red dots exemplify the connection entry and exit points 

between sectors. 

3) Route Configuration 

The route configuration defined for the model follows a fixed 

trajectory approach with defined entry and exit points for each 

sector. The sector configuration is built in such way to allow 3 

possible disjuntive trajectories for each OD pair, which only 

share the departure and arrival sectors (i.e., the airport TMAs). 

4) Network Calibration 

The topological description of the network needs to be 

translated into a physical representation. Each of the lines 

connecting the nodes in the topology diagram (route trajectory) 

needs to be assigned a distance. Additionally, air navigation 

charges need to be modelled in order to cover the services 

provided by Air Navigation Service Providers (ANSPs) over a 

portion of airspace, in our case coincident with the defined 

sectors. With the ultimate objective of getting realistic values of 

cost and distances for each of the routes, we have considered 

each airport to be a representation of a real airport in the ECAC 

area. Consequently, the unit rate factor of each charging zone 

(sectors) and the route distances can be approximated to reality. 

At the end, the model is calibrated with values such that the 3 

different routes between each OD pair are not equal in terms of 

cost and distance, neither do they present large differences. 



C. Agents 

1) Agents Characteristics 

a) Network Manager 

The role of the Network Manager is to apply the 

corresponding ATFM processes throughout the simulation. It is 

in charge of the detection of possible demand-capacity 

imbalances in the air traffic network, as well as of the correct 

application of the prioritization mechanisms. 

b) Airlines 

The airline agents are the main agents of the simulation. They 

make decisions to achieve their objectives according to their 

internal parameters and the environment. They are modelled as 

cost-minimizers, but the model allows the modification of their 

behavior through the inclusion of different biases that depart 

from purely rational choices.  

Airline costs are impacted by air navigation charges (which 

depend on the distance flown within each sector), the cost of fuel 

(modelled in a simplified manner, as proportional to the flight 

distance), and the cost of delay. The calculation of the cost of 

delay is of special interest for the model because its inherent 

non-linearity could trigger the use of the available prioritization 

mechanisms. The costs included in this computation are 

maintenance costs, crew costs and passenger costs, which can in 

turn be broken down into soft and hard costs. The maintenance 

and crew costs are modelled as linear costs and their value is 

directly extracted from the corresponding tables from the 

University of Westminster’s European airline delay cost 

reference values [10].  

On the other hand, passenger costs show a non-linear 

behavior over time. The passenger soft costs are often a 

dominant component in the economics of airline unpunctuality. 

These are the costs associated with a revenue loss or market 

value decrease. In order to include them in the delay cost 

function, the slope values (Euros per minute, per passenger) 

found in [10] are integrated to calculate the accumulated soft 

costs at each delay value. Finally, passenger hard costs are due 

to such factors as passenger rebooking, compensation and care. 

The modelling of these costs is based on Regulation (EC) No 

261/2004 [11] and the Articles 91(1) and 100(2) of the Treaty on 

the Functioning of the European Union (TFEU).  

Flight cancellations are only considered when an airport 

curfew is missed. In that case, the final departure time of that 

particular flight is scheduled on the next day and the costs are 

calculated accordingly by applying the same rules as before. 

The simulation scenarios consider 5 airlines classified in two 

groups, which are diferentiated according to their network 

configuration model: 

• Airline 1, Airline 2 and Airline 3: flag carrier airlines 

with a hub-and-spoke network configuration. 

• Airline 4 and Airline 5: low-cost airlines with a point-

to-point network configuration. 

2) Agent Interaction Rules 

Depending on the flight prioritization mechanism evaluated 

in the simulation, the sequence of agents’ decisions and actions 

follows a different pattern. This variety of interactions can be 

divided into two main paradigms depending on how the Network 

Manager originally imposes delays in the context of a 

demand-capacity imbalance. 

a) First Plan First Served (FPFS) Paradigm 

The FPFS principle ensures that the affected flights within a 

hotspot are ordered according to the estimated time over (ETO) 

the specific sector. The delays imposed to the ordered flights are 

then sent to the airlines as an initial endowment from which to 

study a possible prioritization. The main actions performed by 

each agent are schematized in the Figure 2. It should be noted 

that the possibility of requesting a rerouting has been included, 

within this resolution framework, as a step prior to prioritization, 

with the intention of being more faithful to the real process of 

actual ATFM operations. 

 

Figure 2. FPFS workflow 

Due to the abstraction of all ATFM processes in the figure 

of a single agent (Network Manager), some measures are 

simplified. In the model, a flight cannot occupy an ATFM slot 

if this creates an additional demand-capacity problem in an 

already resolved time window. When due to this restriction a 

flight cannot occupy a certain hotspot position, in order to 

respect the FPFS principle, that position is left empty and the 

next slot is checked, inevitably worsening network efficiency. 

b) Auction Paradigm 

Unlike the mechanisms based on the FPFS principle, in an 

auction the ATFM slots are not filled following the ETO of the 

specific sector, but the sequence is the result of the amount of 

money airlines are willing to pay to occupy each of the auctioned 

slots. The workflow illustrating the whole process is depicted in 

Figure 3. The implemented auction is a Vickrey auction, which 

is a type of sealed-bid auction. Airlines submit written bids 

without knowing the bid of the other participants in the auction. 

The highest bidder wins, but the price paid is the second-highest 

bid. This type of auction is strategically similar to an English 

auction and gives bidders an incentive to bid their true value [12]. 

Given the limited resources of this first exploratory study, it 

was decided not to include the airlines’ rerouting capability 

within this resolution paradigm. Consequently, AUs only have 

the flexibility offered by the auction to face the ATFM delays 

imposed. 

 

Figure 3. Auction workflow 



D. Simulation Inputs 

1) Flight Schedule 

A flight schedule is required to provide all the necessary 

information for the Network Manager to perform ATFM 

functions. It includes all the flights involved in the simulation 

and provides the necessary information about the origin and 

destination of the flight, a flight code, the operating airline, the 

type of aircraft used, and an aircraft identifier. In this study, this 

data has been synthetically generated from real data. To recreate 

a realistic level of traffic in our model, the flight schedules of a 

subset of 5 European airports have been reconstructed from the 

information contained in the the last filed flight plan contained 

in EUROCONTROL’s Demand Data Repository 2 (DDR2) for 

a random traffic day.  

From all the selected flights, the various operating airlines 

are grouped by alliances. According to the flight network 

configuration and the identified alliances, three artificial flag 

carrier airlines (Airlines 1, 2 and 3) are considered for the model. 

Finally, with the intention of including an additional 

point-to-point network configuration, characteristic of low-cost 

airlines, a series of extra flights were manually added to the 

schedule. Two artificial low-cost airlines (Airlines 4 and 5) are 

considered for the operation of these set of flights.    

2) Capacity Configuration 

The declared capacity of each of the sectors defining the 

network needs to be modelled. This capacity depends on a 

complex combination of factors such as traffic flow direction, 

coordination procedures, in-sector flight times, etc. For the sake 

of simplicity, the capacity estimation in our model is only based 

on the expected demand. Given the flight schedule previously 

generated, the expected demand values per sector and time 

window are computed. With that information, the capacity 

values are set following a sliding windows approach: the 

capacity of a sector during a certain time window is equal to the 

maximum expected demand for the next 5 time windows. Then, 

the user is able to manually change capacity values to simulate 

capacity shortages and generate hotspots. 

3) Passenger Connectivity 

The SESAR project POEM (Passenger-Oriented Enhanced 

Metrics) evidenced that passenger-centric metrics are needed to 

evaluate the full impacts of operational changes [13]. Modelling 

passenger connectivity is required to evaluate the impact of 

different prioritization mechanisms on the passengers. 

For the experiments described in this paper, a configuration 

file was artificially generated with all the information regarding 

passenger connectivity, according to the following assumptions: 

(i) only flag carrier airlines have connections; passengers can 

only have a maximum of one connection in their journey; (ii) the 

waiting time between connecting flights lies between 45 and 120 

minutes; (iii) connections are only between flights operated by 

the same airline; (iv) the total number of connecting passengers 

inside a particular flight that will take a second flight later is 

computed as 20% of the total number of passengers on the actual 

flight who have not made a connection yet; (v) in the event that 

the connecting passengers inside a flight take different second 

flights, the number of passengers going to each one of these next 

flights is randomised. 

IV. IMPLEMENTATION OF FLIGHT PRIORITIZATION 

MECHANISMS 

Four flight prioritizarion mechanisms have been modelled: 

Slot Swapping, Selective Flight Protection, Extended-Selective 

Flight Protection, and Slot Auction. 

A. Slot Swapping 

This mechanism is taken as our baseline scenario because it 

is currently available to airlines in real operations. It offers the 

possibility of exchanging the position of two flights belonging to 

the same airline and affected by the same hotspot as long as no 

flight occupies a ‘before schedule’ position after the swap. An 

airline using the slot swapping mechanism will take the 

following actions: 

• Identify all its flights involved in the hotspot and their 

associated data. 

• Identify all available slot swap possibilities between 

them. 

• For the slot swaps that comply with the schedule 

restrictions: 

o Compute the cost of delay associated with the 

baseline for each flight involved in the swap. 

o Perform the swap and calculate the new 

delays and their associated cost. 

o Compute the cost difference between the 

baseline cost of delay and the new computed 

cost. 

• Based on the study of all the possible swaps, choose 

the best option and send the request to the Network 

Manager. 

The Network Manager has no action in this scheme. 

B. Selective Flight Protection 

The SFP mechanism, developed under SESAR’s UDPP 

programme [3], offers extra flexibility for airlines to redistribute 

the initial FPFS delay imposed on their flights. This mechanism 

offers the possibility of protecting important flights that due to 

schedule limitations could not be protected with a normal slot 

swap. Consequently, it is understood as a complementary 

mechanism to slot swapping, meaning that for the specific 

simulations evaluating the SFP, both mechanisms will be active. 

An airline using the SFP mechanism will take the following 

actions: 

• Identify all the airline flights involved in the hotspot 

and their associated data. 

• Identify all available slot swap possibilities between 

them. 

• For the slot swaps that cannot be performed with the 

slot swapping mechanism due to schedule limitations: 

o Compute the cost of delay associated with the 

baseline delay imposed to the flights involved in 

the swap. 

o Perform the swap and calculate the new delays 

for the swapped flights and their associated cost. 

o The protected flight, before schedule at that 

moment, will have to be placed at schedule (zero 

delay), meaning zero cost. 

o Compute the cost difference between the baseline 

and the new computed cost. 

• Based on the study of all the possible protections, 

choose the best option and send the request to the 

Network Manager. 



Following the airline’s activity, the Network Manager 

completes the following tasks: 

• Identify the protected flight which is placed before 

schedule. 

• Place it at the first possible ATFM slot at schedule. 

• Reorganize the flights impacted by the relocation. 

C. Extended-Selective Flight Protection 

The E-SFP mechanism, a concept proposed in the scope of 

SESAR’s UDPP investigations on new prioritisation features 

[3], involves the possibility of selecting the slots for specific 

flights in a hotspot, either by spending credits if the desired slot 

reduces the delay, or by earning credits if the slot change 

increases the delay. This process has an impact on other flights, 

as their preliminary assigned ATFM slots can be taken by the 

flight that uses this mechanism. In particular, the prioritisation 

carried out by AUs can have a negative impact on the flights 

originally scheduled between the baseline position and the new 

prioritised flight position upstream the timeline, meaning 

approximately 2 or 3 minutes of extra delay. However, according 

to AU experts consulted by EUROCONTROL during the 

development of the mechanism, this negative impact on other 

airlines can be considered negligible [14]. An airline using the 

E-SFP mechanism will take the following actions: 

• Identify all its flights involved in the hotspot and their 

associated data. 

• Calculate the airline total cost of delay for that ATFM 

slot arrangement. 

• Identify all the possible ATFM slots where each flight 

could be located according to schedule restrictions and 

all the feasible ATFM slot combinations. 

• Compute the difference in cost between the baseline 

total cost of delay and the total cost of delay for each 

combination. 

• Compute the needed or earned credits for requesting 

each combination. 

• If the airline has enough credits to request that ATFM 

slot combination (or if the combination does not 

consume any credit): 

o Calculate the value of used or earned credits in 

the combination. 

o Compare this value with the calculated cost 

difference for each combination. 

• Choose the best combination and send the request to 

the Network Manager. 

This mechanism does not require any action from the 

Network Manager and is implemented so that each airline has an 

initial number of credits at the start of the simulation. This 

allocation represents the number of credits that the airline earned 

the previous days but did not use yet. For the sake of simplicity, 

the equivalence between delay and credits is set to a constant 

value of 1, meaning that 1 minute of delay equals to 1 credit, 

independently of the characteristics of the congested airspace 

(size, location or temporal scope). 

For the proper operation of the prioritization process, it is 

essential to calibrate both the initial credits and the monetary 

value that each airline assigns to the credits. Due to the inherent 

limitations caused by the temporal scope of the simulation (one 

day), the calibration process was done by defining a series of 

decision-making behaviors for each airline. The credit values for 

each behavior were defined by trial and error so as to incentivize 

airlines to use the prioritization mechanism: 

• Conservative: it imitates a behavior where the airline 

tends to earn credits by absorbing delay when not very 

important flights are affected in order to use them in 

the future in more valuable flights. The monetary value 

assigned to the credits is significant and the number of 

initial credits is high. For this case, we have assumed 

that the airline considers a credit value between 25 and 

30 EUR. Only carrrier airlines (Airline 1 and Airline 

2) are modelled following this behavioral approach. 

• Optimistic: it represents a behavior where the airline 

tends to spend credits, prioritizing not so important 

flights, rather than to earn credits by absorbing delay. 

The airline does not expect to need the credits in the 

future and decides to spend them quickly when it has 

the opportunity. The monetary value assigned to the 

credits is low and the number of initial credits is small. 

For this case, we have assumed that the airline 

considers a credit value between 10 and 15 EUR. Both, 

carrier and low-cost airlines have been tested under 

this strategy (Airline 3 and Airline 4).  

• Neutral: it corresponds to an intermediate behavior 

between the two previous patterns. The monetary 

equivalence and the number of initial credits values are 

between the values of the previous levels. Only one 

low-cost airline (Airline 5) is modelled following this 

strategy. 

D. Slot Auctioning 

The formulation of optimal bidding by airlines is the most 

interesting aspect of this kind of prioritization mechanism. Once 

again, since the simulation time window of just one day does not 

allow the implementation of any learning capability or adaptive 

behavior, airlines are divided according to three levels of action 

equivalent to those defined for the E-SFP mechanism. 

• Conservative: it imitates a behavior where the airline 

bids aggressively according to a value very close to the 

worst possible cost situation within the hotspot.  

• Optimistic: it represents a behavior where the airline 

tends to bid lower, in many cases overestimating its 

ability to win the auction.  

• Neutral: it corresponds to an intermediate behavior 

between the two previous patterns.  

The airlines follow the same structure as in the E-SFP 

mechanism when adopting each of these strategies, Airline 1 and 

Airline 2 are conervative, Airline 3 and Airline 4 are optimistic 

and Airline 5 is neutral. An airline participating in the auction of 

a particular ATFM slot takes the following actions: 

• Identify all the airline flights involved in the hotspot 

and their associated data. 

• Collect the actual sequence of ATFM slots in which 

the hotspot is divided. 

• Calculate the cost of delay associated with placing the 

flight in each of the remaining ATFM slots, from the 

one being auctioned to the last slot of the hotspot. 

• Formulate the bid according to its corresponding 

behavior: 

o Conservative: the airline bids according to the 

75th percentile of the cost distribution 

calculated in the previous step. 

o Optimistic: the airline bids according to the 

25th percentile of the cost distribution 

calculated in the previous step. 



o Neutral: the airline bids according to the 50th 

percentile of the cost distribution calculated 

in the previous step. 

• Choose the highest bid between the bidding flights  and 

send the bid to the Network Manager. 

The money spent by the airlines is redistributed so that the 

total amount paid by all airlines as direct expenses (air navigation 

charges plus auction prices) is equal to the total amount of air 

navigation charges paid by the airlines for the mechanisms based 

on the FPFS paradigm. This means that all the money that the 

airlines have spent on the successive slot auctions must be 

returned to them through some specific mechanism. The 

approach implemented in the simulation is based on a 

redistribution proportional to the amount of money spent in 

charges. Thus, the reduction percentage applied to each airline is 

equal to the percentage that the same airline has paid in charges 

over the total amount of air navigation charges paid by all the 

airlines. 

V. BEHAVIORAL ECONOMICS 

Behavioral economics provides an interesting  option to 

advance the quality and rigour of simulation models, inter alia, 

by delivering essential understanding of human behavior and 

decision-making fed by several disciplines (psychology, 

neuroscience, economics and decision science). Combined with 

agent-based modelling, computational behavioral economics 

offers an excellent framework to evaluate flight prioritisation 

mechanisms under certain behaviors that depart from the purely 

rational paradigm. These behaviors are included within the 

decision-making logic of airlines according to the three basic 

pillars of this discipline: bounded rationality, hyperbolic 

discounting and prospect theory. 

A. Bounded Rationality 

The concept of bounded rationality, proposed by Herbert 

Simon in 1982 [15], is one of the psychological foundations of 

behavioral economics and provides the idea that human 

rationality is limited when people make decisions. Rationality 

is bounded because there are limits to our thinking capacity, 

available information and feasible time to make the decision. 

In capacity-constrained situations, an airline could possibly 

underestimate or overestimate the value of a flight due to limited 

available information at the moment of making the decision. 

The inclusion of this bias in the model is based on a 

manipulation of the airlines’ cost of delay calculation through a 

random increase or decrease rate. Based on experts’ feedback, 

this parameter was approximated to a value of 15%, although a 

more thorough calibration is expected for future work. This 

cognitive bias has been considered in all the mechanisms 

implemented.  

B. Hyperbolic discounting 

Intertemporal choice (hyperbolic discounting) is also one of 

the cornerstones of behavioral economics. The expectation 

about when a reward is received is as critical as the amount of 

the reward.  Given two similar rewards, humans tend to prefer 

the earlier reward over the later reward and consequently, earlier 

(quicker), smaller amounts are often favoured over later, larger 

amounts, to varying individual degrees [16]. This effect is 

especially relevant for slot trading, as earlier rewards for letting 

a slot go may (sometimes only) be spent in the future, and not 

in the same regulation ('now'). Particularly, in the case where 

regulations are infrequent, the decision to have a lower flight 

priority now in order to get a better one in the future can be 

distorted by such an effect. 

This effect has only been identified in the E-SFP 

mechanism, which allows airlines to release a slot in exchange 

for credits to spend in the future. In order to include this 

behavior in the airline's decision process, the monetary value 

assigned by each airline to their own credits is reduced by a 

defined rate. This way, airlines are prone to underestimate 

certain prioritizations due to the undervaluation of the future 

reward, in this case the credits. The value for that reduction rate 

was based on experts’ feedback and set to 20%. However, as 

with the bounded rate, a more thorough calibration is expected 

for future work. 

C. Prospect Theory 

This behavioral model, introduced by Daniel Kahneman and 

Amos Tversky in 1979 [17], describes how people make 

decisions between several alternatives involving risks and 

uncertainty. The theory exposes the fact that individuals think 

in terms of expected utility relative to a reference point rather 

than to absolute outcomes. Prospect theory is developed based 

on a s-shaped value function representing gains and losses. It is 

built from a concave part on the gain domain (risk aversion) and 

a convex piece in the loss domain. As a result, the function 

behaves much steeper for losses than for gains, which illustrates 

loss aversion behavior, and constitutes one of the main features 

of the theory. 

In the context of slot allocation, due to loss aversion, an 

airline can outbid for a slot paying more money in order to avoid 

losing that position. Of all the prioritization mechanisms 

implemented, the auction is the one that most clearly fits this 

cognitive bias. Consequently, the impact of this effect has only 

been measured in the auction. The method followed consisted 

in increasing the value of the airlines’ slot bids by selecting a 

higher percentile in the distribution of the cost of delay 

computed by the airlines, as explained in IV.D. Hence, the 

conservative airlines bid according to the worst possible 

position in the hotspot, while the neutral and the optimistic 

airlines bid according to the 75th and 50th percentile, 

respectively. 

VI. RESULTS AND DISCUSSION 

In this section the results obtained from the execution of the 

simulations are presented. The different simulation scenarios 

have been defined based on 4 fundamental parameters: level of 

congestion, prioritization mechanism, behavior scheme, and 

rerouting capacity. Due to resource constraints, the combinations 

of these parameters, which generate the scenarios, are limited. 

The level of congestion remains constant for all the defined 

scenarios and has been defined through the artificial creation of 

a series of hotspots, decreasing the capacity of different sectors 

at different times of the day: in the morning (10:45-11:30), at 

noon (14:00-14:30), mid-afternoon (16:00-16:15) and at night 

(19:45-20:15). Additionally, in order to make a fair comparison 

between the mechanisms based on the FPFS paradigm and the 

auction concept, which does not include the rerouting option, the 

former have also been tested without the rerouting option. 

However, due to time constraints, the behavior dimension is not 

included for these scenarios with the auction mechanism and the 

rerouting. 

The performance indicators used to evaluate each 

mechanism take as a starting point the SESAR Performance 

Framework (SESAR PF), complemented with other specific 

metrics that are considered relevant for the problem under study. 

The final set of selected Key Performance Areas (KPAs) from 

the SESAR PF are: Punctuality and Predictability, Cost 

Efficiency, and Equity. Additionally, a new KPA, Robustness, is 



included with the intention to capture how well different 

mechanisms are able to cope with the modelled ‘irrational’ 

airline behaviors. 

A. Punctuality and Predictability 

From an airline point of view, it is crucial to measure whether 

a certain prioritization mechanism increases the punctuality of 

its flights. For airports, the importance of measuring 

predictability and punctuality lies in the fact that higher 

predictability levels allow airports to fully use their current 

capacity. Finally, from the Network Manager perspective, 

improving predictability and punctuality is one of the goals of 

the ATFM process.  

Predictability and punctuality are merged into one KPA in 

the SESAR Performance Framework 2018 due to the strong 

interdependencies between them. Howener, due to the 

limitations in the scope of the simulation model, neither the 

ability of the airlines to change the cost index (change the flight 

speed) nor the assignments of en-route delays (e.g., holding 

patterns) are modelled. The only two selected metrics are flight 

departure delay (PUN1) and passenger arrival delay (PUN2), 

displayed in Figure 4 and Figure 5 respectively. Hereafter, d 

stands for delay (flights, passengers) and N refers to the number 

of elements. 

 

𝑃𝑈𝑁1 =  
∑ 𝑑𝑓𝑙𝑖𝑔ℎ𝑡𝑖

𝑛
𝑖=1

𝑁𝑓𝑙𝑖𝑔ℎ𝑡𝑠
 (1) 

 

𝑃𝑈𝑁2 =  
∑ 𝑑𝑝𝑎𝑥𝑖

𝑛
𝑖=1

𝑁𝑝𝑎𝑥
 (2) 

Both figures give a clear picture of the influence of rerouting 

on the level of punctuality measured in the FPFS-based 

mechanisms. Firstly, for the scenarios with the rerouting option 

available, it can be observed that the punctuality values offered 

by the SFP mechanism improve with respect to those offered by 

the baseline scenario, where only slot swapping is activated. 

Additionally, it is also noticeable that the credit-based E-SFP 

mechanism provides the best punctuality results. This induces 

the idea that a high level of airline flexibility relates with a better 

optimisation of air traffic. 

 

 
Figure 4. Average flight departure delay 

On the other hand, for the scenarios without the rerouting 

option, although a general worsening of punctuality levels was 

expected, especially due to the lower level of efficiency of the 

network, the results offer some insights that at first glance may 

seem counterintuitive. The SFP mechanism punctuality 

performance is now the worst of all the mechanisms. Despite 

offering more flexibility to airlines, the SFP mechanism ends up 

with worse results than the baseline configuration. The reason 

is that the extra level of flexibility, which allows airlines to 

make more optimal requests compared with the baseline 

scenario, in most cases involves larger alterations in the flight 

plans of the affected flights. This fact has a direct impact on 

other flights, which on certain occasions generates downstream 

network effects and motivates the cancellation of several flights 

due to curfew. These cancellations explain the drastic 

deterioration in the punctuality levels for the SFP scenario. 

The E-SFP mechanism presents a slight improvement 

compared to the baseline scenario. The flexibility offered by this 

mechanism exceeds that of the SFP and, in the same way as 

before, this is associated with the appearance of network effects 

due to the high variability of flight demand. However, in this 

case airlines have more flexibility to solve the problems brought 

by these network effects, avoiding long delays or possible 

cancellations, which is accompanied by an improvement in the 

punctuality performance. 

 

 
Figure 5. Average passenger arrival delay 

Finally, it is very interesting to observe how the auction 

scenario provides the best punctuality results among all the 

flight prioritization mechanisms tested without the rerouting 

option. The auction does not order the flights by the ETO of the 

specific congested sector but according to how much the airline 

is willing to pay to win the slot. This paradigm ends up with 

fewer empty slots because the FPFS order does not have to be 

enforced and consequently the usability of the network is 

increased. 

Figure 4 and Figure 5 also display the behavioral dimension 

of the puntuality results. It can be noticed that, as a general rule, 

the appearance of ‘irrationalities’ inside airline behavior comes 

with a worsening in the punctuality levels measured by the 

indicators. However, despite this deterioration, the performance 

of both the SFP and the E-SFP still improves the results of the 

baseline mechanism. In the particular case of the auction, the 

2,60

2,70

2,80

2,90

3,00

Baseline SFP E-SFP

Flight departure delay (min/flight) with rerouting ON

Rational Bounded rationality Hyperbolic discounting

0,00

2,00

4,00

6,00

Baseline SFP E-SFP Auction

Flight departure delay (min/flight) with rerouting OFF

Rational Bounded rationality Prospect theory

0,000

0,500

1,000

1,500

Baseline SFP E-SFP

Pax arrival delay (min/pax) with rerouting ON

Rational Bounded rationality Hyperbolic discounting

0,000

2,000

4,000

6,000

Baseline SFP E-SFP Auction

Pax arrival delay (min/pax) with rerouting OFF

Rational Bounded rationality Prospect theory



level of the punctuality is not affected by the modelled 

behavioral biases. 

B. Cost Efficiency 

The Cost Efficiency KPA is strongly related to the delay 

airlines face in their operations and how they manage it. From 

this perspective, it is essential to measure if a certain 

prioritization mechanism is able to provide effective tools to 

decrease the costs associated with the imposed ATFM delay. A 

mechanism that allows airlines to adjust their operations in a 

cost-efficient way is also expected to have a positive impact on 

airports, which can see their income increase due to the greater 

attractiveness of the system.  

The chosen metric to evaluate the cost efficiency of the tested 

flight prioritization mechanisms is the per-flight cost of delay 

(CEF1), where C(d) stands for the cost of delay function. 

 

𝐶𝐸𝐹1 =
∑ 𝐶(𝑑𝑓𝑙𝑖𝑔ℎ𝑡𝑖

)𝑛
𝑖=1

𝑁𝑓𝑙𝑖𝑔ℎ𝑡𝑠

 (3) 

Figure 6 shows a similar trend to that observed for the 

punctuality indicators. The results for the scenarios with the 

rerouting on show that the E-SFP mechanism provides the 

lowest cost of delay per flight, outperforming the values for the 

SFP mechanism and for the baseline. This confirms the intuition 

that the cost of delay is directly related to the flexibility provided 

by the prioritization mechanism. 

 

 

Figure 6. Cost of delay (EUR/Flight) 

On the other hand, observing the values for the scenarios 

without the rerouting option, as anticipated by the punctuality 

indicators, all the FPFS mechanisms experiment a deterioration 

in the cost levels. Again, due to the dramatic increase in the 

flight delay as a result of the cancellations, the cost of delay per 

flight of the scenario with the SFP mechanism increases 

considerably and exceeds the values for the baseline scenario. 

The E-SFP mechanism also shows a performance consistent 

with what was previously observed. The extra flexibility 

provided by this concept allows airlines to make more optimal 

decisions and, at the same time, to efficiently solve the possible 

downstream network problems that arise from the 

prioritizations. Consequently, it improves the cost efficiency 

results of the baseline scenario. Finally, the auction-based 

mechanism provides the best cost efficiency levels, thanks to 

the better usability of the network. 

Figure 6 also displays information of the behavior impact on 

the cost efficiency performance for each mechanism. It can be 

noticed that, as a general rule, the appearance of the behavioral 

biases comes with a small cost increase. However, an 

unexpected exception is found for the E-SFP mechanism with 

the bounded rationality model. This can be explained again by 

the appearance of network effects. Due to the airlines’ biased 

decisions, the simulation ends up with slightly lower average 

congestion compared to the rational scenario, which, in turn, 

slightly reduces the cost of delay per flight. Differently, but 

consistently with punctuality results, the auction-based 

mechanism is not affected by the different behavioral biases. It 

will be interesting to assess in future research the sensitivity of 

these results to more extreme or disparate behaviors between 

airlines. 

C. Equity 

Within SESAR’s UDPP programme, Equity is considered as 

a mandatory constraint. A lack of Equity can arise, for example, 

when one AU receives an advantage or net gain relative to others. 

This is an essential requirement from AUs’ perspective and is 

closely related with Access, which refers to the need to offer the 

same prioritization possibilities to all involved AUs. 

The metrics selected to measure equity are calculated in 

relation to a baseline scenario which is understood as equitable. 

This baseline scenario corresponds to the simulation of the 

current concept of operations, the FPFS mechanism plus the 

swapping capability. The subset of chosen metrics are: the 

change in AU’s delay compared with the total change in delay of 

all the AUs (EQUI1) and the AU delay increment or decrease 

relative to the baseline total delay (EQUI2). 
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𝐸𝑄𝑈𝐼2𝐽 =
𝑑𝐴𝑈𝑗

𝑛𝑒𝑤 −  𝑑𝐴𝑈𝑗

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑑𝐴𝑈𝑗

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
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Due to the disaggregated nature of these indicators (data per 

AU), equity metrics are analyzed by mechanism. In order to also 

assess the behaviorual dimension of the results, only the 

scenarios with this component included are presented, that is, 

scenarios with rerouting for the mechanisms based on the FPFS 

and scenarios without rerouting for the auction-based 

mechanism. Some precautions must however be taken when 

analyzing the results and drawing strong conclusions. In 

particular, a simulation time of one day is not enough to 

accurately characterize the behavior of the airlines and especially 

their learning capabilities. Results could thus be sensitive to the 

reduced simulation time window and the rigidity of the behaviors 

imposed on the airlines together with the specific traffic and the 

network used in the simulation. 

Figure 7 shows the equity metrics for the scenarios with the 

SFP mechanism and the rerouting option available. It is clearly 

visible that not all the airlines are affected in the same way by 

the addition of the SFP mechanism. All airlines show a decrease 

in their associated delay, but there are two airlines in particular 

that benefit the most from this decrease, regardless their network 

configuration model. These are Airline 1, a carrer airline, and 

Airline 4, a low-cost airline. The rationale behind this 

phenomenon lies in the fact that due to the traffic conditions and 
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capacity of the model, they are the only airlines that request and 

use the SFP mechanism. The variations experimented by the 

other airlines are only the result of the network effects generated 

by the consequent variability of demand. 

 

 
Figure 7. Equity metrics for SFP 

Regarding the behavioral impact on the equity levels, it is 

remarkable to see how the introduction of the bounded 

rationality model further unbalances the situation towards 

Airline 1. However, at the same time, the relative improvement 

in terms of delay level compared to the baseline case is less than 

before. Due to the bounded rationality bias, the airlines do not 

make optimal decisions and end up with a lower improvement in 

terms of delay. Finally, although Airline 1 and Airline 4 are the 

only airlines clearly benefited from the SFP mechanism, the rest 

of the airlines are not negatively affected by this fact. 

 

 
Figure 8. Equity metrics for E-SFP 

Figure 8 shows the equity metrics for the scenarios with the 

E-SFP mechanism and the rerouting option available. The 

difference between airlines is more evident, including even the 

worsening of some airlines (Airline 1, Airline 2 and Airline 5). 

However, this lack of equity should be treated with precaution. 

Here the results are extremely affected by the tendency of each 

airline to use or collect credits (conservative, neutral or 

optimistic levels) and the partial picture of this behavior (one 

simulation day). Airline 1 and 2 and Airline 5, characterised by 

a conservative and neutral behavior respectively, show negative 

percentages of relative delay change, meaning that they 

experiment a total delay increase compared to the baseline 

scenario. This can be explained given the tendency imposed on 

these type of airlines to collect credits for using them afterwards 

in more important flights. It is expected that this imbalance 

across airlines would be reduced by extending the temporal 

scope to give the airlines more time to use the credits they have 

earned. 

Figure 8 also offers some insights regarding the impact on 

the equity levels of each behavioral model. The scenario where 

the hyperbolic discounting bias is applied generates a more 

unbalanced situation; previously advantaged airlines improve 

even more their situation and previously disadvantaged airlines 

slightly worsen their situation. Contrarily, the bounded 

rationality model shows a tendency to balance the values across 

airlines, reducing the inequality between them. 

 

 
Figure 9. Equity metrics for the Auction 

Figure 9 displays the equity results for the scenarios with the 

Auction without the rerouting option. The values describe a 

relatively more balanced situation between most of the airlines, 

with the exception of Airline 3 and Airline 5. The reduction in 

the total delay observed for all airlines together is distributed 

almost evenly between Airline 1, Airline 2 and Airline 4. On the 

other hand, Airline 3 suffers a large increase in delay and a 

considerable increase in cost compared with the baseline 

scenario, while Airline 5 is barely affected and presents very 

similar delay results compared with the baseline scenario. 

The results are strongly dependent on the bidding behavior 

implemented for each airline. However, the case of Airline 3 and 

Airline 4 is noticeable. Although they are both at an 'optimistic' 

bid level, meaning they bid way below the worst possible delay 

cost for their flight, their results are completely opposite. This 

situation can only be explained by the traffic and network 

characteristics of the model, which, involuntarily, help Airline 4 

to win many more bids than Airline 3, placing its flights earlier 

in the sequence. Again, the auction performance is barely 

influenced by the behavioral biases applied. 
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D. Robustness 

Here, the robustness is understood as the ability of a flight 

prioritization mechanism to maintain the same performance 

regardless of the degree of irrationality in the behavior of the 

decision-making agents. The robustness of each mechanism has 

been assessed by conmparing the results of the selected metrics 

in a rational scenario and the results of the same metrics for 

other scenarios with certain behavioral biases included.  

The robustness of the SFP mechanism is only evaluated 

against the results coming from the introduction of the bounded 

rationality bias behavior for scenarios with the rerouting on. It 

worsens the general performance of the mechanism: the 

punctuality level drops; the cost of delay increases and the 

equity metrics show a more unbalanced scenario between the 

airlines. However, despite this worsening, the SFP performance 

levels are still above those shown by the baseline scenario. 

The E-SFP mechanism has been analysed under two 

different behavioral models: bounded rationality and hyperbolic 

discounting. Results show that the mechanism is considerably 

sensitive to the ‘irrationalities’. Surprisingly, the scenario with 

the bounded rationality bias shows a slight improvement in the 

performance of the mechanism: the flight delay and the cost of 

delay drop a little and the equity levels tend to be slightly more 

balanced. In contrast, the hyperbolic discounting bias worsens 

all the computed metrics. It seems that the underestimation of 

the real value of the credit exchanges prevents airlines from 

realising the full potential of the mechanism. 

Finally, the Auction is also evaluated against two different 

behavioral models; bounded rationality and prospect theory. 

However, its performance is hardly affected by them. As no 

extreme situations have been introduced, the operation of the 

market mechanism remains optimal. In future work, it would be 

very interesting to test how this conclusion may vary by 

including more extreme and distinct airline behaviors. 

VII. CONCLUSIONS AND FUTURE STEPS 

The analysis of the results is challenging due to the great 

combination of aspects considered for the different scenarios. 

Despite these difficulties, the following conclusions and insights 

can be drawn: 

• The rerouting option has a strong impact on the 

simulation and specifically on the selected metrics.  

• Surprisnfly, the performance of the SFP mechanism 

worsens baseline results when the rerouting option is 

disabled. This is related to the network inefficiencies 

of the strict implementation of the FPFS principle. 

• In general, behavioral biases worsen performance. 

The auction mechanism seems to be the most robust 

against these biases.  
• No mechanism offers a high degree of equity: some 

airlines benefit more than others, which, sometimes, 

are harmed compared to their baseline situation. 

These results are highly conditioned by the modelling 

assumptions and require further investigation. The following 

conclusions and future research avenues can be drawn: 

• ABM can be a valuable tool to measure the 

performance of flight prioritization mechanism and to 

identify emergent and counterintuitive phenomena. 

• Network effects have a strong influence on the results 

and are very relevant for the evaluation of the 

mechanisms: a network model is required. 

• The results seem to be very sensitive to some 

modelling assumptions (e.g., lack of reroutings, airline 

strategies and behaviors, traffic and network 

definition). Future research should conduct a more 

thorough sensitivity analysis. 
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