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Abstract— This paper proposes a novel approach for the 

prediction of the risk of expansion of local epidemics to 3rd regions 

or countries in the world through the air traffic network. The 

approach relies on the definition of a new indicator, the Imported 

Risk, which represents the overall risk of having infected 

individuals entering an airport from any other airport with 

connections.  

We performed a proof-of-concept of the proposed approach by 

using daily data of the air traffic movements on a global scale and 

of the evolution of the COVID-19 epidemic at the beginning of 

2020. For that purpose, we developed a complex network model 

based on Tagged Graphs to calculate the Imported Risk indicator, 

together with other complementary indicators showing the 

centrality of the air traffic network weighted with the Imported 

Risk.  

We implemented our complex network model into an on-line 

platform which provides the daily risk of expansion of the 

epidemic to other regions or countries. The platform supports the 

identification of the components of the network (airports, 

routes…) that have a major impact on the risk of expansion. The 

paper also provides findings on how the short-term prediction of 

diseases' expansion through the Imported Risk indicator allows 

the identification of effective measures to take control of the virus 

spread.  

Keywords-component; network; epidemics; imported risk; 

airports; COVID-19; prediction; tagged graphs. 

I.  INTRODUCTION  

Infectious disease epidemics (e.g., influenza virus, Ebola 
virus, HIV-1) are major threats to human survival. The latest 
example of these emerging pathogens is the novel severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) the 
causative agent of Coronavirus disease 2019 (COVID-19) that 
was declared an international public health emergency on 
January 30, 2020 by the World Health Organization (WHO).  

Previous studies have demonstrated the close relation between 
the daily passengers’ flows through the global air transport 
network and how COVID-19 epidemic was propagated between 
countries. Wu et al. [1] compared the risk of spread between 
international flights and domestic flights. Chinazzi et al. [2] 
proposed a disease transmission model of a global 
metapopulation to calculate the impact of travel limitations on 
the national and international spread of SARS-CoV-2. The 
results showed that the Wuhan travel quarantine delayed the 
progression of the epidemic by 3-5 days in mainland China, with 
a greater international effect. In addition, Bogoch et al. [3] 
analysed international airline passenger flights from ten Chinese 
cities. Other studies [4][5] used air travel data from departures 
in affected provinces of China to estimate the risk of virus 
importation. Gilbert et al. [4] focused on Africa and estimated 
the risk of importing SARS-CoV-2 to the African continent. 
Haider et al. [6] estimated a SARS-CoV-2 transmission risk 
index from the four largest cities in China based on the number 
of passengers to destination countries, weighted by the number 
of confirmed cases in cities of departure provided by WHO. 
They ordered each country according to the quartile to which it 
belonged based on the risk index. Nevertheless, although 
valuable, previous studies did not assess the cumulative risk of 
COVID-19 import in a country and instead they focused on 
specific entry points. 

Over the last years, the theory of complex networks [7][8] 
has reached some important achievements and has  been used to 
model and analyse epidemic spreading [1][9][10][11]. While the 
vast majority of current studies about epidemic propagation on 
complex networks has focused on static networks [12][13][1], 
there are other studies that focused on dynamic networks 
[14][15][16]. In particular, [17] and [18] analysed the 
complexity of the air traffic network, calculating several 
centrality metrics associated to the nodes (airports) of the air 
transport system such as proximity centrality, intermediation 
and eigenvector. The metrics showed the importance of each 
airport in the network according to the type of connections that 
they have with other airports.  
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Although previous studies succeeded in using the theory of 
complex network to model epidemic propagation through the air 
transportation network, they only used their models to get 
conclusions on how an epidemic was spread in the past. They 
did not use the theory of complex networks to dynamically 
calculate the imported risk of all the world’s airports as a way of 
predicting the potential evolution of an infectious disease. This 
approach makes necessary a detailed characterization of all air 
transport-related factors impacting the expansion such as the 
daily number of passengers and duration of each flight, aircraft 
model and occupancy of each flight and the epidemiological 
status of the area of influence where the airports are located. 

II. SOLUTION  

We propose to define new indicators which are suitable for 
the prediction of the risk of expansion of local epidemics to other 
regions or countries in the world, thanks to the exploitation of 
massive daily data of passengers’ flows and epidemic evolution 
through an air transport model based on the theory of complex 
networks. 

We implemented our complex network model into an on-line 
platform which provides the daily risk of expansion of the 
epidemic to other regions or countries. The platform supports 
the identification of the components of the network (airports, 
routes…) that have a major impact on the risk of expansion. In 
addition, the platform allows assessing the impact of measures 
which could be implemented to prevent the virus spread, 
assuming that this could be a key support for decision-makers.  

The platform processes automatically diverse sources of live 
data related to the air transport system worldwide (i.e., all daily 
flights and their characteristics such as occupancy per aircraft 
type), and daily data associated to the evolution of the epidemic 
all over the world. These data are mainly the number of infected, 
recovered, and susceptible people in all regions, and virologic 
features such as virulence indicators and reproductive indexes. 

We performed a proof-of-concept of our solution - the new 
indicators, the complex network model based on daily data, and 
the user-oriented platform – by using real data on how the 
SARS-CoV-2 was expanded at the beginning of the pandemic. 
Basically, we assessed if the solution could have been used for 
the early identification of the risk of SARS-CoV-2 spread when 
the pandemic was in its initial phases – no local transmission of 
the coronavirus back then –. 

This solution is built under the assumption that the detailed 
knowledge of the passengers’ flows and connections in the 
network could allow predicting how an epidemic would expand 
from its origin in one single country to the rest of the world. This 
paper assumes that the air transport was the main mode of 
transmission of SARS-CoV-2 at the beginning of the pandemic 
in the vast majority of the countries in the world. There could be 
some exceptions to this rule in those countries which are 
geographically close to the origin of the pandemic, or have 
multiple and diverse connections with the main focus (e.g. 
automobile travel, cruise ships, etc.). These transportation 
models will be considered in future editions to improve the 
representativeness of our solution in those countries. We also 
highlight that our solution is exclusively designed to predict the 
virus spread at its initial stages, and not in the next phases in 

which local transportation models (public transport, short-
distance car travel, etc.) became the most relevant way of local 
transmission.  

Section III describes our methodology to develop the 
proposed indicators. Section IV details how the complex 
network model was designed in the case of COVID-19 and the 
process that was followed for its validation. Section V includes 
the results, which are divided in three parts: feasibility of the 
proposed indicators for the short-term prediction of epidemics 
expansion in third countries, applicability for one specific use 
case - the expansion of the SARS-CoV-2 in Spain -, and finally, 
assessment of the main functionalities of the developed platform 
and how it could be used by decision makers in epidemic crisis. 
Section VI details the main conclusions and the next steps. 

III. METHODOLOGY 

In this section, we describe how to calculate the daily 
imported risk into an airport from a third party. This is used to 
obtain the overall imported risk into an airport from all airports 
with connexions. Complementary to this indicator, other metrics 
associated to the theory of complex networks can also be 
implemented, showing the centrality of the air traffic network 
weighted with the imported risk previously calculated. 

The imported risk by airport j on a given day, Riskj, is 
calculated as the sum of the risk of each flight (k) from all 
airports which have operations with Aj on that day, Riskijk. This 
value is highly dependent on the epidemiological status of the 
catchment area of the airports of origin i and the risk of 
contagion that occurs during flight k. This depends on the 
duration of the flight and the separation between the passengers 
(which is a variable of the occupancy ratio of the flight). 
Mathematically,  

𝑅𝑖𝑠𝑘𝑗 = ∑ ∑ 𝑅𝑖𝑠𝑘𝑖𝑗𝑘

𝑘∈𝑉𝑖𝑗𝑖∈𝐴𝑗

 

where 𝐴𝑗 represents the set of all airports that fly to airport j and 

𝑉𝑖𝑗 the set of flights that exist during the day from airport i to 

airport j. 

The initial epidemiological status of flight k departing from 
airport 𝑖 ∈ 𝐴𝑗 depends on the epidemiological status of the 

catchment area of airport i and the number of passengers 
traveling on flight k. We assume that the passengers at airport i 
is a simple random sample of the inhabitants of the airport’s 
catchment area. Therefore, the epidemiological data for flight 
𝑘 ∈ 𝑉𝑖𝑗 is calculated as follows. 

The number of susceptible passengers, 𝑆𝑖𝑗𝑘(0), infectious 

passengers, 𝐼𝑖𝑗𝑘(0), and recovered passengers, 𝑅𝑖𝑗𝑘(0), on 

flight k at the moment of departing from airport i to j are 
computed as: 

 𝑆𝑖𝑗𝑘(0) = 𝑛𝑖𝑗𝑘
𝑆𝑖(0)

ℎ𝑖
,  𝐼𝑖𝑗𝑘(0) = 𝑛𝑖𝑗𝑘

𝐼𝑖(0)

ℎ𝑖
 and 

 𝑅𝑖𝑗𝑘(0) = 𝑛𝑖𝑗𝑘
𝑅𝑖(0)

ℎ𝑖
, respectively. 

That is, the number of susceptible, infectious and recovered 
passengers on flight k that departs from airport i to j is computed 



 

 

as the average number of susceptible, infectious and recovered 
passengers, obtained as the product of the number of passengers 
on flight k from airport i to j and the probability that a passenger 
is susceptible, infectious and recovered, respectively, where the 
probability is computed as the total amount of people 
susceptible, infectious and recovered, respectively divided by 
the number of people living in the influence area (ℎ𝑖). 

For the case of COVID-19, the risk of a passenger being 
infected is estimated in several steps:  

i) Calculate the number of new confirmed COVID-19 
infections in the airport’s catchment area in the last 7 days, 𝐼𝑖(0). 
Seven days is chosen because it is the approximate duration of 
the contagion period for someone who has SARS-CoV-2 [19];  

ii) Multiply 𝐼𝑖(0) by ten to approximate the current number 
of new infections [20], as in first stages of a new disease, the 
reliability of the source is low;  

iii) We assume that people with SARS-CoV-2 who take a 
plane are asymptomatic, pre-symptomatic or partially 
symptomatic (those with severe symptoms are unlikely to fly). 
Given that asymptomatic COVID-19 carriers make up 
approximately 40% of all carriers and they are only about 40% 
as contagious as others with more severe symptoms [21], the 
above product is multiplied by a factor of ¾. 

iv) Multiply by a factor of about ½  to reflect the premise that 
flying passengers are generally affluent (less likely to encounter 
COVID-19 risks) than the general public [26].  

Therefore, the number of infectious passengers is: 

 𝐼𝑖𝑗𝑘(0) = 𝑛𝑖𝑗𝑘

10×
3

4
×

1

2
𝐼𝑖

ℎ𝑖
= 3.75𝑛𝑖𝑗𝑘

𝐼𝑖(0)

ℎ𝑖
 

Once the initial epidemiological status of flight k departing 
from airport 𝑖 ∈ 𝐴𝑗 is calculated, we proceed to calculate the 

final epidemiological status of flight k departing from airport 𝑖 ∈
𝐴𝑗. 

The epidemiological status at the end of flight k departing 
from airport 𝑖 ∈ 𝐴𝑗 depends on the initial epidemiological status 

of flight k, the duration of the flight and the security measures 
adopted in the aircraft, which will be calculated by applying the 
SIR method (Susceptible-Infectious-Recovered) as it is suitable 
for diseases whose infectious agents are virus of the SARS-
CoV-2 type. 

Taking time t in minutes, we will consider the following 
classes of passengers: 𝑆𝑖𝑗𝑘(𝑡), 𝐼𝑖𝑗𝑘(𝑡) and 𝑅𝑖𝑗𝑘(𝑡) denote the 

number of susceptible, infectious and recovered passengers of 
flight k departing from airport i to j at minute t, respectively. In 
this way we have that  𝑛𝑖𝑗𝑘 = 𝑆𝑖𝑗𝑘(𝑡) + 𝐼𝑖𝑗𝑘(𝑡) + 𝑅𝑖𝑗𝑘(𝑡) for 

every time instant t. 

We assume the hypothesis of a homogeneous mixture of 
passengers [22]. That is, any infectious passenger can contact 
and infect any susceptible individual. Under this hypothesis, the 
susceptible individuals which could be infected are modelled by 

the term: 𝛽𝑆𝑖𝑗𝑘(𝑡)
𝐼𝑖𝑗𝑘(𝑡)

𝑛𝑖𝑗𝑘
, where 𝛽 > 0 is the transmission rate. 

An infectious passenger may have mild or no symptoms and, 
after a while, recover. This step can be modelled using the linear 
term: 𝛼𝐼𝑖𝑗𝑘(𝑡), where 𝛼 > 0 is the recovery rate. That is, 

infectious individuals spend an average of 1/𝛼 units of time in 
state I before recovering from the disease. 

Thus, the following equations describe the transmission 
dynamic of virus according to the SIR method, with time t 
minutes, 

𝑆𝑖𝑗𝑘(𝑡 + 1) = 𝑆𝑖𝑗𝑘(𝑡) −  𝛽𝑆𝑖𝑗𝑘(𝑡)
𝐼𝑖𝑗𝑘(𝑡)

𝑛𝑖𝑗𝑘

                           (1) 

𝐼𝑖𝑗𝑘(𝑡 + 1) = 𝐼𝑖𝑗𝑘(𝑡) +  𝛽𝑆𝑖𝑗𝑘(𝑡)
𝐼𝑖𝑗𝑘(𝑡)

𝑛𝑖𝑗𝑘

− 𝛼𝐼𝑖𝑗𝑘(𝑡)         (2) 

𝑅𝑖𝑗𝑘(𝑡 + 1) = 𝑅𝑖𝑗𝑘(𝑡) +  𝛼𝐼𝑖𝑗𝑘(𝑡)                                         (3) 

Taking into account that flight k from airport i to j has a 
duration of 𝑚𝑖𝑗𝑘 minutes, 𝐼𝑖𝑗𝑘(𝑚𝑖𝑗𝑘) represents the average 

number of infected passengers arriving at airport j from airport i 
on flight k: 

𝑅𝑖𝑠𝑘𝑖𝑗𝑘 = 𝐼𝑖𝑗𝑘(𝑚𝑖𝑗𝑘) 

Therefore, the imported risk by airport j on a given day is the 
following, which only depends on two parameters, 𝛼 and 𝛽.  

𝑅𝑖𝑠𝑘𝑗 = ∑ ∑ 𝐼𝑖𝑗𝑘(𝑚𝑖𝑗𝑘)

𝑘∈𝑉𝑖𝑗𝑖∈𝐴𝑗

 

where 𝐴𝑗 represents all airports that have flights to airport j and 

𝑉𝑖𝑗 the flights that exist during the day from airport i to airport j. 

Two additional parameters must be determined to calculate 
the imported risks at destination, the recovery rate (𝛼) and the 
transmission rate (𝛽). We describe in the following paragraphs 
how these parameters are calculated. 

The recovery rate indicates the proportion of infected 
persons which are recovered per day, that is, 𝛼 = 1/𝐷, where D 
is average number of days it takes a person to go from infected 
to recovered.  

For COVID-19,  𝛼 = 1/9. 

The transmission rate (𝛽) is estimated by assuming that all 
passengers wear masks during the flight. Chu et al. [23] 
estimated that the use of masks reduces the risk of transmission 
in 82%. Therefore, the probability of a mask failure resulting in 
a transmission is: 

 𝑃𝑀 = 1 − 0.82 = 0.18. 

In addition, we also need to calculate the conditional 
probability that a contagious passenger transmits SARS-CoV-2 
to an uninfected one if the mask fails. Two situations are 
considered: full plane (FP) and with empty middle seat (EMS) 
on a Boeing 737 or Airbus 320 jet. Both planes have six seats 
per row: A (window), B (middle) and C (aisle); and D (aisle), E 
(middle) and F (window). We assume that the primary infection 
risk for a passenger flying alone comes from passengers sitting 
in the same row. In addition, we assume additional risks from 
passengers seated in the front and back rows. The simulations 



 

 

done in [25] show that contagions are negligible in further rows 
for droplet transmission diseases like COVID-19. 

A passenger can be infected by droplets from an infected 
passenger in the same row, depending on the distance between 
the two passengers. Chu et al. [23] estimates the risk of infection 
from physical contact with the infected person at 13%.and that 
this is reduced by half if the distance between people increases 
in one meter. The equation that reflects this exponential decrease 

pattern is 𝑅𝑇 = 0.13 × 𝑒−0.69𝑑 . 

In each row, the individual seats are 0.457 m. apart, while 
the aisle width is 0.762 m. 𝑅𝑇 is the transmission risk between 
passengers without masks, and 𝑃𝑀 is the probability of failure of 
the masks. Then, we estimate the risk of transmission of a 
passenger sitting in seat A as 𝑃𝐿(𝐴) = 𝑅𝑇(𝐴, 𝐶) + 𝑅𝑇(𝐴, 𝐷) +
𝑅𝑇(𝐴, 𝐹) (when EMS) and 𝑃𝐿(𝐴) = 𝑅𝑇(𝐴, 𝐵) + 𝑅𝑇(𝐴, 𝐶) +
𝑅𝑇(𝐴, 𝐷) + 𝑅𝑇(𝐴, 𝐸) + 𝑅𝑇(𝐴, 𝐹) (when FP), where 

𝑅𝑇(𝐴, 𝑋) ≈ 0.13 × 𝑒−0.69𝑑(𝐴,𝑋) is the probability of 
transmission without masks given by a contagious passenger in 
chair X of the same row of an uninfected passenger in the chair 
A and 𝑑(𝐴, 𝑋) is the distance between the heads of both 
passengers. 

On the other hand, several studies [24] [25] considered that, 
in addition to the potential transmission between passengers in 
the same row, passengers within the 2-rows of infected 
individuals can also be infected by droplets diseases. We should 
highlight that, at the time of doing this study, no final 
conclusions were published about the form of transmission of 
COVID-19, and droplets were thought as the main way of 
transmission. 

Barnett [26] indicates that, although backups can block some 
drops of a contagious passenger, they are less effective than 
Plexiglass which almost eliminates transmission. Barnet 
estimates that seatbacks are about ¾ as effective as Plexiglass. 
This is another argument justifying that the possibility of 
infection is negligible from row 2 onwards. 

Barnett [26]assumes that: i) When a flight is full, the six 
passengers in the row in front and behind of the uninfected 
passenger have a transmission risk of ¼ of the five passengers in 
the same row; ii) When the flight has the empty middle seat, but 
the rest are full, the four passengers on the front and back row of 
the uninfected passenger have a 2/3 risk of transmission of the 
six passengers in that row if the flight is full. In conclusion, the 
probability that an infected passenger transmits the disease to an 
uninfected one is 

𝑃𝐿(FP) = (1 +
1

4
+ 

1

4
 ) 𝑃𝐿(FP, 𝑠𝑎𝑚𝑒 𝑟𝑜𝑤), 

 𝑃𝐿(EMS) = 𝑃𝐿(EMS, 𝑠𝑎𝑚𝑒 𝑟𝑜𝑤) +
2

3

1

2
𝑃𝐿(FP, 𝑠𝑎𝑚𝑒 𝑟𝑜𝑤). 

Then,             𝑃𝐿 = {
0.402 FP
0.224 EMS

 

The infection rate or transmission rate (𝛽) of SARS-CoV-2 
indicates the number of contacts sufficient for the transmission 
of a person per unit of time. That is, the parameter 𝛽 is the 
product of average number of contacts per individual and unit of 
time and the probability of contagion in a single contact between 
an infected individual and a susceptible individual. Therefore, 

𝛽 = 𝑃𝑆, where P is the probability that a relationship between 
two people is contagious, and S is the average number of 
significant relationships that one person has. That is to say, 𝑃 =
𝑃𝐿𝑃𝑀, where 𝑃𝐿  is the conditional probability that a contagious 
passenger transmits SARS-CoV-2 to the uninfected passenger if 
the mask fails and 𝑃𝑀 the probability that the mask fails to 
prevent transmission of SARS-CoV-2. Substituting each 
variable for its values we obtain: 

𝛽 = 𝑃𝑆 = 𝑃𝐿𝑃𝑀𝑆 = {
0.402 × 0.18 × 3.5 = 0.253 FP
0,224 × 0,18 × 2 = 0,081 EMS

 

where 3.5 = 2 +
1

4
× 6 (two passengers in the same row and 3 

in front and 3 behind), 2 = 1 +
1

4
× 4 (1 passenger in the same 

row and 2 in front and 2 behind). 

In conclusion, the daily imported risk for each airport is 
calculated as the sum of the risks of the flights arriving at that 
airport. The risk of each flight is calculated based on the 
epidemiological status of the catchment area of the departure 
airport, the duration of the flight, the number of passengers and 
whether they wear masks or not. These calculations rely on a 
detailed characterization of the recovery rate (𝛼) and the 
transmission rate (𝛽) of the infection disease. 

IV. DESCRIPTION OF THE PROOF OF CONCEPT (COVID-19) 

We performed a proof-of-concept of the solution described 
in Section III. The air transport network and the COVID-19 
expansion along the world were modelled through graph 
database platform Neo4j. Complex network models based on 
Tagged Graphs [27] were used to calculate the daily risk of 
importing the COVID-19 in each country, named the Imported 
Risk in this document. 

Additionally, we calculated two complementary indicators 
for all airports and countries in the world, the Eigenvector and 
the Page Rank, showing the centrality of the air traffic network 
weighted with the Imported Risk previously calculated. These 
indicators determine how relevant a component (airport, 
route…) was in the expansion of the virus through the air 
transportation network.  

The solution was tested against real data of how the COVID-
19 pandemic was spread all over the world through the air 
transport network from the 22nd of January 2020 to the 31st of 
March 2020 - no official COVID-19 data at world scale was 
provided by the Johns Hopkins University before those dates -.  

We tested if the proposed indicators fulfil the objective of 
being able to predict the propagation of the disease through the 
air transport network. Our hypothesis was that the indicators 
should present high correlation with the number of infected 
people in the short, medium, and long term. Thus, countries with 
higher values for a specific day should have higher impact of the 
pandemic 15 or 30 days later. On the other hand, countries with 
lower imported risk should have a slight evolution of the 
pandemic. 

To validate the previous hypothesis, we prepared and cleaned 

the data and then, checked the correlation between the COVID-

19 evolution in all countries and the proposed indicators. 



 

 

A. Data sources and cleaning 

To compute the Imported Risk indicator as described in 
section III, we need information at worldwide level. The data 
sources selected were: 

1. Flight Information from Flight Radar 24: Contains the 
flight information at a worldwide level, captured from 
Automatic Dependent Surveillance - Broadcast (ADS-B) 
system. The fields in this data source include flight 
identification number, callsign, aircraft type, Actual 
Take-Off Time (ATOT), Actual Landing Time (ALDT), 
origin airport and destination airport in ICAO 
(International Civil Aviation Organization) format. 

2. Disease information from John Hopkins database: 
Contains the information of the confirmed infected 
people, deaths and recovered from COVID-19 pandemic 
per day, country and/or region in the world. 

3. Flight Occupancy from International Air Transport 
Association (IATA): Contains the information of the 
percentage of occupancy of the flights grouped by 
continent in a monthly base. 

Some data sources had limitations, for example ADS-B 
information does not provide full coverage of all flights at 
worldwide level and we did not have information on the 
occupancy of each single flight. However, data was considered 
representative enough to elaborate a proof of concept. 

All this data was stored across a graph database using Neo4j, 
fitting the scheme presented in Figure 1 with all flight operations 
(departures and arrivals) by airport linked with its geopolitical 
hierarchy (region, country, province state) and these with their 
pandemic reports for every day (infected, recovered, deaths).  

 
Figure 1. Graph database structure for the proof of concept using Neo4j. 

 

After the information was merged using the graph database, 
the proposed indicators were computed. From the graph 
database, the variables included in TABLE I. were selected. 

TABLE I.  TABLE OF THE DATASET FOR COVID-19 PROOF OF CONCEPT 

Variable Name Definition Example 

Name Country name. Spain 

importedRisk Imported risk by the airport/country j 

(𝑅𝑖𝑠𝑘𝑗). 

21.17 

InfectedActual Infected people for the selected date. 12,567 

Infected_15Days Accumulated of infected people from the 
selected date to 15 days later. 

1,260 

Infected_30Days Accumulated of infected people from the 

selected date to 30 days later. 

8,909 

scorePR_ALLF Page Rank indicator for all flights. 1.34 

scoreE_ALLF Eigenvector indicator for all flights. 0.15 

 
A statistical analysis of the previous variables was 

performed. The first step was the detection and filtering of 
outliers. To reduce the number of dimensions, we selected the 
Mahalanobis distance (MD) technique. Given that MD 
considers the correlation in the data, its values for the outliers 
will be always larger than those of other distance-based 
techniques such as the Euclidian distance (ED). 

The MD distances were plotted versus the estimated 
quantiles or percentiles for a sample of size n from a chi-squared 
distribution, with k degrees of freedom. After applying the chi-
squared at the standard quantiles (99.5%, 97.5%, and 95%), we 
selected 97.5%. Consequently, the values above quantile 97.5% 
of the chi-squared were filtered from the dataset, as they were 
tagged as outliers. This process was performed for every day in 
the dataset. Between 2 to 4 countries were usually filtered per 
day. Surprisingly, China is one of the detected outliers in most 
of the days analysed. This is due to the fact that China applied 
rapidly restrictive measures before other countries started 
having cases. Then, it can be observed a different behaviour in 
the evolution of the COVID-19 epidemic in China in 
comparison with the rest of the countries. 

B. Correlation indicators 

In this study, three correlation indicators were selected: 
Pearson product-moment correlation coefficient, also known as 
Pearson’s or lineal correlation, and two other rank correlation 
coefficients, the Spearman’s rank correlation coefficient and the 
Kendall’s Tau rank correlation coefficient. The Pearson 
coefficient provides the measure of the linear relationship 
between two variables, while rank correlations provide a 
measure of ordinal association. Kendall’s Tau calculations are 
based on concordant and discordant pairs, whereas Spearman’s 
Rho calculations are based on deviations. Kendall’s Tau usually 
provides smaller values than Spearman’s Rho which is the most 
widely used rank correlation coefficient. 

Once the outliers were removed from the dataset, the 

correlations were computed for every day. Then, after 

transforming the data to logarithmic scale, the correlation 

coefficients were represented in a box plot for all the period 

analysed. This representation was used to assess our hypothesis 

of high correlation between the indicators and the number of 

infected people in the short, medium, and long term. 

V. RESULTS 

A. Statistical analysis 

Figure 2 shows the correlations between our main indicator, 

the Imported Risk, and the infected people - actual infected 

people in the selected day, accumulated infected 15 days later, 

and accumulated infected 30 days later - for all dates in the 

dataset. The mean values of the correlations can also be seen in 

TABLE II.  We can see that there is a high degree of correlation 



 

 

because the coefficient value lies between ±0.50 and ±1, then 

is said to be a strong correlation. In addition, two of the three 

correlation measures are higher for 15 and 30 days later than for 

the actual day. 

 
Figure 2. Imported Risk indicator vs Infected people of COVID-19 (actual, 15 

days later and 30 days later) 

TABLE II.  MEAN CORRELATION VALUES FOR IMPORTED RISK (IR)  

INDICATOR VS INFECTED PEOPLE (I) 

Mean IR vs I Actual IR vs I 15 days IR vs I 30 days 

Lineal 0.856 0.710 0.645 

Spearman 0.660 0.726 0.726 

Kendall Tau 0.537 0.546 0.551 

 

For the 1st centrality indicator, the Page Rank, the 

correlation values are slightly lower than those of the Imported 

risk as it is shown in Figure 3. In particular, the results obtained 

for the case of infected people accumulated 30 days later 

showed poorer correlation when comparing with Imported Risk 

correlations. In this specific case, the median values are below 

0.5 as it can be seen in TABLE III. For the rest of the values, 

we can see again that there is a high degree of correlation, 

highlighting the correlation of the current day that is very close 

to the perfect correlation for two of the three correlation 

indicators.  

Overall, the correlations for 15 and 30 days later are worse 

with Page Rank than with Imported Risk Therefore, the Page 

Rank indicator is recommended to determine the risk on the 

actual day and Import Risk for the risk forecasts 15 and 30 days 

later. This is consistent with that fact that the Page Rank 

indicator is based on the topology of the air traffic network and 

the Imported Risk is based on the expected number of infected 

who arrives at a location that will influence the number of 

infected in the following days.  

 

Finally, for the Centrality Eigenvector Indicator, we can see 

that the behaviour is worse than Page Rank and Imported Risk 

indicators, especially for the correlations with the accumulated 

number of infected people 30 days later, see TABLE IV.  
 

 
Figure 3. Page Rank indicator vs Infected people of COVID-19 (actual, 15 

days later and 30 days later) 

TABLE III.  MEAN CORRELATION VALUES FOR PAGE RANK INDICATOR 

(PR) VS INFECTED PEOPLE (I) 

Mean PR vs I Actual PR vs I 15 days PR vs I 30 days 

Lineal 0.786 0.556 0.495 

Spearman 0.992 0.654 0.489 

Kendall Tau 0.939 0.546 0.413 

TABLE IV.  MEAN CORRELATION VALUES FOR EIGENVECTOR INDICATOR 

(EV) VS INFECTED PEOPLE (I) 

Mean  EV vs I Actual EV vs I 15 days EV vs I 30 days 

Lineal 0.591 0.394 0.307 

Spearman 0.922 0.635 0.505 

Kendall Tau 0.939 0.541 0.407 

 
After analysing the three main indicators, we can observe 

that the Imported Risk indicator provides better results to explain 
how the COVID-19 was spread through the air traffic network 
both 15 and 30 days later. In addition, the Page Rank indicator 
for the whole air transport network weighted with the Imported 
Risk is the best to determine the risk of the actual day. 
Eigenvector indicator was discarded as results showed poorer 
performances. 

On the other hand, we can observe how the correlations 
decreased with the number of infected in the long term. This 
could be due to the effectiveness of the local measures 
implemented in the different countries to prevent the expansion 
of the COVID-19. 

Putting the focus on the indicator with the best results, the 
Imported Risk indicator, we can also observe in Figure 2 that the 
box plots with the dispersion of the lineal correlation values is 
expanded when comparing with the number of infected people 
in longer periods. This wider dispersion, specially 30 days later, 
could be due to the differences in the local measures 
implemented in each country. Different measures with different 
effectiveness in the contention of the SARS-CoV-2 could be one 
of the factors producing this effect. 

B. Use Case – Spain 

We have analysed the evolution of the COVID-19 epidemic 
in one specific country to better understand if our indicators 
could have been used to predict and prevent the spread. In this 
section, the evolution of the pandemic in Spain was analysed. 



 

 

Spain had a lockdown period, starting on March 14th, 2020, 
where almost all flights were modified or cancelled.  

As in the previous sections, the period analysed comprise 
from 22/01/2020 to 31/03/2020. In Figure 4, it can be seen the 
evolution of the Imported Risk indicator (in blue) and the 
COVID-19 confirmed cases (in red) for Spain. In this country, 
the correlation between the Imported Risk indicator and the 
amount of people infected was around 0.8. 

Figure 4. Evolution of the Imported Risk Indicator vs COVID-19 confirmed 
cases in Spain. 

We can observe that, in the beginning stage of the pandemic, 
the Imported Risk was alerting at least 15 days before the 
confirmed cases started rising dramatically. By 22-02-2020, 
Spain only had 2 infected people, but at a worldwide level it was 
placed in the 17th position of the countries by the highest 
Imported Risk. After 15 days, the number of infected people 
were 673 in Spain, being the 3rd country in the world with the 
higher risk of importing passengers with COVID-19. 

   These results highlight that the Imported Risk indicator was 

in fact alerting of the risk of importing passengers infected 

around 15 days before the amount of infected people started 

increasing, 

 
Figure 5 Main risk-exporter countries for Spain (22-02-2020). 

 

   In addition, Figure 5 shows the main risk-exporter countries 

to Spain on the 22-02-2020 expressed in percentages. Italy was 

the top risk-exporter (representing 34% of Spain’s risk). More 

in detail, the top three airports adding risk from Italy were: 

LIRF (22.8%), LIMC (18.4%) and LIME (14.4%). By taking 

the measure of restricting flights from Italy, Spain reduces his 

Import Risk and changes the position in the world ranking from 

the place 17th to the 21st. 

 
1 This is an initial prototype that was developed for validation 

purposes. Thus, computation time could take longer than 

C. Platform interface 

This section describes the main functionalities of the web-
based interface of the platform1, which can be visited in the 
following links with data in map format and table format, 
respectively. 

http://213.229.174.138:8866/voila/render/stap_map.ipynb 

http://213.229.174.138:8866/voila/render/stap_itable.ipynb 

The interface shows the daily evolution of the imported risk 
indicators during the expansion of the SARS-CoV-2 at the 
beginning of 2020. This early prototyping allows assessing the 
evolution of the COVID-19 pandemic from the perspective of 
the future users of the platform, the stakeholders supporting the 
decision-making process. In addition, it helps to identify the user 
requirements for the adaptation of the platform to future 
epidemics. 

Figure 6 shows the main window of the interface with the 
display in map format. The user can select one of the three 
imported risk indicators – Imported risk, Eigenvector or Page 
Rank – and the day. An additional filter is available to consider 
the imported risk originated by domestic or by international 
flights. This filter allows distinguishing between the overall 
imported risk in the catchment area of an airport which is 
originated by international flights exclusively, or by all flights 
arriving to the airport. 

Figure 6 shows the Imported Risk on the 22nd of January 
2020 for all airports in the world. The size of the bubbles 
represents the Imported Risk of each airport, and the darker 
colours are the countries with higher number of infected 
individuals on the selected date. We can see that the size of the 
bubbles is bigger in airports highly connected with China, such 
as those which are in the vicinity – three airports in Thailand, 
South Korea and Japan have the highest risk –. The size of the 
bubbles in European airports is not that big, although there are 
some airports like Istanbul which is the 8th airport with the 
highest risk in the world, and at the same time, it has a lot of 
connections with other European airports. Although our Risk 
Indicator is becoming high in some airports, the platform shows 
that, out of China, only 7 infected individuals in 5 countries were 
officially reported by the Johns Hopkins database in that day. 

The prototype is updated automatically as soon as new data 
of infected people and flights at world scale is available. This 
process allows calculating the new imported risk indicators as 
soon as a new day has gone. Figure 7 shows the Imported Risk 
on the 29th of February 2020. After one month, the user can see 
that the Imported Risk increases in most of the airports in the 
world. Airports of Southeast Asia are 6 of the top-ten airports 
with the highest Imported Risk, but we can now identify 
Frankfurt airport and London Heathrow in this top-ten. In 
general, the risk of most of the European airports is very high. 

The interface can also show the total imported risk of a 
country by taking into consideration the risk of all its airports. 
For the 29th of February 2020, four European countries are 
included in the top-ten: United Kingdom – 3rd position–, 

expected in an operational platform. For support, please report 

to jpbarbero@e-crida.enaire.es. 

http://213.229.174.138:8866/voila/render/stap_map.ipynb
http://213.229.174.138:8866/voila/render/stap_itable.ipynb
mailto:jpbarbero@e-crida.enaire.es


 

 

Germany, Spain, and France. This risk is not necessary aligned 
with the number or infected people or the number of deceases 
due to SARS-CoV-2; for instance, in the case of United 
Kingdom, 61 infected and 0 deceases were reported by that date. 

 
Figure 6 Imported Risk Map on January 22nd, 2020. 

 
The interface has two ‘what-if’ functionalities to assess the 

impact of potential mitigation solutions and to assess future 
scenarios depending on the evolution of the epidemic. The 1st 
functionality provides information about the impact of 
implementing local solutions in an airport, route or for specific 
airlines which are operating in areas at high risk. The 
functionality allows removing all flights of one or several 
countries, specific airports in the countries or even single routes 
of one airport. After filtering those elements, we can obtain how 
the imported risk indicators vary. As an example, the decision of 
closing the routes with China on the 22nd of January 2020 would 
have implied the overall reduction of the imported risk in Europe 
– we can see the Imported Risk in Madrid-Barajas airport in 
Figure 7–. 

The 2nd “what-if” functionality assesses the impact on the 
overall network of changes in the evolution of the epidemic in 
one or several countries. This functionality would have allowed 
anticipating the consequences at a world scale of an exponential 
growth of the COVID-19 epidemic in China. The user can 
change the number of Susceptible, Infected and Recovered 
(SIR) individuals in each country, together with the percentage 
of flight occupancy per country. 

VI. CONCLUSIONS AND NEXT STEPS 

A. Conclusions 

We designed a new indicator, the Imported Risk, to predict 

how the diseases are propagated through the air transport 

network, and two complementary indicators which shows the 

centrality of this indicator in a complex network, the 

Eigenvector, and the Page Rank. 
  

We developed a complex network model based on Tagged 

Graphs to calculate our indicators by using real data of SARS-

CoV-2 – mainly Flight Radar 24 data for the air traffic and 

Johns Hopkins University for the COVID-19 evolution –. 

 

We analysed the statistical correlation of the proposed 

indicators with the actual infected people on the day, the 

accumulated number of infected 15 days later, and the 

accumulated number of infected 30 days later for all days from 

22/01/2020 to 31/03/2020. Three correlation coefficients were 

used: Pearson, Spearman and Kendall Tau. 

Figure 7. Imported Risk Map February 29th, 2020. 

 

In conclusion, our main indicator, the Imported Risk, 

provided better results to explain how the COVID-19 was 

spread through the air traffic network both 15 and 30 days later. 

The statistical analysis showed strong correlations between this 

indicator and the subsequent evolution of the number of 

infected, recovered, and susceptible people in the area of 

influence of each airport in the world. Countries with higher 

values of the Imported Risk for a specific day have higher 

infected individuals both 15 and 30 days later, reporting an 

increase in the number of cases.  

We also observed that correlations were slightly reduced 

when comparing with the accumulated number of infected 

people 30 days later. The proposed Imported Risk indicator 

provided better results to predict the evolution of the epidemic 

in the time horizon of 15 days later. This behaviour could be 

due to the local measures implemented in the different countries 

to prevent the expansion of the COVID-19 such as closing 

commercial centres and restaurants, promoting the use of the 

masks or imposing lockdown periods in the whole country, 

among others. These measures are probably avoiding an 

exponential increase in the number of cases in the long-term. 

The effect of these local measures was not included in this 1st 

model, and it is identified as one of the next steps - Item 5 of 

section B -. 

 

An additional effect to be considered is that countries 

implemented different measures which had different 

effectiveness in the contention of the pandemic. This is one of 

the factors which could imply that correlations are better for 

some airports and countries than for others. 

 

As an example of how this mathematical approach could be 

put into operation, we developed a platform with a web-based 

interface to exploit the results by decision makers. We assessed 

if the platform could have been used for the early identification 



 

 

of the risk of virus spread in those countries that were impacted 

at the beginning of the pandemic – no local transmission – and 

also if it was possible to identify air traffic-related measures to 

prevent the expansion. We developed “what-if” functionalities 

that would allow the user assessing the impact of one element 

of the network such as one single airport or one single route in 

the world. However, the multiple and diverse changes that 

could be implemented in the air transportation network make it 

difficult for the user to determine the more effective and less 

penalising mitigation measure.  

 

We identified that all alternatives, such as cancelling one 

single route or reducing the flights occupancy of airports 

operating in one country, influence our Imported Risk indicator, 

but it is difficult to determine which option is the most 

appropriate. The development of optimization criteria to select 

the best options, probably based on multi-objective 

performance framework, was not part of this 1st model, and it is 

identified as one of the next steps – Item 6 of section B -. 

B. Next steps 

We have identified the following areas of improvement to 

take advantage of all the potential of the proposed approach: 

 

1. Full characterization of the air transport network 

considering daily data of connecting passengers. This will 

allow identifying the imported risk derived from 

passengers which come from airports or countries with 

high incidence but are not flying directly from the affected 

zones. 

2. Characterisation and modelling of the airports according to 

their main passengers’ flows and layout. The risk of 

infection at airports will be taken on board as an input to 

the complex network model, similarly to what was already 

done with the risk of infection during the flight. 

3. Parameter setting of essential characteristics of epidemics 

that determines its expansion. This characterization of 

epidemics will allow using the platform for the prediction 

of the impact of future pandemics. 

4. Integration of the platform with sanitary models that are 

being developed for the early detection of local epidemics. 

As we saw in the SARS-CoV2, the lack of knowledge of 

the virus at early phases makes difficult to determine the 

number of infected individuals and their characteristics. 

Our complex network model could benefit from on-going 

initiatives on syndromic surveillance systems for the early 

identification of epidemic in areas at high risk of disease 

outbreaks with similar signs and symptoms. Whilst these 

surveillance tools will focus on the early detection of new 

epidemics and the potential number of cases, our platform 

could use this initial data to predict the risk of expansion at 

world scale. 

5. Inclusion of the impact of external mitigation measures 

which are not part of the air traffic-related measures, but 

they influence on how the emergency is spread. A good 

example is the obligation of using masks to enter a country. 

An initial prospection was done in this area with the 

inclusion in the model of the stringency index [28] which 

quantifies how restrictive the measures implemented in 

each country are. 

6. Identification of pre-defined air traffic-related measures 

with decision-makers to develop capabilities for the 

quantification of the impact of each action. A multi-

objective performance framework will allow analysing 

each measure from diverse perspectives. On one hand, 

emergency-related metrics will quantify the effectiveness 

and resilience of each measure to changes in the evolution 

of the epidemic around the world. On the other hand, 

ATM-related metrics will quantify the impact on capacity, 

efficiency or environment Key Performance Areas 

(KPAs). Both perspectives will be combined into cost-

related metrics which will determine the overall costs 

derived from the implementation of each measure, and in 

particular the economic implications in the air transport 

sector. This approach will facilitate joint decision-making 

among airlines, airports, regions, and countries, taking 

decisions more efficient and less aggressive for the air 

transport sector than simply closing airports or the entire 

airspace. 

7. Calibration of the model to ensure the alignment of the 

values of the Imported Risk indicator with real potential 

entrees of infected individuals through each air transport 

route. 

8. Validation of the model by using verified data of how past 

epidemics, e.g., original SARS-CoV2 and/or the recently 

developed new viral lineages, entered into regions or 

countries. This will allow assessing the sensitivity of the 

model with real data. The most reasonable approach seems 

to be using phylogenetic models. Following this approach, 

we will infer the SARS-CoV2 population dynamics using 

publicly available viral genetic sequences. Subsequently, 

we will correlate the population dynamics parameters 

inferred such as migration rates between geographic 

locations and population size changes at specific locations 

with the predictions obtained with the developed complex 

network model.  
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