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Abstract— This paper presents a study aiming at predicting the 

arrival delays occurring in the terminal area up to five hours in 

advance. The motivation for the participating airlines is to better 

take into account the impact of weather at destination on fuel 

planning. Due to the uncertainty at these time horizons, we decided 

to consider delay intervals (low <5 minutes, moderate 5-10 

minutes, high >10 minutes) over 30 minutes periods. We selected 

four European airports occasionally or frequently subject to high 

arrival delays (London Heathrow, Dublin, Lisbon and Zurich). 

The problem was framed as a classification problem and different 

machine learning models were developed using arrival delay, 

traffic demand and weather historical data from 2013 to 2019. A 

random forest model beats the baseline although still below a 

perfect prediction. The performance indicator (macro F1 score 

ranging from 0 to 1) increases from 0.3 (baseline) to around 0.5. In 

terms of prediction error, compared to the baseline, the model has 

slightly lower performance for the low delays, similar for the 

moderate delays and better for high ones. Finally, a test case using 

airlines data illustrated the potential benefits. Indisputably, there 

should be a “performance barrier” due to the intrinsic 

uncertainty, essentially in terms of take-off times. Still, the future 

work should aim at determining whether the performance may be 

increased, by analyzing the prediction errors and the delay class 

overlaps. 

Keywords-component: arrival delay, additional time, terminal 

area, fuel planning, weather impact, machine learning. 

I.  INTRODUCTION 

This paper presents a study aiming at predicting, up to five 
hours in advance, the arrival delays occurring in the terminal 
area, i.e. the additional flight time caused by holding and path 
stretching during congested periods. The motivation expressed 
by the participating airlines is to better take into account the 
impact of weather at destination on fuel planning. Indeed, today 
a conservative approach for fuel planning is generally taken, 
leading to an over estimation of the contingency or extra fuel, 
and a decrease of flight efficiency [1] [2] 1. On the other hand, 
an under estimation induces a risk of diversion with significant 
operating costs. 

                                                           
1 Based on data collected from a major US airline in 2012-

2013, it was found that “on a typical flight 4.48% of the fuel 

consumed is due to carrying fuel that is unused, while 1.04% 

The objective set with the airlines for a proof of concept 
focusing on intra-European flights, is to predict arrival delays 
for dispatch and flight crew, 4 to 2 hours before departure (i.e. 5 
to 3 hours before arrival with 1 hour flight time). Due to the 
uncertainty at these time horizons, we decided to discretize the 
prediction as delay intervals over a period of time (rather than 
delay value for an individual flight). Three intervals were 
considered in relation with fuel planning constraints (<5 
minutes, 5-10 minutes, >10 minutes) for a period of 30 minutes 
(validity period of weather periodic reports). We selected four 
European airports occasionally or frequently subject to high 
arrival delays (London Heathrow, Dublin, Lisbon and Zurich).  

The problem was framed as a well-known classification 
problem, i.e. predict the probability to belong to a given class. 
We have developed different machine learning models using 
arrival delay, traffic demand and weather historical data from 
2013 to 2019. 

The paper is organized as follows: after the state of the art, 
we detail the data exploration and preparation phase, the 
modelling, and finally the results obtained. 

II.  STATE OF THE ART 

A. Overview 

We identified, through literature review, a significant 
amount of research work from the mid-2000s, relying on data 
science and Artificial Intelligence (AI) techniques to predict 
airport delays, capacity or arrival congestion. Many of these 
studies used traffic and weather data as input. While initially a 
majority focused on the U.S. airspace, from 2010, the use of AI 
techniques has also increased especially in Asia and Europe, 
partly driven by an easier access to traffic data. 

We may distinguish two approaches as presented in sections 
B and C: focus on the arrival capacity as a way to predict delays, 
or focus on the delays directly without explicitly considering the 
arrival capacity. The specific impact of weather and the 

of the fuel consumed is due to carrying additional contingency 

fuel above a reasonable buffer combined with loading fuel for 

unnecessary alternates”. 



corresponding modeling is presented in section D. Section E 
outlines the approach taken. 

Before going further, it is worth clarifying that commercial 
products exist that incorporate custom AI algorithms for 
statistical contingency fuel (SCF) calculations [3]. In addition, 
models/algorithms combining fuel data, traffic demand and 
weather data have been studied recently also to improve SCF [4] 
[5]. However, since SCF tools are not used by all airlines, the 
expectation for the present study was to focus on the key element 
(arrival delay) and its main influencing factors in particular 
weather. While the ultimate goal would be the integration into 
fuel planning tools, the objective at this stage is a proof of 
concept to predict arrival delays. 

B. Arrival capacity prediction 

Research work in the U.S. has addressed Airport Arrival 
Rate (AAR) and capacity predictions, generally to improve 
traffic flow management, with a typical prediction horizon from 
2 to 6 hours.  

Reference [7] used a stochastic analytical model for 
predicting Atlanta Hartsfield-Jackson airport capacity. Another 
study [8] used a multi-stage model to forecast airport arrival and 
departure capacity in Boston and Orlando airports. Reference [9] 
assessed on four busy U.S. airports the prediction performance 
of ground delays and airport delays using support vector 
machine algorithms (SVM), with respectively 73% and 76% 
accuracy. Airport characteristics (number of runways, mode of 
operations, …), traffic demand, weather conditions and the 
existence of specific noise abatement procedures were the main 
influencing factors, their relative importance depending on the 
location.  

We may also note that Boeing filed a patent application in 
2016 [6] for the determination of a predicted airport congestion 
index based on weather and flight information data, relying on 
the use of intermediate predictions of arrival and departure rates. 

In Asia, [10] developed a combined Long Short-Term 
Memory - Extreme Gradient Boosting model for arrival flow 
prediction at Nanjing Lukou airport at 30, 60 and 120min 
prediction horizons. 

C. Arrival delay prediction 

AI techniques were also extensively applied to study on-time 
arrival performance.  

Reference [11] compared the performance of various 
machine learning models to predict delays in air traffic networks 
with prediction horizons ranging from 2 hours to 24 hours. In 
that study, artificial neural network architectures proved 
efficient (94% at a 2 hours horizon) for predicting whether 
delays would exceed 60 min for a set or origin-destination 
airports. However, a newly developed, dedicated ‘Markov Jump 
Linear System’ model outperformed the neural network models 
for predicting the delay values, and their future spatial 
distribution in the network. 

Studying ‘on time’ flight arrival for a low cost domestic 
Japanese carrier, and using various models, [12] obtained 77% 
accuracy for ‘on time’ arrival prediction using a Random Forest 

Classifier. Similarly, a 90.2% performance was obtained with a 
Random Forest model in [13] for the prediction of occurrences 
of flight delays using flights tracking, schedules, weather and 
airport information, while a Recurrent Neural Network model 
was found to be subject to overfitting. On the other hand, [14] 
used historical flight, weather and delay propagation data to 
predict the occurrence of delays at Hartsfield-Jackson Atlanta 
airport using a multi-layer perceptron model that outperformed 
decision trees and random forest, with sampling techniques 
solving the problem of unbalanced datasets. 

Reference [15] used the combination of a Bayesian network-
based model and a Multi-State system structure to predict an 
airport congestion index, and a prediction of arrival delays 
(classification using 3min and 15min thresholds). The model is 
capable to capture the stochastic characteristics of arrival 
processes, and was tested on Madrid-Barajas airport, resulting in 
prediction errors 5 to 10% lower than current approaches. 

D. Weather impact 

In the U.S, and in Asia, frequent weather phenomena 
strongly affect air traffic. This impact is accounted for in a 
number of studies referenced above [7] [8] [9] [10] [12] [13] 
[14]. In a separate effort to explore improvements of AAR 
predictions purely using weather data, [16] compared three 
methods (decision tree, neural network and linear regression) at 
ten U.S. airports. This research work obtained variable but 
positive results, especially with decision tree models, and to a 
lesser extent with neural network models.  

In Europe, numerous studies aimed at quantifying the 
weather impact on air traffic and correlating weather and ATM 
performance including delays, focusing on specific airports: 
London Gatwick [17], Stockholm-Arlanda [18] and Vienna-
Schwechat [19]. 

The FAA and Mitre proposed in the early 2000s a Weather 
Impacted Traffic Index (WITI) metric [20], later developed as a 
delay prediction model with a one-hour granularity [21]. In 
Europe, the EUROCONTROL Performance Review Unit 
(PRU) defined in 2009 the ATM Airport Performance 
(ATMAP) framework including a weather categorization [22] 
and a weather score [23]. More recently, [17] revisited the 
ATMAP framework using machine learning techniques to adapt 
to the local prevalence of weather effects. Another recent study 
[18] explored the weather impact on arrival flight efficiency in 
the terminal area, using an Aggregated Impact Factor, 
combining ATMAP categories and traffic density, and applied 
it to Stockholm Arlanda. 

E. Approach taken 

Determining first the arrival capacity / rates may appear as a 
logical way to predict the arrival delay with an appropriate 
granularity (hourly or below). This approach however raises 
several issues / has several limitations. In Europe, the variations 
in actual arrival capacity are not systematically or easily 
available. The models developed to estimate dynamically the 
arrival capacity may tend to overestimate for low rates and 
underestimate for high rates as highlighted in [16]. Further to 
this, determining the arrival delay from the arrival capacity 
would require a queuing model to reflect the cumulative effect 



of the build-up of the arrival traffic, probably down to the level 
of the sequencing strategies (sequence order, …). This may not 
result in accurate and stable enough figures. This was at least the 
outcomes of our preliminary attempts. 

We have thus decided to predict the arrival delay directly, 
without explicitly integrating or modelling the arrival capacity. 
To capture the cumulative effect, we will consider the traffic 
volume and weather situation not only at the target prediction 
time (up to 5 hours in the future), but also at the preceding 
periods starting from the current time (present). This approach 
(as opposed to considering arrival capacity) will however 
increase the number of input features to the model and may 
require a larger dataset. Regarding weather, we will rely on the 
ATMAP framework (categorization and scoring) to reduce the 
number of input features, although it may also limit the causal 
traceability. To account for local specificities (capacity, traffic, 
weather...), a model will be calibrated for each airport.  

III. DATA DESCRIPTION AND EXPLORATION 

A. Geographical and temporal scope 

We choose four congested European airports among the top 
30: London Heathrow (EGLL), Dublin (EIDW), Lisbon (LPPT) 
and Zurich (LSZH).  

We are interested in the period from 2013 to 2019, during 
daytime operations. We did not consider 2020 due to COVID 
too different traffic patterns compared to previous years. The 
data period amplitude choice was driven by the need to get 
enough data for the machine learning model to learn infrequent 
patterns (e.g. large arrival delay, bad weather). It should be 
noticed however that a span of 7 years may include at some 
airports a change (temporary or permanent) in the arrival 
capacity. 

B. Overview of input and output features 

We choose model input features that might explain the 
arrival delay at destination with a 5-hours look-ahead time.  

The following input features relate to the airport and are 
reported per 30min time periods (11 time steps), from T0 to 
T0+5h (i.e. last time period is T0+5h to T0+5h30) with T0 a 
discrete fixed time (10:00, 10:30, 11:00, …): 

 number of planned arrivals (11 features), 

 number of planned departures, may impact non-

segregated runways (11 features), 

 weather (ATMAP score, 11 features), 

 wind direction: affect runway configuration and 

associated capacity (7 main directions + variable 

direction for each time step, 88 features), 

 airport events affecting capacity (8 features). 

 
We consider temporal information to capture usual/seasonal 

arrival delay patterns: 

 hour of the day (local time, categorical feature, 10 

values for day-time operations), 

 day of the week (categorical feature, 7 values), 

 quarter (categorical feature, 4 values). 

We complement the previous input features with the current 
arrival delay at destination (T0-30min to T0, 1 feature): it may 
help capturing waiting-time knock-on effects. 

All this makes 151 input features. A rule of thumb [24] states 
that you need at least 10 times the number of features per class: 
here, 1510 per arrival delay class. Given the data has temporal 
correlations (samples from a given day at 10:00 in the morning 
are likely to be similarly to samples from the same day at 10:30), 
the amount of data required is likely higher than this. 

We detail hereafter each of these input features in their 
dedicated subsection. 

Note: we could consider some other additional input 
features. In particular, we looked for reliable sources of 
airport/terminal area capacity, but this was not available for this 
study. 

The model output is a arrival delay class (a categorical 
feature): small (<5min), moderate (<10min) or large (>10min). 
The choice of these buckets is in relation with airlines operations 
considerations: less than 5 minutes can be accounted for 
short/medium haul flights with standard contingency fuel, 10 
minutes may require extra fuel for medium haul, 20+ minutes 
may require extra fuel for long haul flights. We removed the 20 
minutes threshold since the focus in on intra-European flights 
and also due to the absence of sufficient data. 

C. Planned traffic 

At model prediction time T0 (current time), we collect the 
current number of planned arrivals and departures per 30min 
periods, from T0 to T0+5h (Figure 1). The number of planned 
arrivals for each period is updated (every 30min) depending on 
the flight status: some flights are not yet departed, some will be 
regulated (e.g. delay at departure), some are airborne (e.g. short 
time horizon or long haul flight).The number of departures for 
each time period is updated similarly as the arrivals. 

 

Figure 1: Example of planned departures and arrivals 

We transformed both planned arrivals and departures counts 
using a robust scaling method (subtracts median and scale by the 
interquartile range). 

We choose not to use more fine-grained information (e.g. 
number of planned regulated flights) to respect input dataset size 
requirements (cf. III.B).  



D. Meteorological data 

We rely on the ATMAP framework [22] [23] which sums 
the effects on capacity of ceiling and visibility, wind, 
precipitation, freezing conditions and dangerous phenomena. 
The obtained ATMAP score ranges from 0 (no weather impact 
on capacity) to maximum values around 30 (e.g. combination of 
dangerous phenomena, poor visibility with a high impact on 
capacity). 

We collected weather data and used them to compute the 
ATMAP score per 30min periods. The ATMAP score is zero for 
78% of the sample (from 68% for Dublin up to 85% for Lisbon): 
the bad weather cases represent a limited dataset for the model 
to learn from. Due to this imbalance, to follow common 
practices, we transformed the ATMAP score to make it closer to 
a Gaussian distribution. 

We added the wind direction (not considered by ATMAP) 
and clustered it using the k-means algorithm in 7 angular bins, 
specific to each airport. We used a specific bin for variable wind 
direction. These wind direction bins are one-hot encoded. 

At this stage, to de-correlate model performance from 
weather forecast performance, we considered METAR data 
(instead of TAF) and used them as if they were weather forecast. 
It is acknowledged that ultimately, TAFs will need to be 
considered. 

E. Airport events 

As a way to capture the effect of airport events having 
potentially an effect on capacity, we collected 137 events from 
the EUROCONTROL Demand Data Repository for the four 
airports. It is acknowledged that this information may not be 
complete and should be enriched to improve the model 
performance (e.g. using NOTAMs).  

These events are of variable durations: few hours up to 
months. We scored these events (expert judgement) with integer 
values up to two, depending on the likely impact on arrival 
delay. About 75% of cases had a score of zero (no impact) and 
around 24% of cases had a score of two (significant impact).  

For a given airport and period of 30min, we gathered all the 
relevant events. When we retrieved multiple events, we kept the 
maximum event score as the period score (most likely negative 
effect on arrival delay). We one-hot encoded these selected 
scores (categorical feature).  

F. Current arrival delay 

We have raw data with arrival delay in the terminal area 
available per flight, during daytime operations (we exclude 
night-time operations as procedures might differ from daytime). 

We compute arrival delay using the method designed by the 
PRU [25]. They represent the extra flying time, within a 50NM 
radius area around the airport compared to a reference minimal 
flying time recorded. We replaced negative flight arrival delays 
with zeroes (this occurs when a flight takes a “shortcut” vs. the 
minimum reference path). 

The current arrival delay is the median arrival delay of all the 
flights landing at the airport between T0-30min and T0. 

If no value was available, we setup the current arrival delay 
to zero. We transformed the current arrival delay value by 
applying a robust scaling method. 

G. Target arrival delay  

The target arrival delay is the median flights arrival delay 
during 30min periods. Note: in the remaining of the paper, 
“arrival delay” means "median arrival delay for a 30min period". 
As indicated previously, we choose to look at a median arrival 
delay per 30min rather than individual flight arrival delay: 5 
hours before the planned landing time, take-off time uncertainty 
is still too high to provide a reliable arrival delay estimate for 
that specific flight. 

Figure 2 shows that for all airports but EGLL, the arrival 
delay distribution is imbalanced: it is skewed toward smaller 
arrival delay values. 

 
Figure 2: Arrival delay (median over 30min) distribution 

Figure 3 shows a marked class imbalance for all airports but 
EGLL. We present mitigation against imbalance ill effects on 
model performance in IV.F. 

 
Figure 3: Arrival delay classes distribution 



H. Link input/output data 

The model looks for patterns linking its input and output 
data. Figure 4 shows the two first axes of a principal component 
analysis (PCA) to show the link between the input features 
(projected on x-y axis) and the arrival delay classes associated 
(dots colors). The sum of the first two components covers 
around 50% of the data variance per airport. In that projected 
airspace, the sample points do not set into different 
distinguishable clusters linked to their input features (colors 
blend): there is likely significant class overlaps. 

 
Figure 4: Arrival delay classes vs. input data projection 

This would make the input/output link fuzzy to learn for the 
model. A more detailed analysis using nearest neighbours 
(traffic count and ATMAP score ±1) and confirmed this: for 
Dublin, when a sample is associated to a large arrival delay class, 
70% of its neighbours (i.e. similar inputs) are linked to a small 
arrival delay class. We observed similar overlaps for the three 
other airports.  

IV. MODEL 

A. Defining the problem. 

We frame the problem as a multiclass classification problem: 
to predict the arrival delay class probability (small, moderate or 
large) given a planned future traffic, weather and airport 
situation over the next 5 hours (cf. III). We preferred to frame 
the problem as a classification to provide a confidence level, 
rather than a regression with a real value answer without 
information about its reliability. 

Figure 5 illustrates the model output for a given input (small 
arrival delay class has the highest likelihood, above a probability 
of 0.5). Note that the sum of the probabilities over three classes 
is one. We can interpret the model output probability as its 
prediction confidence. 

The predicted class of the model will be the one with the 
highest probability (e.g. on Figure 5, small arrival delay class). 
Its associated probability value could be used operationally to 
decide whether the information is reliable enough to be used. 

We calibrate one model per airport. 

 
Figure 5: Model output example: 3 arrival delay class probabilities 

B. Choosing a measure of success 

For classification problems with imbalanced classes, we 
shall not use accuracy as a model performance metric: a model 
predicting only the majority class will get a good accuracy score, 
providing a misleading information, since the model will 
perform poorly on the minority classes.  

Instead, we rely on the standard metrics precision, recall and 
F1-score. Precision is the ratio of correctly predicted class vs. all 
the cases of that class being predicted by the model. Recall is the 
ratio of correctly predicted class vs. all the actual cases of that 
class in the dataset. We will report precision and recall per class 
(and per airport). A perfect model will have both precision and 
recall perfect, i.e. with values of one, however, often these two 
metrics go in opposite directions. The F1 score combines them 
together to identify models that keep both precision and recall 
high enough. It is defined as:  

F1 = 2 × (precision × recall) / (precision + recall) 

 
A perfect F1 score will have a value of one and a worst case 

value of zero. Since precision and recall are defined per class, 
F1 score is also defined per class. Note that F1-score puts the 
same weight on precision and recall. This could be adjusted 
depending on the importance of the different types of errors (e.g. 
false negative or false positive). To make our models selection 
easier, we will rely on a single metric: the macro F1-score, 
defined as the average of the F1-score of each class. This means 
that the macro F1-score treats all classes equally, even if they are 
not of the same size. 

These metrics will be complemented by confusion matrices 
showing true vs. predicted classes for each class.  



C. User oriented metrics  

We complement the previous metrics with arrival delay 
error, defined as: 

 zero error if the actual arrival delay falls within the 

model's predicted class (i.e. the one with highest 

probability); 

 smallest difference between the actual arrival delay 

and the model's predicted class boundary otherwise. 

 
For example, if model predicts the class moderate arrival 

delay, from 5 to 10 minutes, and the actual arrival delay is 12, 
the arrival delay error will be 2 minutes.  

D. Evaluation protocol  

We chose to use a training dataset going back to 2013 until 
2018 to cover enough cases of bad weather. We acknowledge 
that traffic increased and operational changes may have occurred 
during that period. Ideally, the model shall be recalibrated 
regularly (data collection and retraining, no model change) 
discarding oldest time periods in favour of more recent ones. 
Note that this machine learning model assumes that the future 
will behave like the observed past since the model can only learn 
what it will have been exposed to. 

2019 data forms the test set. We perform model evaluation 
using stratified k-fold cross-validation (stratified means than in 
each fold, there is a similar distribution of small/moderate and 
large arrival delay classes), with k=6 and without applying data 
shuffling: each fold represents about one year, an easy way to 
avoid data leaking between validation and training folds. The 
evaluation produces macro-F1 score metrics. 

E. Defining a baseline 

We define a baseline (statistical reference) based on the 
average arrival delay for a given time of the day (30min time 
period, like 8h-8h30, local time), day of the week and quarter of 
the year. Then, we transform this average value into its 
corresponding arrival delay class. We will compare its 
performance (precision, recall, F1-score, confusion matrices) to 
the machine learning models. 

F. Rebalancing  

As stated in III.G, the arrival delay classes are imbalanced. 
To ensure proper learning of the minority classes, we weight the 
classes in inverse proportion to their presence in the dataset. This 
increases the cost of bad predictions for the minority classes, 
forcing the model to give them more importance. 

We tested other techniques to deal with imbalance, like 
downsampling the majority class. This had a similar effect as the 
weighting approach while being more time-consuming. 
Upsampling the minority classes (e.g. SMOTE algorithm) was 
not straightforward due to the presence of categorical features. 

                                                           
2 Logistic regression (with one-vs-all classification scheme), 

AdaBoost, Recurrent Neural Network (Long-Short Term 

Memory) and random forest. 

We could not apply the usual solutions to the overlap classes 
challenge (e.g. discarding, merging [26]) since the overlapping 
areas are too wide. More work is required to identify the 
reason(s) for these overlaps, such as missing discriminant 
feature(s) to consider, tactical intrinsic uncertainty (e.g. traffic 
bunching at destination) not available. 

G. Developing a model that beats the baseline 

We found that a Recurrent Neural Network (Long-Short 
Term Memory) and random forest had the best macro-F1 scores 
on the test set (similar values) among benchmarked classifiers2. 
We choose the random forest since it had a faster training time 
and provides the relative features importance as shown in the 
next section. 

The model quickly overfits if we keep a high depth of the 
trees. We regularise the model so that it generalises properly by 
doing a grid-search over the minimum number of samples 
required to split an internal node. 

H. Software/hardware 

We computed arrival delay figures using R and MongoDB, 
relying on a cluster of 100 computers to extract the relevant data 
in parallel. We built the statistical baseline using R and Tableau. 
We performed the machine learning using Python, 
Keras/Tensorflow for the neural network models, scikit-learn for 
the other models. 

V.  RESULTS 

The next sections present baseline and random forest results, 
applied to the full year 2019 data. We present these results per 
airport. We do not weight the output classes for the test set 
contrary to the training: the dataset matches the original data 
distribution. 

A. Confusion matrices 

We show baseline confusion matrices for each airport, for 
the baseline on Figure 6, for the model on Figure 7. They show, 
for a given true arrival delay class, the ratio of corresponding 
predicted classes. A perfect result will have ones down the 
diagonal and zeroes everywhere else. The sum along the class 
lines is one. 

For the baseline, we see it predicts very frequently the same 
class (high ratio, color toward yellow), even when it does not 
correspond to its true arrival delay class. This is particularly 
visible for LPPT, where nearly all baseline predictions are 
arrival delays lower than 5 minutes. 



 
Figure 6: Baseline confusion matrices 

For the model, we see it makes predictions in all arrival delay 
classes.  

For EGLL, the small and large arrival delay predicted classes 
have the highest ratio in their corresponding true class (53% and 
69% respectively). The moderate arrival delays (37%) are often 
predicted as large arrival delays too (40%). 

For EIDW, small and moderate arrival delays predicted class 
have the highest ratio in their corresponding true class (67% and 
61% respectively). Large arrival delays are often predicted as 
moderate ones (56% vs. 21%). 

For LPPT, the pattern is similar to EIDW. 

For LSZH, the model still predicts small arrival delay most 
of the time and does not discriminate very well the other arrival 
delay classes. 

 
Figure 7: Model confusion matrices 

B. Precision, recall and F1-scores  

Figure 8 presents precision (x-axis) vs. recall (y-axis) both 
for the baseline (void circles) and the machine learning model 
(filled triangles) for each arrival delay class (identified with 
different colors). We represent the F1-score by the circle/triangle 
size.  

 
Figure 8: Precision, recall and F1-score per arrival delay class 

We observe that for EIDW, LPPT and LSZH the precision, 
recall and F1-scores are best for the small arrival delays. These 
metrics degrade with the arrival delay increase class.  

For the baseline, for small arrival delays, the recall is nearly 
perfect (close to 1): this is due to the fact that baseline predicts 
small arrival delay most of the time. However, the precision is 
not perfect: some cases of moderate/large arrival delays are 
predicted as small. 

For the model, for small arrival delays, the recall is lower 
than the baseline, but this is compensated by a higher precision, 
leading to a higher F1-score (trade-off). 

For moderate and large arrival delays, both baseline 
precision and recall are close to zero: the baseline predicts small 
arrival delays in most cases.  

In contrast, the model has a recall greater than 0.5 for EIDW 
and LSZH, and a lower precision around 0.25: the model 
captures larger arrival delay cases that the baseline does not 
capture, however, with a limited precision.  

For LPPT, the model is still better than the baseline for 
moderate and large arrival delays (greater F1-score), but with 
low precision and recall. 

For EGLL, the model improves over the baseline both on 
precision and recall (and then on F1-score), more visibly for 
small and large arrival delays.  



The following table shows the macro F1-scores (average 
over the different F1-scores classes per airport). The average 
macro F1-score increase (model vs. baseline) over the four 
airports is about +42% (0.33 to 0.47). 

Table 1: Macro F1-scores baseline vs model. 

 
Airport Baseline Model Increase 

EGLL 0.41 0.51 +24% 

EIDW 0.27 0.48 +81% 

LPPT 0.29 0.43 +45% 

LSZH 0.38 0.48 +29% 

 

C. Prediction confidence and accuracy 

The previous error metrics looked at the predicted class 
small, moderate or large, without considering their associated 
prediction probability. 

Figure 9 shows the confidence level (low < 50%, 50% ≤ 
moderate < 80% and large > 80%) vs. accuracy (ratio of good 
predictions over all cases) per airport. For all airports, we see 
that, as expected, accuracy is increasing with the confidence 
level: if the model provides a class prediction with a higher 
probability, it is more likely to be accurate. These accuracy 
figures are very similar for EIDW, LPPT and LSZH. Accuracy 
vs. confidence level is lower in comparison for EGLL. 

 
Figure 9: Confidence level vs. accuracy 

Figure 10 details this link confidence/accuracy per class. For 
small arrival delays, the expected confidence and accuracy 
increase is confirmed. Actually, since arrival delays represent 
the majority of cases (for all airports but EGLL), they have the 
greatest influence on the previous figure results. For large arrival 
delays at EGLL, it is also confirmed. However, for the other 
cases, the link does not hold: a higher confidence is not linked 
with a greater accuracy: this might be linked with the rarity of 
high confidence cases, as shown on Figure 11. 

 
Figure 10: Confidence level vs. accuracy, per arrival delay class 

Figure 11 shows how often (ratio) the model predictions are 
of low, moderate of high confidence per airport. For EGLL, 
EIDW and LPPT, low confidence predictions (i.e. <50% 
probability) are frequent (>50%), moderate confidence (from 
50% to 80%) represent around 20 to 30% of the cases. High 
confidence cases are rare. This means that arrival delay class 
predictions are rarely crisp. A likely reason for this is the data 
classes overlap. 

For LSZH, the most frequent case is moderate confidence 
(around 50% of the cases), followed by low confidence (around 
30%) and about 20% of high confidence cases. This seems to be 
a better situation than for the other three airports. 

 
Figure 11: Confidence level distribution 

D. Arrival delay error  

We defined arrival delay error in IV.C. Figure 12 shows its 
distribution both for the baseline (purple) and the model (green) 
for each airport (outliers not shown for clarity).  



For EIDW, LPPT and LSZH, the baseline has a nearly 
perfect arrival delay error (close to 0): the baseline predicts small 
arrival delay most of the time, hence, when the actual arrival 
delay is small which is the main prevalent situation, the baseline 
is right. However, as the true arrival delays get moderate or 
large, the model has a lower arrival delay error (1st quartile, 
median and 3rd quartiles are lower). It has also the advantage to 
provide a confidence level. 

For EGLL, the model does better than the baseline excepted 
for the moderate arrival delay class: this is the one most 
frequently predicted by the baseline, with the same effect as the 
small arrival delays for the other airports. 

On average over all airports, compared to the baseline, the 
model has slightly lower performance for the low delays (same 
median of 0, 3rd quartile 1.5 vs 0), similar for the moderate 
delays and better for high ones (median 0 vs 4, 3rd quartile 5 vs 
7.4). 

 
Figure 12: Arrival delay error vs. true arrival delay class 

E. Relative features importance  

To get some insight on the model, we report the relative 
importance of the 9 features types described in III.B like the 
number of arrivals, departures, wind directions etc. The feature 
type importance is the sum of its lower level features values. 
Note that the sum of features importance is one for each airport. 
Figure 13 shows the model feature importance values (x-axis) 
per feature type (y-axis, ordered by decreasing mean 
importance) per airport (filled color). We see that the number of 
arrivals is the most important factor for all destinations, with a 
score around one third of the total. This is followed by the 
number of departures, with scores around 0.2: overall traffic 
demand accounts for 50% of the model features importance. The 
next two most important factors are related to wind direction 
(configuration effect on capacity) and weather (capacity effect). 
Combining these factors with traffic demand covers about 80% 
of the importance. We may note that the hour of the day feature 
seems to be more important (close to 0.1) for EGLL and LSZH 
(might highlight regular delay pattern during the day) than for 
EIDW and LPPT. The importance of the current delay was lower 
than anticipated. Airport events, while they can have highly 

disruptive effect have the lowest importance, which might be 
due to their rarity. 

 
Figure 13: Grouped feature importance per airport 

F. Test case 

In order to illustrate the potential benefit, we conducted a test 
case using archived fuel planning data from participating airlines 
on a limited sample (22 flights). We compared, as shown in 
Figure 14: 

 the model’s prediction for the flight’s arrival delay 
(green histogram, probability for each class); 

 the actual arrival delay for the flight (blue vertical line) 
calculated from historical data; and 

 an estimate of the predicted arrival delay, back-
calculated from the planned contingency fuel (dashed 
black vertical line). 

 

Figure 14: Sample cases 

In a majority of cases, as the two ones on the left, the model 
was correct, with a high confidence index, and predicted a lower 
arrival delay than the value calculated from fuel planning data. 
In such cases, the model may show a benefit in helping avoiding 
a too conservative fuel planning. On the other hand, in a few 
other cases, like the one on the right, the model prediction was 
incorrect, still with a high confidence index – the reasons for 
which need to be analyzed in detail. 



This is of course not statistically significant, but illustrates 
the potential benefits and cases of particular attention. In order 
to go further, both an analysis of incorrect predictions, and a 
comprehensive validation with airlines would be needed. 

VI.  CONCLUSION 

This paper presented a study aiming at predicting the arrival 
delays occurring in the terminal area up to five hours in advance. 
The motivation was to better take into account the impact of 
weather at destination on fuel planning. Due to the uncertainty 
at these time horizons, we decided to consider delay intervals 
(low <5 minutes, moderate 5-10 minutes, high >10 minutes) 
over 30 minutes periods. We selected four European airports 
occasionally or frequently subject to high arrival delays. 

The problem was framed as a classification problem and the 
machine learning model was developed using arrival delay, 
traffic demand and weather historical data from 2013 to 2019. A 
random forest model was found to beat the baseline (average 
delay values based on time of the day, day of the week and 
quarter) although still below a perfect prediction. The 
performance indicator (macro F1 score) increases from 0.3 
(baseline) to around 0.5. In terms of prediction error, compared 
to the baseline, the model has slightly lower performance for the 
low delays (same median of 0min, third quartile 1.5min vs 
0min), similar for the moderate delays and better for high ones 
(median 0min vs 4min, third quartile 5min vs 7.4min). Despite 
a specific tuning for each airport, varied performance levels 
were observed among the airports and should be further 
investigated. Finally, a test case based on airlines data illustrated 
the potential benefits.  

The future work should first aim at determining whether the 
performance may be increased, by analyzing the prediction 
errors and the delay class overlaps. It is indeed possible that, in 
particular the integration of airport events as an additional input 
would contribute to a better prediction. Still, there should be a 
“performance barrier” due to the intrinsic uncertainty, 
essentially in terms of take-off times. From that perspective, in 
addition to looking for a global performance improvement, there 
may be a value to target specific cases where improvements 
would bring maximum benefits, compared to the current airline 
practices. This would involve a comprehensive validation with 
airlines data. The future work should also cover the applicability 
to moderately congested airports, and the extension of the 
prediction horizon to integrate long haul flights and link with in-
flight operations. 
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