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Abstract—Aircraft landing safety is among the important con-
cerns in the aviation industry due to accidents related to
runway/taxiway excursions. The literature has explored the
relationship between adverse weather conditions and braking
performance from a qualitative perspective. Factors such as the
weather conditions, pavement texture characteristics, and slope
can all play critical roles in determining braking performance.
While literature has explored how these factors individually may
impact braking, no studies have explored the multivariate rela-
tionship between such factors and reported braking action by
pilots over a wide range of operational landings and considering
a variety of data sources.

In this paper, the quantitative relationship between different
factors that may work to cause or prevent poor braking
performance is explored. In order to conduct this analysis, a data
fusion framework is developed that is able to collect and fuse
sources of data such as runway conditions, runway and airport
characteristics, prevailing weather conditions, runway condition
codes, and pilot reported braking action. The framework is
demonstrated on data collected between the years 2016–2020
at various U.S. airports where field condition reports were
available. The analysis indicates that this initial statistical
distribution and binning of the data substantiates the value of
the Runway Condition Code (RwyCC) modeling in predicting
actual braking action. Further investigation and development of
more refined models is identified for future work.

Keywords—runway safety; degraded braking; contaminants;
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I. INTRODUCTION AND MOTIVATION

Aircraft landing safety is a major focus in the aviation
industry. According to safety statistics compiled by the Inter-
national Air Transport Association (IATA) there was a global
annual average of 18 transport category aircraft accidents
related to runway/taxiway excursions between 2010-2014 re-
sulting in aircraft damage with varying degrees of severity [1].
Some of the conditions identified as contributors to runway
excursions (aka overruns) are the dynamics of a tailwind
approach and landing, failure to deploy Ground Spoilers
or Thrust Reversers, and wet or contaminated runways that
contribute to degraded braking effectiveness [2]. Of these
items, runway surface conditions is the most variable and
difficult to quantify. It is therefore important to study the
effectiveness of aircraft braking on contaminated runways to
better understand this degraded performance condition and
prevent accidents in the future.

On December 8, 2005 Southwest Airlines Flight 1248
overran runway 13C at Chicago’s Midway Airport (MDW)
after landing on a runway contaminated with snow and slush.
The Boeing 737-700 aircraft exited the end of the runway
and went through a airport perimeter fence; striking an
automobile and resulting in a fatality. This accident brought
into focus the disparities in operational procedures and the
need for improvements to the existing practices. The FAA
launched a review of existing procedures with the collab-
oration of Airports, Operators, and Aircraft Manufacturers.
The resulting Takeoff and Landing Performance Assessment
(TALPA) Aviation Rulemaking Committee (ARC) produced
significant changes to the way aircraft braking is evaluated
and operationally addressed [3], [4].

The FAA adopted the position that to enhance safety, new
procedures were required for airplane operators to assess
landing performance at the time of arrival and would include
defined field length performance margins. Time of arrival
landing field length planning would now consider runway
surface conditions/braking action, winds, temperatures, slope,
pressure altitude, icing condition, final approach speed, air-
plane weight and configuration, and deceleration devices used
in a more prescriptive manner than previously required. [3],
[4].

The FAA process to develop these new procedures has been
primarily based on two pillars: 1) An engineering analysis of
the Newtonian mechanics for a variety of Transport Category
Aircraft (TCA) and their respective sensitivity to configu-
ration, atmospheric, and runway condition changes and 2)
Anecdotal input from operators, airports, and manufacturers
derived from decades of operational experience and an under-
standing of current operational practices. While this approach
has produced a step function improvement to best practices
procedures, it remains a simplified empirical approach, often
using extrapolated data from decades old aircraft testing.
With the implementation of TALPA procedures, there is now
several years worth of data which makes it possible for a
more robust validation of the original TALPA assumptions.

The investigation of aircraft braking on non-dry surfaces
goes back to the early 1960’s, when actual aircraft testing
was conducted by NASA using the Convair 880 as a testbed.
The data gathered resulted in publications on the subjects of
runway friction, tire wear, wheel braking effectiveness [5],



[6]. Much of the early seminal work in addition to data
internally developed by Boeing, McDonnell Douglas, and
Airbus became the basis for the TALPA operational procedure
guidance. More recent work has also focused on physics-
based analyses for assessing braking distances [7] and braking
capabilities on flooded runways [8].

Literature has explored the relationship between adverse
weather conditions and braking performance from a qual-
itative perspective. Factors such as the weather condition,
pavement texture characteristics, and slope all play critical
roles in determining braking performance [9]. While it has
been explored how these factors individually may impact
braking, no studies have displayed the multivariate relation-
ship between such factors and reported braking action over
a wide source of operational landings with various runway
surface conditions encountered during normal operations.
Therefore, in this work, data from various sources is fused
to quantitatively assess how these factors might play a role
in influencing the braking performance, particularly on con-
taminated runways. It is anticipated that the work presented
in this paper along with prior knowledge will aid regulatory
bodies, aircraft operators, and airports in better planning for
operations on contaminated or friction-limited runways.

Research Objective

The overarching research objective of this paper is to
quantitatively explore how different factors may work to cause
or prevent poor braking performance by fusing and analyzing
multiple sources of data relating to runway conditions, char-
acteristics, and prevailing weather conditions and comparing
these with the pilot reported braking action.

The rest of the paper is organized as follows: Section II
provides the definitions of some important terms used in
the paper, Section III contains a detailed description of the
different data sources used in this work, Section IV provides
an overview of the data fusion framework developed to merge
all sources of data, Section V contains detailed analyses and
insights obtained from the fused data and discussion, and
Section VI concludes the paper and outlines avenues for
future work.

II. DEFINITIONS

Prior to diving into the details of the implementation, it
is important to define some pertinent terms that are used
frequently in the context of aircraft operations on con-
taminated runways. The following definitions from ASTM
International’s Standard Terminology for Aircraft Braking
Performance are used in this work. [10]

• Aircraft braking coefficient, the ratio of the deceler-
ation force from the braked and unbraked wheels of a
braked aircraft relative to the sum of the vertical (normal)
force acting on the aircraft. Aircraft braking coefficient
is determined by using the weight of the aircraft (W-L)
and encompasses all the braking forces of all the gear,
even those that are not braked.

• Wheel braking coefficient, the ratio of the deceleration
force from the braked wheels/tires relative to the sum of
the vertical (normal) forces acting on the braked wheels/

tires. The wheel braking coefficient is the result of the
combination of all functioning braked wheels.

• Braking action, a means of describing the maximum
capability of a vehicle’s braking system on a wet or
contaminated surface that references a standardized re-
porting scale.

• Pilot braking action report, PIREP, AIREP, n—a report
describing a level of braking action resulting from the
observations of a pilot.

• Airport friction measurements, the value obtained
through ground measurement devices approved for use
in measuring runway surface friction characteristics.

III. DESCRIPTION OF DATA SOURCES

The following sub-sections describe in detail, all the data
used in this work, as well as their source and format.

A. Automated Surface Observing System (ASOS)
Automated Surface Observing System (ASOS) units are

automated sensor suites that are designed to serve meteo-
rological and aviation observing needs. There are currently
more than 900 ASOS sites in the United States with most
of them located at airports [11]. The system’s sensor data is
publicly accessible through the official website of National
Oceanic and Atmosphere Administration (NOAA), which is
responsible for preserving, monitoring, assessing, and pro-
viding public access to the Nation’s treasure of climate and
historical weather data and information. The NOAA data
repository provides ASOS weather data with both one-minute
and five-minute intervals [11]. In this research, the one-minute
ASOS data has been chosen due to the rapid pace at which
runway conditions and aircraft operations might deteriorate
with adverse weather.

The NOAA weather data repository covers the time range
from January 2000 to the most recent month and is split
into two parts. The first part contains station ID, year,
month, day, hour, minute (both local and UTC), visibility,
extinction coefficient, speed of two-minute average wind,
direction of two-minute average wind (knots), speed of five-
second average wind (knots), direction of five-second average
wind, and runway visual range (hundreds ft.). The second
part contains station ID, year, month, day, hour, minute (both
local and UTC), precipitation amount (hundreds of inches),
precipitation type, station pressure from three sensors (inches
Hg.), average one-minute dry bulb temperature, and average
one-minute dew point temperature. Both parts of the infor-
mation are stored as data files in the .dat format in a monthly
manner, while the first part follows a name convention as
”64060XXXXYYYYZZ.dat” and the second part follows
a name convention as ”64050XXXXYYYYZZ.dat”, where
XXXX is the four-digit ICAO identifier for the ASOS station,
YYYY is the year in two-digit format, ZZ is the month in
two-digit format, and the leading four digits distinguish the
file from containing the first part of the weather information
or the second (6405 for the first and 6406 for the second).

B. Field Condition Reporting (FICON)
In late 2016, the FAA alongside the TALPA ARC produced

a new set of recommendations guiding aircraft performance



and surface condition assessment and reporting. One of the
most significant of these recommendations was the intro-
duction of consistent method for assessing runway condi-
tions, known as the Runway Condition Assessment Matrix
(RCAM). Figure 1 displays the RCAM.

Figure 1: Runway Condition Assessment Matrix [12]

This matrix is visually divided into two sections, Runway
Assessment Criteria and Downgrade Assessment Criteria. The
Runway Assessment Criteria, applicable to paved runways
(no turf, dirt, gravel, or waterways), provides airport operators
the ability to connect runway contaminant types and depths to
a Runway Condition Code (RwyCC). Airport operators may
use the Downgrade Assessment Criteria, involving friction
coefficient measurements, Pilot Reports (PIREPs), and their
best judgement and experience to downgrade RwyCCs to a
more conservative report.

The RwyCCs, along with runway specific information, is
reported and distributed in Field Condition (FICON) Notices
To Airmen (NOTAM). In the FICONs, a RwyCC value is
reported for each third of the runway. Time is reported in the
format year, month, day, hour, minute. The general format
for FICONs with italicized variables follows:

!Airport NOTAM Number Airport Location
Identifier FICON RwyCCs Contaminant Type
OBSERVED AT Observed Time. Start Time-
Expiration Time

An example FICON follows:

!ADQ 01/492 ADQ RWY 01 FICON 5/5/5
100 PRCT WET OBSERVED AT 1801312351.
1801312351-1802012351

From each NOTAM and metadata from the NOTAM Man-
ager, the following metrics are extracted: Airport, NOTAM
Number, Runway, RwyCCs, Contaminant Description, Start
Time, End Time, and Cancel Date/Time.

C. Runway and Airport Data

The FAA provides public access to a repository with airport
and runway data that can be used for this research [13].
The data repository covers all FAR 139 certified airports
in the United States. This source has been selected due to
its high reliability and expansive coverage. Additionally, the
repository is maintained by the FAA so the data is up-to-date
and includes a description of when it was last updated [13].

Five Microsoft Excel files are accessible in this database,
four of them being data files and the other a description file.
The four data files are airport facilities data, airport runways
data, airport remarks data, and airport schedules data. The
airport facilities data file contains basic information such as
location, status, repair service availability, etc. The airport
runway data file contains information such as runway ID,
surface type and condition, runway treatment, runway end
elevation, runway length and width, runway crossing height,
etc. The airport remarks data file contains text data with other
information about airports. The airport schedules data file
contains the availability information about airports. Lastly,
the description file, also known as the airport dictionary file,
contains the detailed explanation regarding the four data files.
Within the scope of this research, the airport facilities and
airport runways files are selected to be the primary data
sources.

IV. DATA FUSION FRAMEWORK

A. Data Preprocessing

Since the raw weather data are in .dat format and are conse-
quently unwieldy for data analysis purposes, data processing
has been performed to convert the data in the .dat files into
comma separated variable (csv) format. In addition, it is more
convenient if the information in the two aforementioned parts
are merged into one. To achieve these goals, Python scripts
were developed and parse the .dat files containing ASOS
weather data, consolidate the information in 6405 and 6406
files, and generate a csv file that includes all available weather
data from ASOS.

As for the airport and runway data, to make it more
convenient to be used in later analysis, the basic information
in the airport facilities file and the runway information in the
airport runways file are first merged into one csv file. In the
original FAA airport runways file, each entry has information
for the same physical runway when it is approached from
different runway ends. It was decided that the runway should
be split into two entries for these cases. For instance, ATL
08L and 26R are essentially the same physical runway and
is originally stored in one entry, but there will be two entries
for ATL 08L and ATL 26R in the csv file that is processed.
The main reason for this is that slope may change depending
on the direction and the runway condition codes are typically
reported in thirds of the runway (e.g. 5/5/3 for one direction
would be 3/5/5 for the other). Also, runway crossing threshold
heights can be different on the two sides as they are a function
of geometry and obstacles.



B. Data Fusion Process Description

In order to perform an analysis that takes into account
both runway (FICON, runway characteristics) and weather
data and study the correlations between them, the runway
and weather data needs to be fused. The sources of runway
data are the FICON records and the FAA airport and runway
database, and the source of weather data is the ASOS data
repository. An individual data fusion is done with respect to
one airport within a given time range (bounded by a starting
month and an ending month). In general, there are two steps in
the data fusion. The first step is to fuse the two runway data
sources. The FICON data and the preprocessed airport and
runway data are merged such that the FICON records contain
both field condition and other essential runway information
provided by the FAA datasets. The resulting dataset for the
purposes of this paper, is called an “enhanced FICON”. Each
entry in the enhanced FICON represents a specific period of
time with its runway information and the RwyCCs value as
reported in the FICON.

The second step is to fuse the enhanced FICON with
the ASOS weather data. First, on top of the functionality
mentioned in ASOS data preprocessing, a wrapper function
has been built to accept as inputs an airport and a time range
(starting month and ending month); and automatically down-
load all necessary raw data files from the ASOS repository
and perform the data preprocessing to generate weather data
files for each month within the time range. Subsequently,
all these files are concatenated to output a final csv file that
contains one-minute interval weather data from the first day
of the starting month to the last day of the ending month
at the given location. Next, the enhanced FICON needs to
be investigated to ensure all the runways at the given airport
within the given time range have valid runway records. Lastly,
each matching record is expanded into multiple records with
one-minute intervals (“expanded FICON”) and merged with
the weather data to give the output file that has inclusive
weather and runway data with one-minute intervals at the
given airport within the time range. Figure 2 shows the
schematic of the data fusion process.

C. Implementation and Outputs

The data fusion process described has been implemented
using Python programming language. Pandas library is heav-
ily used because it is open-source and highly flexible to work
with tabular and time series data for data manipulation and
analysis purposes1. An integrated data fusion tool has been
developed to automatically perform the fusing process, that is
to download, process, and fuse the weather and runway data.
A single execution of the program takes an airport, a starting
month, and an ending month as the inputs, and then performs
data fusion and eventually outputs a csv file containing one-
minute-interval weather and runway data for the given airport
within the given time range. Figure 3 provides the format of
the final output file, with colored blocks indicating the original
source of the respective portion.

1Pandas: Python Data Analysis Library Documentation User Guide.
https://pandas.pydata.org/about/index.html, Accessed: 29 March 2021

V. ANALYSIS

The fused datasets developed using the methods discussed
in Section IV will be the cornerstone of the analysis for this
paper. For this initial level of investigation, standard statis-
tical distribution and binning techniques will be the primary
analysis approach. The goal is to obtain insights about how
selected factors might affect braking performance at different
airports and runway conditions. They are described in the
following subsections. It should be noted that the current
FAA requirements for condition reporting are not the same
for ASOS, FICON, and PIREPs. ASOS Weather reporting
is continuous. FICON reporting is only required when run-
way conditions are other than a clean dry runway/taxiways,
and PIREPs are typically only reported during deteriorating
conditions (e.g. snow accumulation or increasing rain rates).
The data distribution discussed in the following paragraphs
are consistent with the expectation that the number of ASOS
Reports > FICON reports > PIREPs.

A. FICON Data Exploration

The data available for this study includes FICON reports
from the winter months between the years 2016-2019. The
weather conditions and airport and runway data for the
corresponding time frames are obtained and fused. It is
noted that during the time frames that the FICON reports
are collected, a small proportion of the reports also contain
the pilot reported braking action.

1) Data Distribution: In the fused data set there are
683,145 rows and 25 columns of enhanced FICON data. Of
this enhanced data, 568,791 rows (83.26%) contain RwyCCs
and only 11,899 rows (1.75%) contain pilot reported braking
actions. The intersection of these is 9,906 rows (1.45%)
with RwyCCs and pilot reported braking actions. The data
containing RwyCCs only and the intersection of RwyCC
and PIREPs are important from the perspective of this paper
and are thus analyzed separately in later sections. The data
is largely distributed across the winter months, as seen in
Figure 4. This is consistent with the expectation that the
winter months are when degraded braking operations might
be expected to occur.

2) Runway Condition Types: By default, in the dataset
available, FICONs expire 24 hours after their effective time
begins. However, designated observers have the ability to
cancel or amend a FICON prior to the default expiration
period. For the FICONs reported, 84.68% were cancelled and
15.32% expired (n = 683, 145).

Runways with a consistent distribution of contaminants
down the length of the runway being evaluated will typically
have the same RwyCC for all thirds (each RwyCC represents
the condition on each third of the runway). In this paper
these will be referred to as Uniform FICONs. In the current
dataset, as seen in Figure 5, nearly all (98.08%) FICONs
are uniform. The remaining non-uniform FICONs have a
dispersed distribution among the various non-uniform FICON
combinations possible.

As observed from the figure, among the uniform FICONs,
the majority contain the RwyCC 5/5/5 followed by 3/3/3 and

https://pandas.pydata.org/about/index.html


Figure 2: Data Fusion Schematic.

Figure 3: Output format of Data Fusion.

Figure 4: FICON Data Distribution By Month

1/1/1. 4/4/4 and 2/2/2 make up the remaining small proportion
of uniform FICONs. Any runway reported as NIL is closed
for operations until the weather improves or contaminate
removal is completed.

B. Relationship between Weather Conditions and FICON

Runway braking conditions are affected by weather; specif-
ically during rain or snow events. Quantifying the correlation
between active weather events and reported braking action is
the primary benefit of this investigation. It is acknowledged
that reduced braking action reports unrelated to active weather
are also possible. Most notably for cold climate airports where
compacted snow and/or ice may remain on a runway surface
for weeks or months during the winter season [14].

Figure 5: All and Non-Uniform FICONs

The correlation between weather and RwyCCs has been
investigated and an example is presented below to give more
details. The example covers all FICON records and weather
data for Bangor international airport at Maine (ICAO: KBGR)
during the time range from 1/1/2018 to 12/31/2019.

Although a FICON record consists of 3 RwyCCs for the
first, middle, and last thirds of the runway, most of the
FICON records have uniform codes. As a result, the RwyCC
representing the minimum of the ones having non-uniform
codes will be used as the representative for a FICON record
in our analysis. Also, while each FICON record covers a time
span, only the start timestamp will be used to represent the
time period of the record in the analysis. The correlation
analysis of weather and FICONs addresses the relationship
between temperature, precipitation type, and RwyCCs. In this
paper, all precipitation types that can lead to non-dry runway
conditions (rain, snow, sleet) or dry runway conditions (no
precipitation) are being considered.

Figure 6 displays the distribution of RwyCC with respect
to temperature (air temperature and dew point temperature).
In the ASOS system, ‘R’ stands for rain, ‘S’ stands for



Figure 6: Relational plot of weather and runway condition
codes at KBGR in 2018-2019.

snow, and ‘NP’ stands for no precipitation, whereas ‘+’ and
‘-’ stand for heavy and light precipitation intensities. Each
subplot in the relational plot shows the distribution of codes
under one specific precipitation type. Within each subplot,
the lower left part can be considered as the ‘low temperature
area’ and the top right part can be considered as the ‘high
temperature area’. Each dot in the plot stand for one FICON
record, with its lowest RwyCC indicated by a color gradient,
in greenish colors representing better runway conditions and
reddish colors representing worse conditions.

It can be observed from the relational plot that dots are
spread over the low temperature area under snow precipitation
type, over the high temperature area under rain precipitation
type, and across the entire temperature area when there is no
precipitation. This indicates that the temperature is usually
low in snowy days and relatively higher in rainy days, and
no precipitation can occur regardless of the temperature of
the day. Moreover, several red dots are seen under snow
condition, while green dots are the majority under rain
condition, which indicates that snow can be more detrimental
to runway condition compared to rain. Lastly, in the no
precipitation subplot, it can be observed that most red dots
appear in the low temperature area, which suggests that
runway condition can be poor for temperatures near or below
freezing even when there is no precipitation. Indeed, there
are many other factors (besides contaminants) that can come
into play for poor runway conditions (such as time of the day,
dew conditions, tire ‘hardness’ vs. temperature, etc.). These
observations, while straightforward, corroborate the expected
trends of correlations between adverse weather conditions and
runway condition codes at a high level.

C. Correlations and Insights from Fused Data

In the enhanced FICON dataset, there are 1,951 distinct
airports. Of these airports, 976 (50.1%) are located within

the United States. The airports located domestically account
for for 613,448 of the 682,757 FICON reports with locations
(89.85%). Figure 7 displays the distribution of airports, with
bubble size directly correlating to number of rows. This
illustrates that the density of FICON reporting is greatest
across regions where snow and convective thunderstorms are
most common. This is consistent with expectations.

Figure 7: U.S. FICON Distribution

The remainder of this subsection contains the results of the
analysis of the enhanced fused data sets and their implications
on runway safety. It is divided into two parts, one subset
which contains RwyCCs (n = 568, 791 samples) and the
other subset which contains the pilot reported braking action
(PIREP BA). (n = 9, 906 samples).

Subset with Runway Condition Codes

This subset provides a basis for making a correlation be-
tween the physical construction of a runway and its associated
surface characteristics. To describe a runway’s construction
characteristics, three descriptor categories are commonly used
in regulatory and research literature. 1) Runway Treatment:
These are modifications to the surface to reduce standing
water and hydroplaning potential [15]. Grooved (GRVD),
no treatment (NON), and porous friction course (PFC). 2)
Runway Surface Type: This describes the material used
in the runway construction. Asphalt, Asphalt/Concrete, and
Concrete. 3) Runway Condition: This is the quality of the
runway surface and is an indication of proper maintenance
by the airport operator: Excellent, Good, Fair, Poor. The
detailed impact of Runway Condition will be deferred to
future investigations. Runway Surface Type is quantified for
reference but the analysis will focus on the influence of
Runway Treatment. These two attributes are visualized in
Figure 8.

From the larger dataset in Figure 8 a further downselection
is conducted to evaluate only events that contain both a
Runway Treatment value and a reported RwyCC. The results
are shown in Figure 9. This figure illustrates that there is a
significant trend correlation between in the type of runway
treatment and history of RwyCCs reported. This shows that
the braking action reported by airports in the FICON is
consistent with the expected variance in braking action [16] of
treated (PFC and GRVD) when compared to the no treatment
runway surface. If this correlation was not indicated by the
data, then that could be interpreted as the airports grossly
overestimating the braking action for non-treated runways. A



Figure 8: Physical make-up of the runways among the avail-
able data (n = 681, 125). Applicable to U.S. airports only.

further cross check substantiation of these results is illustrated
in figure 14 later in this paper.

Figure 9: Runway Treatment Distribution and Runway Con-
dition Code (n = 556, 488)

Subset with Runway Condition Codes and Pilot Braking
Reports

Using current “time of arrival” best practices guidance, one
of the aircraft crew’s important sources of braking action
information is from the reported RwyCCs. The RwyCCs
are derived from the RCAM guidance using the runway
contaminant type and depth observed at a limited number of
sampling points on the airport property. While contaminants
descriptors may be the primary determinant in the braking
action reported, other static variables such as runway longi-
tudinal slope, polished/rutted wheel tracks, or runway lateral
slope (crown) may impact the braking action achieved. The
sum of the RwyCC braking action plus runway variances
should be reasonably reflected in the PIREP BA reports. This
section presents the comparison of the report RwyCC and the
reported PIREP BA for the purpose of validating expected
versus actual braking action.

Reported Braking Action for Contaminants and FICONs

FICONs can contain both a RwyCC and additional descrip-
tive text of a contaminate or level of coverage. To validate
the consistency of this reporting the following graphics are
presented. As seen in Figure 10, the expected trend of fewer

GOOD / GOOD-MEDIUM / MEDIUM PIREP reports for
the lower RwyCCs is confirmed. However, this does raise the
question of why there are so many reports of GOOD even
when the FICON reports 1/1/1 (POOR). It could perhaps
indicate that the RwyCCs might be overly conservative or
the PIREP are overly optimistic. The data provides no clear
basis for this apparent bias. This points towards the need for
potential additional criteria to be developed to understand
and isolate these variations. Another possibility is that of
data errors such as the case where the runway condition has
improved since the time of reported but the FICON is yet to
be updated. Such cases are beyond the scope of this work to
account for.

Figure 10: Pilot Reported Braking Action and Runway Con-
dition Codes (n = 9, 580)

The trend and variance discussed above is further illustrated
in Figure 11 and 12. Figure 11 provides the closest correlation
between contaminate descriptor and PIREP BA report, but
with approximately 15 % of landings on ICE reported as
MEDIUM or better, questions remain as to the source of the
variance.

Figure 11: Pilot Reported Braking Action and Runway Con-
taminant (n = 1, 390)

Pilot Braking Action and Non-contaminant Variables

This section analyzes the way that pilot reported braking
action interacts with different variables for different runways.



Figure 12: Pilot Reported Braking Action and Runway Con-
taminant (n = 1, 194)

In the enhanced FICONs data set, information regarding run-
way length, start elevation, and end elevation is available. This
data and the following formula to calculate the longitudinal
slope of each runway in the data-set.

slope = (elevationend − elevationstart)/length ∗ 100%

Figure 13: Pilot Reported Braking Action and Slope (n =
5, 755)

In Figure 13, runway slopes are put into bins of .1 degrees
and plotted against pilot reported braking action. Although
the domain of the chart includes [-.3, .3], the segment [-.2,
.2] is where data is most available as runway slopes tend
to follow a binomial distribution around 0. More positive
slopes (uphill) have a strong positive relationship with “good”
reported braking action. This is best explained by the fact that
positive slopes result in a force of gravity against the direction
of motion.

From Figure 13, bins -0.2, 0.0, and 0.2 have “good” braking
action reports of 49.9%, 57.1%, and 68.4% respectively. As
such, we find that there is a respective -12.6% and 19.8%
change of “good” braking action reports for slopes of -0.2
and 0.2 in comparison to level ground.

Lastly, as referenced in the discussion of Figure 9, Figure
14 also shows the correlation between Runway Treatment and
braking action and provides a validation of the RwyCCs.

Figure 14: Pilot Reported Braking Action and Runway Treat-
ment (n = 11, 799)

Multivariate Analyses of Pilot Reported Braking Action
and Other Variables

To quantitatively explore the multivariable relationship
between runway-related metrics and PIREPs, a series of
analysis of variation (ANOVA) tests have been conducted.
One-way ANOVA is typically used to investigate if variations
of a single factor have a measurable effect on a dependent
variable. N-way ANOVA, can be used to determine if there
is an interaction effect between n independent variables on a
continuous dependent variable [17], [19], [20]. The runway-
related variables are runway condition code, treatment, and
slope. A subset of the aforementioned dataset has been
selected for the analyses, which consists of 4420 samples
and contains full information about the three runway-related
variables and pilot reported braking actions.

ANOVA requires the dependent variable to be numerical,
so the the text contents of PIREP BA have been enumerated
to numbers from 0 to 5, where larger numbers correspond
to more positive reports. For instance, “NIL”, which means
no braking, is enumerated to be 0 while “GOOD”, which
means good braking performance, is enumerated as 5. On the
other hand, ANOVA requires the independent variables to be
categorical, so runway slope has been converted to such a
variable by putting the slope values into bins of 0.1 width.

Figure 15 to 17 are the heatmaps of Enumerated Pilot Re-
ported BA against different combinations of RwyCC, Slope,
and Treatment. An individual cell in a heatmap represents
the mean value of enumerated PIREP BA for a specific
combination of runway variables. High PIREP BA values
are represented by the color of green while low PIREP BA
values are represented by the color of red. The grey cells
in the heatmaps indicate there is no sample for the given
combination.

Three-way, two-way, one-way ANOVA tests have been
performed, and the results are summarized in TABLE I.
After looking at the reduced model which included all
possible 2-factor interactions, the only significant interaction
was between runway condition code and slope (p ≤ 0.01).
One-way ANOVA tests indicate that runway condition code



Figure 15: Heatmap for Enumerated PIREP BA vs.
RwyCC&Slope (n = 4, 420)

Figure 16: Heatmap for Enumerated PIREP BA vs. Treat-
ment&Slope (n = 4, 420)

Figure 17: Heatmap for Enumerated PIREP BA vs.
RwyCC&Treatment (n = 4, 420)

and slope have very significant effects on braking action
(p ≤ 0.01), while runway treatment has a significant effect
on it (p ≤ 0.05).

Post-hoc tests (Tukey HSD) have been performed to further
investigate the effects of the three runway variables and the
interaction between RwyCC and Slope on braking action. The
tests have yielded the following statistical results:

TABLE I. Results of ANOVA Tests

SUM SQ DF F P
RwyCC 632.95 4 153.45 <0.01

Treatment 10.06 2 4.88 <0.05
Slope 35.19 5 6.83 <0.01

RwyCC + Treatment 0.07 8 0.01 0.93
RwyCC + Slope 63.40 20 3.07 <0.01

Treatment + Slope 0.09 10 0.01 0.93
RwyCC + Treatment + Slope 54.27 40 1.34 0.26

• PIREP BA is significantly higher when RwyCC is
higher.

• PIREP BA is significantly higher when Treatment is PFC
or GRVD compared to NONE.

• PIREP BA is significantly higher when Slope has a larger
positive value.

The test has also revealed the statistically significant inter-
action of RwyCC and Slope on PIREP BA: When Slope is
around zero (that is, −0.1 < Slope < 0.1), RwyCC has a
significant effect on PIREP BA. However, when Slope has a
large absolute value, the correlation of RwyCC with PIREP
BA becomes less robust. This observation can be explained
by the fact that as the runway becomes steeper, the force of
gravity starts to have more effects on the braking action, and
the effect of RwyCC is diminished.

D. Discussion

The presented research provides statistical support for the
accuracy of existing best practices predictions for aircraft
“time of arrival” braking effectiveness. Overall, the paper
intends to perform the task of presenting and collating the
available data in an understandable and functional manner to
be useful for future studies.

The data also suggests that while the overall accuracy
is reasonable, precision is more problematic. In aviation,
conservative solutions are an essential part of safety. However,
the RwyCC prediction’s appear to skew significantly to a
conservative performance level when compared to PIREPs
during actual operations. Large data-set analysis such as
was begun with this paper, may provide the only method
to effectively reveal improved precision for the performance
predictions.

VI. CONCLUSION AND FUTURE WORK

In this work the relationship between runway surface con-
ditions, airport and runway characteristics, prevailing weather
conditions, and pilot reported braking action have been stud-
ied over a large period of time using collected data. A
robust and repeatable data fusion framework is developed
to integrate data from various sources for analyzing braking
performance on contaminated runways. Statistical analysis
was conducted to study the effect of prevailing weather con-
ditions, runway treatment and slope, contaminant types, and
other factors on the pilot reported braking action and runway
condition codes. Further investigation and development of
more refined models may be the subject of future work.

The developed data fusion framework and FICONs are
intended to be used in conjunction with real-world flight data.
The eventual aim of the project is to be able to understand and



infer runway conditions based on the collected and processed
data using big data/machine learning techniques [21], [22].
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