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Abstract—A mixed-mode runway operation increases the
runway capacity by allowing simultaneous arrival and depar-
ture operations on the same runway. However, this requires
careful evaluation of safe separation by experienced Air Traffic
Controllers (ATCOs). In daily operation, ATCOs need to make
real-time decisions for departure slotting. However, an increase
in runway capacity is not always guaranteed due to stochastic
nature of arrivals and departures and associated environmental
parameters. To support ATCOs in making real-time departure
slotting decision, this paper proposes a Deep Reinforcement
Learning approach to suggest departure slot within an incoming
stream of arrivals while considering operational constraints
and uncertainties. In this work, novel state representation
and reward mechanism are designed to facilitate the learning
process. Experimentation on A-SMGCS data from Zurich air-
port shows that the proposed approach achieves the efficiency
ratio more than 83.8% of the expected runway capacity while
maintaining safe separation distances in mixed-mode operations.
The results of this work has demonstrated the potentials of Deep
Reinforcement Learning in solving decision-making problems in
Air Traffic Management.

Index Terms—Airport Runway Control, Reinforcement
Learning, Air Traffic Control, departure sequencing, departure
slotting

I. INTRODUCTION

Airports, with their fixed infrastructure, have emerged as
main bottleneck in the air transportation system [1]. They
are facing the capacity challenge with prolonged congestion
and delay problems [2]. In which, runway capacity is one
major constraint that may pose a challenge to meet the future
air travel demand. Since runways extensions are costly and
often challenging, operational solutions to increase runway
capacity are gaining more and more attention. According to
ICAO’s Manual On Simultaneous Operations On Parallel Or
Near-Parallel Instrument Runways, an airport with parallel or
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near parallel runways has 2 general modes of operations: (1)
Segregated Mode (Each runway is used strictly for Departures
or Arrivals only), (2) Mixed Mode (Runways can serve both
Departures and Arrivals Simultaneously) [3]. The mixed-
mode is a promising approach to increase runway capacity.
For example, the work, done in [4], shows an increase in
runway capacity under mixed-mode operations. Mixed-mode
is more efficient since alternating take-offs and landings
on the runway can effectively reduce delays due to wake
vortex constraints [5]. Moreover, with the current impact of
COVID-19, in single runway operation is also an considerable
option to reduce operational cost for airport with less traffic
demand. From the end of last year 2020, Heathrow Airport,
UK, has consolidated their operations and returned to single
runway using mixed mode operations [6]. However, operating
in mix-mode is also challenging, any mismanagement of
would increase the probability of missed approach, which
may potentially lead to a reduction in runway capacity as
compared to operating in segregated mode [3].

Mixed-mode runway operations require the sequencing
of arrivals and departures, referred to as Aircraft Landing
Problem (ALP) or the Aircraft Take-Off Problem (ATP) in
the literature [7]. This sequencing problem in the ALP/ATP
is typically solved in the pre-tactical phase and can be shown
to be a variant of the Job-Scheduling Problem (JSP) which is
NP-Hard [8], [9]. This would mean that an optimal solution
to sequencing might be impossible to find in a reasonable
time and other heuristic/approximate methods are used in
the literature [10]–[12]. For example, [13] studied the use of
Mixed-Integer Programming to optimally schedule arrival and
departure sequence on a mixed mode runway in a practical
timing by iterating on a previously known schedule (known as
“Warmstart”) instead of iterating on a new a random schedule.
The solutions from solving ATP/ALP using approximate
methods may not be strictly followed in practice due to the
inherent stochasticity in the environment including uncer-



tainties in aircraft arrival timings. This requires an ATCO’s
manual intervention to ensure the solution’s feasibility [5],
[14] which at times is hard to achieve. In order to eliminate
uncertainties from taxi timings, [5] suggested to shift the
scheduling of aircraft at the holding area of the runway. This
method of scheduling only at the holding area would mean
that calculations would have to be started and completed
closer to the time when arrival aircraft lands. It is important
to note that these works focus on developing the optimal
sequence (arrangement) of aircraft rather than detecting and
slotting departures in a mixed mode runway. The crucial
decision here is to identify gaps in the landing stream while
considering the stochastic nature of arrival and departure
operations. Identifying arrival gaps (to schedule departures)
in a real-time environment demands high cognitivity from
air traffic controllers (ATCOs), which may be a source of
increased workload thereby affecting flight safety.

To deal with the stochasticity, Reinforcement Learning
(RL) is one promising candidate which has been explored
recently. The authors in [15] used RL to predict departure
taxi-out time. Behavioral Cloning and Inverse Reinforcement
Learning is proposed as an potential solution for predicting
ground delay program implementation decisions [16]. An-
other research focused on utilizing DRL for surface move-
ment planning is [17] in which the model plans conflict-
free paths while considering potential airside conflicts and
take-off time constraints. All of these works share similar
characteristics in balancing safety and optimal solutions.
They also utilize the use of a simulator to test the efficacy
of Reinforcement Learning models in solving Air Traffic
Management problems.

To the best of our knowledge, this is the first attempt
to develop a Reinforcement Learning Model in a Simulated
Mixed-Mode Runway environment to identify and slot de-
partures in a Mixed-Mode Runway. The contributions of this
paper are as follows:

• A framework which can solve the real-time departure
slotting problem using Deep Reinforcement Learning
model is proposed. The approach can be easily adopted
to any other airports with limited calibrations.

• A data-driven simulator that simulates runway opera-
tions for Zurich Airport Runway (Runway 28) is built.
The simulator has the ability to generate a wide range of
realistic scenarios, novel state representation and reward
structure which are designed for effectively training the
model.

• This approach can handle the challenge of balancing
multiple departure queues considering different aircraft’
wake turbulence category (WTC) and uncertainties in
runway occupancy time (ROT) and delays in decision
execution (ATC-Pilot).

II. OVERVIEW

As the target of this work focuses on supporting Tower
Controllers in real-time handling or slotting departures, the

interaction or coordination between departure and arrival con-
trollers will not be considered. As a result, arrival sequences
are used as input and kept untouched during the decision
process. The departures for multiple queues are generated
with random uniform intervals and aircraft’ categories. The
overview of the approach proposed in this paper is illustrated
by Figure 1. Even though historical data is used to estimated
several parameters of the proposed framework, one of its
main purpose is to create traffic scenarios in the learning
environment. The traffic scenarios, including the arrivals
and departures, will be standardized and presented in an
appropriated form (images) called state representation. Based
on observing current state, a Reinforcement Learning agent
will make the slotting decision considering uncertainties such
as variations of arrivals’ ROT. That decision is used to
modify the current runway status and its ”quality” is also
evaluated. Those three main components, e.g., historical data,
learning environment and Reinforcement Learning agent, will
be described in details in following sections.

Figure 1: The diagram of the proposed approach for departure
slotting problem.

The trained model can be used in either autonomous or
manual mode. In the former, the model will make decision for
a departure slot (and associated arrival sequencing / runway
utilisation). This decision will be communicated to pilot as a
take-off clearance command. In the latter, the model’s output
is considered as a suggestion for ATCOs which is the ultimate
goal of this work. Based on the suggestion, ATCOs can
make his/her own decision for departure slot sequencing.
while the model keeps monitoring the situation to update
its suggestion. However, in this work, for the purpose of
training and evaluation, the model operated in autonomous
mode in which its decision is applied to control the departure
aircraft. After the reception of the departure slot decision,
the depart aircraft will perform its take-off procedure. The
model’s performance for different metrics are recorded and
analysed to comprehend the model’s pros and cons.

III. ZURICH AIRPORT (LSZH) A-SMGCS DATA

In this study, one month (October 2019) traffic data of
Zurich Airport (Figure 2), extracted from A-SMGCS system,
is used for training and testing the proposed model. Zurich
Airport has three runways: 16/34 of 3,700 m (12,100 ft) in



length, 14/32 of 3,300 m (10,800 ft) in length, and 10/28 of
2,500 m (8,200 ft) in length. For most of the day and in most
conditions, runway 14 is used for landings and runways 16
and 28 are used for takeoffs, although different patterns are
used early morning and in the evenings. The obtained dataset
includes all trajectories (60828 trajectories) within the range
of 32 NM from the airport. Since only part of the given
dataset are flights which are take-off or landing at Zurich
Airport, some processing steps are conducted to filler out
noisy or irrelevant trajectories.

Figure 2: Zurich Airport has a complex runway system.
Runway 10/28 crosses runway 16/34. The location of runway
28, between the north and south aprons, is also critical.

Cleaning of Data: Extracting Departures and Arrivals

As mentioned, the given dataset contains some noisy or
irrelevant trajectories which need to be filtered out. Thus, the
first processing step is to extract the take-off and landing
trajectories from Zurich Airport data. However, since the
information about flight types and runway usage isn’t avail-
able in the obtained data, a simple algorithm is developed to
extract that information. Polygons that enclose each of the
three runways (Figure 3) are first used to isolate trajectories
that intersects the runways for at least 30 consecutive points.
Polygons that encloses areas at each of the runway’s ends
are then used to separate arrivals and departures by analyzing
if the trajectory intersects the runway first. Trajectories that
intersects the runway for at least 30 consecutive points and in-
tersects the runway polygon first are departures. Trajectories
that intersects the runway polygon for at least 30 consecutive

points and intersects the polygon at the edge of the runway
first are arrivals.

Figure 3: Polygons drawn in Zurich Airport Map. Each
Polygon has vertices in Longitude and Latitude.

Runway Usage and Trajectories

After the cleaning step, the new dataset (19285 trajectories)
is obtained and used for further investigation. Table I shows
the summary of the runway usages in data, in which Runway
14/32 and 10/28 are major used comparing to Runway 16/34.
Besides, Figure 4 provides a more detail information in terms
of runway usages for takeoff and landing which confirmed the
previous information about runway configuration of Zurich
Airport. Runway 14/32 has more movements (≈ 20%) than
Runway 10/28 with significantly high number of arrivals.

TABLE I: Data Details

Description Values
Date Range 02/10/19 to 30/10/19
Total Trajectories 60828
RWY 14/32 Trajectories 9282
RWY 16/34 Trajectories 2234
RWY 10/28 Trajectories 7769
Total Clean Trajectories 19285
Noisy Trajectories 41543

Mode of Operation at LSZH

The first timing at which an aircraft intersects the runway
polygons can be considered to investigate the mode of runway
operation at LSZH. Table II shows the percentage of flights



Figure 4: Number of Flights in each runway which Runway
14 has the maximum number of arrival.

in each runway where arrivals and departures are observed to
be active within a 10 minutes interval.

TABLE II: Mixed Mode Operation Statistics

Total Flights Flights in Mixed Mode Operation
RWY 14/32 9282 1.35%
RWY 16/34 2234 4.476%
RWY 10/28 7769 0.811%

The low percentage of mixed mode operations suggests
that Zurich Airport operates mainly in the segregated mode
configuration. Moreover, this study require to select a runway
which has sufficient gaps between arrivals and been able to
operate takeoff and landing in same direction. Therefore,
Runway 28 is selected in this study as the case study
and only its corresponding data (e.g., 1203 landing trajec-
tories and 6556 takeoff trajectories) is used in following
steps. Noting that, the Runway 28’s runway occupancy
time (ROT) in selected data has the arrivals’ ROT approx-
imated by N (56.8, 10), and departures’ ROT approximated
by N (110, 53).

IV. DATA-DRIVEN SIMULATOR

A. Data Preprocessing

Figure 5 illustrates the arrival trajectories and the two
focused views. In this work, as the input for the model, only
part of trajectories, from the D10.3 point to the runway exit,
are extracted and utilized. Even though, the considered dis-
tance of arrivals can be extended much longer, via conducted
experiments, the selected range is appropriate for the scope of
this work (e.g., real-time slotting decision at runway holding
point) and sufficient for the model to converge. This distance
may be extend in the authors’ future work which considers the
coordination between departures and arrivals. The extracted
data is stored in a new dataset which is used for generating
arrivals sequences in the simulator (describe in IV-B).

B. Traffic Scenarios

The simulator is constructed such that it can stream real
arrival trajectories and represent them in a graphical format.
During training, real trajectories are used and the frequency

Figure 5: The visualizations arrival flights on LSZH runway
28. The considered range for arrivals is up to the merging
point D10.3 (10.3NM from the Runway 28’s threshold). (1)
shows the closer view at the fixed point D10.3 where all the
trajectories are merging, (2) shows the view at runway which
illustrates the variations on selected runway exits.

of generating arrival aircraft is randomised (130s to 400s)
to simulate various traffic density scenarios. This technique
will improve the robustness of the agent by exposing it with
several traffic conditions. The trained model is expected to
behave similarly in real operations as the simulator is merely
replaying real trajectories (with new visualization) during
training and testing. In fact, real arrival sequences from data
are also parts of testing scenarios.

The other element of the traffic scenario is departures.
During the episode, departures are generated randomly with
one out of three WTC (Heavy, Medium and Light) with
similar probability. The generated departure will be also
randomly assigned to a runway queue. If the length of the
queue is larger than the pre-defined maximum queue length,
that departure will be neglected (i.e not added to the queue).
If it is added, it will join the queue with a given maximum
waiting time Tw. This quantity, as part of the reward, will
guide the model to balance between the waiting time of
departures in queues. This departure generation process is
designed to expose the model with different departure patterns
during training. For evaluation, a real departure queues can
be easily loaded into the simulator as the input scenario. Only
two departure queues, located at the runway entry point of
Runway 28, are considered in this study. The visualization of
the scenario will be described in Section IV-E.

C. Slotting Decision

At each time step, the model will select one out of
three decisions: Release aircraft from Queue 1 (R1), Release
aircraft from Queue 2 (R2) or Hold both aircraft at the holding
points (H).

When the decision is selected/recommended, if the confi-
dence level of the algorithm is higher than the defined thresh-
old (≥ 50%), which is a tunable parameter, that decision will
be executed. In case of releasing (R1 and R2), the selected



aircraft will start to move to the runway and then take-off. At
the same time, aircraft in the selected queue will move to the
next waiting position. In case of holding (H), all departures
will standby and wait for the next time step.

To support the learning and avoid unnecessary risks, the
releasing (R1 and R2) decision are only valid when the
runway is clear from the previous departure.

D. Environment Uncertainties

There are two kinds of uncertainties in the simulation:
• Uncertainty of arrival sequences: because the real ap-

proach and landing profiles are used, their uncertainties
such as landing speed, touch down time, runway exit and
runway occupancy time are all preserved in A-SMGCS
data. Besides, to simulate different traffic scenarios,
the arrival gaps are randomly generated using uniform
distribution. The parameters of the uniform distribution
can be adjusted to control the traffic density level.

• Uncertainty of departures: (1) a random delays in the
execution of the take-off decision is added to improve
the realisticity of the simulation; (2) random departure
ROT with distribution extracted from data; (3) during
the running time, the departure for each queue is also
generated randomly.

E. State Representation

Representing the spatial temporal data directly from sensor
data is challenging as it requires a complex hand-crafted
feature set to model the spatio-temporal information of the
varying number of aircraft involved in the scenario (different
number of aircraft can appear on the screen at different
timings) while maintaining a fixed size vector as an input
to the RL model. An image is an easy way to concisely and
fully represent spatial temporal data. Figure 6 presents how
the image of the scenario is constructed. As shown in the
figure, the extremely long trajectories is divided into eight
segments with similar distance. Then they are combined with
bigger scale for segment 7 and 8 (the view of runway). This
approach can concisely represent the final approach path and
the runway scenario.

Figure 6: Constructing the image representation for both the
final approach path and the runway scenario.

Moreover, to support for the deep learning framework, all
necessary operational conditions and information must be
visualized. Figure 7 shows the image with enhanced visual-
ization. At each departure queue, departures are presented as
circles with WTC letters and transition color to encode their
waiting time in the queue. The Wake Vortex is presented as a
blue region which decays over time. Before each arrival, the
separation distance (λ = 3NM ) is also presented as a red
bar. Finally, a slotting signal is visualized as an indicator of
model’s decision in previous step.

In this work, the state representation is formed by stacking
images with the size (64 X 200) across 4 timesteps. This
approach can concisely represent the final approach path and
the runway scenario.

F. Reward Mechanism

As mentioned in ICAO’s Manual on Parallel Runway
Operations [3], a gap that is sufficient to account for safety
distances must exist between the incoming stream of arrivals
such that a departure can utilise the runway for takeoff.
When a departure clearance is given, the departure should
ideally wait for the leading arrival to exit the runway, be at
least more than the minimum arrival-departure distance away
from the trailing arrival and not depart too closely with any
leading departure. The list of major variables for slotting a
departure in a mixed-mode runway is mentioned in Table III.
An example of time-space diagram is presented in Figure 8 to
demonstrate the relationship of mentioned variables with the
movements. Red and Green lines represent successful arrivals
and departures respectively. Arrivalk (Orange) represents
an arrival which violates the Departure-Arrival Separation δ.
Departurek (Blue) represents a departure which violates the
Departure-Departure separation εij . Trajectories in this figure
is shown with a clean solid line but however in reality the
exact position in space and time is subjected to noise from
sensors.

TABLE III: Stochastic Variables that affects mixed-mode
runway operations [18]

Variable Description

Tij

Arrival-Arrival Separation Timing: Time between
Leading Arrival of type i and Trailing Arrival of type
j

δ

Vj

Departure-Arrival Separation Timing: Separation Time
between Leading Departure and Trailing Arrival of
type j with velocity of Vj .δ represents the minimum
arrival-departure separation

ROTi Runway Occupancy Time of Leading Arrival

εij
Departure-Departure Separation Timing: Separation
time between Leading departure of type i and Trailing
departure of type j to account for Wake Vortexes.

n Number of Departures that can fit into gap

Since safety is the most important aspect in ATM, the
variables mentioned in TABLE III are considered in the



Figure 7: Encoding operational conditions into state representation by enhancing the image with various visualizations.

Figure 8: An illustration of a Time-Space Diagram for mix-
mode runway operations.

design of the reward mechanism. The reward mechanism
is designed as such to guide the model to achieve utilize
the slots intelligently and optimally while eliminating any
potential risks in violating the safety separation. Table IV
provides detail information of the reward mechanism. The
reward mechanism includes four components which are (1)
the default each step small penalty, (2) separation-violation
penalty, (3) slot assignment reward and (4) GCOL penalty.
In which, the components (1) and (3) encourage the releas-
ing decision. The second component, i.e.,violation penalty,
shows the trade-off between quickly releasing a departure
and violating safety separation minima. For instant, if the
departure violates any separation constraints for more than
27 seconds ( 2+2

0.15 ≈ 27 time steps), the gain from successful
slotting decision will be neglected. Finally, Ground Collision

(GCOL) event is considered when two aircraft go too close
to each other on the runway. It means the GCOL event only
happens when the departure already violates the separation
constraints for a certain amount of time. Therefore, that
decision is considered as ”not good” even without a GCOL
event. Moreover, to support the training process at the early
stage, namely ”warm up”, the GCOL penalty should not
be too high. Since any extremely high penalty values will
discourage the model to perform the exploration and exploita-
tion, especially at its early stage when the naive model has a
tendency to make several mistakes. In this work, the values
in the final reward mechanism are adjusted experimentally
while considering the mentioned relationships. As a result,
during the training process, the model has learnt to optimize
its reward by avoiding any separation violations and GCOL
events.

TABLE IV: Reward Mechanism for Optimizing Departure
Slotting

Reward (rt)

Ground Collision (GCOL) −100
Arr-Dep Violation (per step) −0.15
Dep-Arr Violation (per step) −0.15
Dep-Dep Violation (per step) −0.15
Step Penalty (per step) −(0.001 + 0.01 ∗NLated Dep)
Releasing Reward 2
Successful Departure 2
Timely Reward [−0.5, 0.5]

V. DEEP REINFORCEMENT LEARNING APPROACH

The main goal of reinforcement learning is maximise
the sum of future rewards (Equation 1) . The first step is
to formulate the problem into a Markov Decision Process
(MDP) and the main variables (State,Action,Reward,Next
State) are returned at every timestep: (s, a, r, s′) .

Gt =

∞∑
k=0

γkrt+k+1 (1)



Gt = Discounted Sum of Future Rewards
γ = Discount Factor
rt = Reward at timestep t

One popular family of reinforcement learning algorithms
named Actor-Critic Methods uses the Value or Action-
Value Function (Q(s, a) or V (s)) as a critic for a policy
(π(a|s)) update. A group of OpenAI researchers proposed
the Proximal Policy Optimization (PPO) algorithm as an
improvement to the Trust Region Policy Optimization [19]
algorithm by introducing a new loss function named the
”Clipped Surrogate Objective” that limits the policy update to
prevent large unstable updates to the policy (π(a|s)) [20].The
PPO paper used a Generalised Advantage Estimate [21] in
place of Equation 4 which stabilize the Advantage Estimate
(A) during training .

LCLIP (θ) = Et[min(RθA, clip(Rθ, 1− ε, 1 + ε)A)] (2)

where:
Rθ =

πθ(a|s)
πθold(a|s)

(3)

A = r + γVθ(s
′)− Vθ(s) (4)

If both the Policy πθ(a|s) and Value Function Vθ(s) is
parameterized by the same neural network with the weights
θ, then the following combined loss function would be
minimised during training:

LTotal(θ) = −LCLIP (θ) + c1L
V F (θ)− c2(H(πθ)) (5)

where c1 and c2 are parametric constants and H(πθ) rep-
resents the entropy bonus to encourage exploration. LV F

represents the loss function of the Value function Vθ(s) and
will be trained using a Squared Error Loss :

LV F (θ) = (r + γVθ(s
′)− Vθ(s))2 (6)

The Proximal Policy Optimization (PPO) deep reinforce-
ment learning algorithm is used to train a model in the simu-
lator environment described in Section IV. The convolutional
neural network structure described in the Nature Deep-Q
Learning paper [22] will be used as the initial layers of the
Policy Network πθ(a|s) and the Value Network Vθ(s). The
various hyper-parameters will be listed in Section VI.

VI. EXPERIMENTAL SETTING

The learning model is adopted from the stable-baselines
reinforcement learning library [23] with the Tensorflow back-
end. The default PPO2 parameters in stable-baselines is used
(Table V) and the neural network structure is illustrated in
Figure 9.

Table VI shows the set of parameters which are used in
the experiment. The Arrival Interval T is the time difference
between generating two arrivals in the simulator and is chosen
randomly from the range listed in this table. δ and ε are
set with references from [18]. The required separation after

TABLE V: PPO2 Reinforcement Learning Parameters

PPO Parameters Values

Training Iterations 1e+07
Number of Parallel Environments 20
γ 0.99
c1 0.5
c2 0.01
Learning Rate 0.00025
λ 0.95
ε 0.2
Optimizer Adam

Figure 9: The illustration of applied network architecture for
the learning model. The network includes seven layers with
two output (action probabilities πθ(a|s) and critic Vθ(s))

the heavy leading aircraft is 3 minutes while it is 2 minutes
for medium and light aircraft. The mean ROTdeparture from
A-SMGCS data is observed to be 110s and the departure
trajectory is constant.

After the episode is started, at each time step, the model
needs to identify the potential slot from the incoming stream
of arrival. Based on the given state, the model can make
slotting decision to release a waiting departure. Due to the
random delay, that departure may wait up to 20 minutes
before it starts to line-up. It will take 32 seconds for the
aircraft to reach the runway before speed-up and take-off.
The process will continue until the end of the episode. During
evaluation, all important timestamps will be recorded for
further analysis.

To access the efficiency of the trained model, the runway



TABLE VI: Values of Simulation Parameters.

Simulator Parameters Values

δ 3NM
εij 120s (i = H) and 60s (otherwises)
Arrival Interval T T ∈ {130s, 131s, ..., 400s}
ROTdeparture N (110, 53)
Narrivals (Per Episode Training) 20
Narrivals (Per Episode Testing) 500
Maximum Waiting Time Tw = 20 minutes
Delays in Execution TDE ∈ {0s, 1s, ..., 20s}
Maximum Queue Length NMaxQueue ∈ {3, 4, 5, 6}
WTC Distribution { H: 0.33, M = 0.33, L = 0.33}
Queue Density (Departures/Hour) U(18, 36)

capacity using the trained model is computed and compared
to the estimated one from recorded episodes. Based on the
probabilities of each WTC and the required separation εij , the
expected value of departure occupancy time E(TD) is 180s.
Let nke is the number of expected departure slots of after an
arrival (indexed kth aircraft in the runway sequence, the total
number of expected departure slots from the recorded data
can be estimated as:

ne =

N∑
k=1

nke =

N∑
k=1

T kij −
δ

V kj
−ROT (k)

i

E(TD)
(7)

In which T kij ,
δ

V kj
and ROT ki are derived from recorded data

for kth arrival of the variables Tij ,
δ

Vj
and ROTi (defined

in TABLE III).
Let na denote the total arrivals and np denote the total

predicted departure slots. Then the performance of the trained
model is accessed based on the ratio R of predicted and
expected runway capacities:

R =
na + np
na + ne

(8)

In addition, violations, in term of time separations when
slotting departure flights of the trained model, could be ob-
served by analysing the distribution of separations during the
episode. This analysis will evaluate how the policy πθ(a|s)
balances between maximising safety and the runway usage.
Let tkXi be a random variable for the recorded timestamp
of the kth aircraft in the runway sequence when it reach
the runway. In which X ∈ {D,A} is the flight type and
i ∈ {L,M,H} is the WTC of that aircraft. The viola-
tions for Departure-Departure, Departure-Arrival and Arrival-
Departure pairs are calculated as follows:

∆DD = tk+1
Dj − (tkDi + εkij +ROT kDeparture) (9)

∆DA = (tk+1
Aj +

δ

V kj
)− tkDi (10)

∆AD = tk+1
Dj − (tkAi +ROT ki ) (11)

In which εkij , δ
V k
j

and ROT ki are estimated values for

corresponding arrival of εij ,
δ

Vj
and ROTi (defined in

TABLE III). Besides tkXi,
δ
V k
j

and ROT ki can be extracted
directly from recorded data.

These Equations 9,10, 11 are defined such that any vio-
lation will lead to negative values. All non-negative values
are corresponding to good decisions which satisfy the safety
separation.

VII. RESULTS AND DISCUSSIONS

The computational speed is more than 100 frames per
second (Each frame in the simulator simulates one second of
runway operation) on a standard Window laptop running on
a Core i7 5500u during training and testing. It indicated that
the trained model is not computationally heavy and would be
suitable for real-time operations.

Figure 10 shows the convergence of the training process.
After three millions iterations, the model has shown a stable
performance in terms of episode reward, GCOL events and
late departures. The model achieve zero GCOL events with
high average episode score (≈ 100) and the total extra
waiting time (after reaching the maximum waiting time) for
the episode is ≈ 150s on average. The model achieves Zero
GCOL event for making more than 5000 departures. In which,
the efficiency ratio R is greater than 83.8% ± 3.8. This
means that the trained model can achieve up to 83.8% of
the expected (or theoretical) runway capacity given arrival
sequences.

Table VII presents the basis statistics of the safety sep-
aration status from recorded data. There are three different
cases are investigated: leading Departure - trailing Arrival,
leading Arrival - trailing Departure and leading Departure -
trailing Departure. The negative values (in seconds) mean
the violations in term of safety separation standard. The
distributions of those safety separation status are visualized
in Figure 11.

Departure-Arrival Separation: There is no violation of
the safety separation for Departure-Arrival Separation. It
means the separation between two aircraft is always greater
than σ = 3NM . Since the mean ROT of departures is 110s,
the mean separation value (109s) implies that the arrival
passes the runway threshold just at the time when the leading
departure successfully takeoffs.

Arrival-Departure Separation: 0.18% of the trailing de-
partures violates the safety separation with the maximum
magnitude is 24 seconds. It means that the departure reaches
the runway 24 seconds before the leading arrival exits the
runway. Since the mean ROT of arrivals is 57s, the mean
separation value (63s) implies that, on average, the trailing
departure has waited until the arrival leaves the runway before
speeding up.

Departure-Departure Separation: 0.11% of the trailing
departures violates the safety separation with the maximum
magnitude is only 5 seconds. It can be observed from the



(a) Convergence of Episode Reward (b) Convergence of GCOL event. (c) Convergence of late departures.

Figure 10: Illustrations for the convergence of the training process, including (a) Achieved Episode Reward, (b) Remaining
GCOL Event, (c) Late Departures in Queues.

results that a buffer is usually added, automatically by the
model, between two departures to account for departure ROT
uncertainty. However, in case of too many late departures,
slotting decisions can be made without considering the men-
tioned buffer.

TABLE VII: The summary of the learned model’s separation
performance

Dep-Arr (s) Arr-Dep (s) Dep-Dep (s)

mean 109.39 62.62 40.97
std 58.28 60.39 6.17
min 2.00 -24.00 -5.00
25% 62.00 27.00 40.00
50% 104.00 41.00 41.00
75% 136.00 73.00 43.00
max 290.00 377.00 90.00

VIII. CONCLUSION

This research propose a Reinforcement Learning approach
for real-time departure slotting in Mixed-Mode Runway Op-
eration. A data-driven simulator , which is used for training
and testing the model, showcases a novel state representa-
tion that graphically illustrates surveillance data (from A-
SMGCS) and live operational conditions. The mode can make
the slotting decision in multiple departure queues situations
while also considering uncertainties from arrivals, departures
and departure waiting time. A case study for Zurich Airport
Runway 28 is developed and investigated. The results show
that the trained model is able to achieve the efficiency ratio
over 83.8% of the expected departure slots while maintaining
a conservative policy that prefers safety over performance.
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