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Abstract—Aircraft departures often follow standardized and
restrictive routes intended to guarantee a safe transition to
the en-route network. These procedures are designed usually
for various aircraft types, but often without considering the
individually optimized flight intents. This paper presents an
approach where flights can fly their optimal profile within a
procedural space based on actual flight performance to replace
standard routes. For this, an algorithm based on DBSCAN
identifies typical traffic flow funnels for both a set of radar tracks
and individually optimized flight trajectories. For the latter, a
3D pathfinding grid is developed, which expands dynamically
using the specific flight performance of the aircraft type. A set
of funnels is created along a mean trajectory, which begins at the
runway and provides a restricted space for individual trajectory
optimization. The procedure is applied exemplary for Munich
Airport, where the size of the funnels and the associated fuel-
saving potential are determined. The results indicate an average
fuel-saving potential of 0.4% with regard to the trip fuel.

Keywords—Trajectory Optimization; Traffic Flow Funnels;
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I. INTRODUCTION

With typically high traffic density and constrained de-
parture and arrival procedures traffic following noise and
environmental mitigation, the Terminal Manoeuvring Area
(TMA) is an airspace volume in which trajectory optimiza-
tion is a tedious task and, thus, often omitted. Yet, the
procedures force flights often far off their optimal path and
profile and into adverse wind conditions. Accordingly, the
potential for optimization in the TMA is vast, despite the
contrary interests of aviation stakeholders and residents. We
propose a method to create departure funnels for aircraft that
permit optimization in contained volumes while prohibiting
completely arbitrary flight paths to maintain predictability for
Air Traffic Control (ATC). Unlike the conventional Standard
Instrument Departure (SID), a funnel additionally defines
aspect ratios in all dimensions to allow for optimized climb
profiles considering individual flight performance, e.g., for
following the Continuous Climb Operation (CCO) concept of
International Civil Aviation Organization (ICAO) [1]. Since
the climb profile is impacted by the aircraft-specific flight
performance, including varying gross masses and weather
forecasts, the design of funnels requires a smart design
methodology to incorporate these uncertainty sources. The

traffic flow funnels are built from clustered trajectories, either
using radar tracks or individually optimized flights.

The funnel algorithm is based on an iterative clustering
consisting of a combined Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [2] and Nearest
Neighbor assignment and a secondary DBSCAN within the
first iterated cluster. Then, the convex hull of the funnel is
computed at equally spaced intervals in the cross-sections of
the clustered trajectories and represented by a grid of potential
waypoints. Finally, the funnel design algorithm is applied to
two data sets to compare funnels based on radar tracks with
funnels created from optimized trajectories.

The trajectory optimization, both used for funnel design
and finding optimum paths within the funnels, builds upon
our established simulation environment TOolchain for Multi-
criteria Aircraft Trajectory Optimization (TOMATO) [3],
which can consider multiple criteria for optimization includ-
ing fuel burn, wind, contrails, or airspace restrictions.

For the reference scenario, recorded Automatic Dependent
Surveillance – Broadcast (ADS-B) track data from Munich
Airport (MUC) is used to build funnels that inherit the
current procedures and the resulting flight profiles, as shown
in Fig. 1. Using the destinations taken from the recorded
ADS-B data, these flights are optimized towards minimum
fuel burn without route restrictions with TOMATO consid-

Figure 1: Clustered ADS-B radar tracks of departing flights
using runway 26R at Munich Airport. Colors represent clus-
ters where grey flights are outliers.



ering the typical uncertainty sources, such as gross mass
and wind, during the climb. Then, the funnel algorithm is
applied to these optimized trajectories to form traffic flow
funnels enabling optimal flight profiles. Finally, the fuel-
saving potential of these performance-optimized funnels is
compared to the reference scenario.

II. STATE OF THE ART

A. Towards 3D Trajectory Optimization

Trajectory optimization for the entire flight is a vivid
research area, where several approaches have been developed
to balance multiple optimization objectives such as minimum
fuel flow, minimum time, or minimum climate impact by
reducing contrail formation [4, 5]. For the operational cost
assessment, specific flight performance modeling is crucial
for each aircraft-engine combination, including aerodynamics
and combustion models. A widely used database for this task
is the EUROCONTROL Base of Aircraft Data (BADA) [6].
Due to the mathematical complexity of a flight performance
model, the typical approach in trajectory optimization is to
split lateral pathfinding from vertical profile calculation [3, 7,
8]. Thus, the cost-optimal path is searched only at cruising
altitudes, where the aircraft remains the majority of the flight
time. In a consecutive step, the flight profile is optimized
on the given flight path. This process is often performed
iteratively to find the optimal combination of flight path
and profile successively. However, certain approaches for
3D pathfinding have been explored, although being limited
mostly to the cruise phase. Hartjes et al. [5] used optimal
control with the Radau pseudospectral method to perform a
3D optimization to avoid contrail-inducing regions vertically.
Murrieta-Mendoza et al. [9] used a modified Floyd-Warshall
algorithm for 3D path optimization in a grid with a 7.5° lateral
and a 1000 ft vertical resolution to find optimal cruising
conditions, considering the costs required to change altitudes
with BADA. Focusing on departing flights, the optimization
is either done in regard to an optimal flight profile, which is
the CCO [10], or concerning optimizing the procedures and
the related ATC interaction in the TMA [11]. Another factor
in the ground proximity of the TMA is noise, which Tian
et al. [12] consider in an arrival fix allocation problem for
Continuous Descent Approach (CDO) arrivals.

B. Sources of Trajectory Uncertainty During Climb

A central challenge during the climb is the individual
nature of the vertical profile, which does not only differ
among aircraft types but is also affected by various uncer-
tainty sources [13]. Additionally, the characteristics of these
uncertainty sources cannot be extracted directly from ADS-B
data and, therefore, require additional estimation or analysis.
Zeh et al. [14] analyzed the impact of the take off mass
with an altitude-dependent optimal True Air Speed (TAS) to
find that the resulting vertical trajectory uncertainty is mainly
attributed to the mass uncertainty, while an interdependent
combination of the mass and the speed intent influences the
along-track uncertainty. Alligier [15] used a neural network
trained on ADS-B data to estimate mass and speed intents
for climbing aircraft as Gaussian distributions, identifying

the transitions between speed intents among the uncertainty
sources besides mass and the speed intents itself. These speed
intent transitions, originating in the cross-over from constant
Calibrated Air Speed (CAS) at lower altitudes to constant
Mach number at higher altitudes, induce additional trajectory
uncertainty [16]. Another relevant uncertainty factor is the
thrust, since aircraft operators may reduce the thrust from the
typically assumed maximum climb thrust rating of BADA [6].
Sun et al. [17] applied a particle filter to ADS-B data to
estimate mass and thrust, which showed that the derated
thrust’s impact is smaller than the mass.

Besides the aircraft-specific uncertainty sources, the local
and temporal variations of the atmospheric parameters, like
wind, temperature, and pressure, are the central source of
trajectory uncertainty. Zheng and Zhao [18] developed a
stochastic model to derive wind, temperature, and pressure
uncertainties from the rapid update circle forecasting model.
Cheung et al. [19] compared various numerical weather
forecasting models to form a large ensemble of forecasts
to quantify the weather-related uncertainty sources. Franco
et al. [8] also used ensemble weather forecasts to quantify
weather uncertainty, which is then used in a Mixed-Integer
Linear Programming algorithm to calculate an optimal path
with minimized flight time and dispersion. Wan et al. [20]
show an optimization for environmentally and fuel-efficient
vertical procedure with a multiobjective genetic algorithm,
where aircraft mass, time restrictions, and wind affect the
optimal trajectory the most.

C. Trajectory Clustering and Traffic Flow Funnels

Trajectory clustering is a field of research that has grown
rapidly in recent years with the large-scale storage of ADS-
B data. Two unsupervised clustering methods have become
commonly accepted for clustering historical flight data, k-
means [21] and DBSCAN [2]. Both clustering methods can
assign a set of data points into clusters based on similar
information. For this particular use case, data points belonging
to a single trajectory must be kept together in one cluster. For
this, typical applications cluster only parts of the trajectory
but assign the entire trajectory to the same cluster. K-means
requires the number of clusters as a parameter. This allows
using prior knowledge from the airspace under investigation
as an input parameter, e.g., number of SID. However, k-means
is very susceptible to noise and outliers. The large scatter of
waypoints in space often results in erroneous allocations and
shifted cluster centroids. Therefore, using either DBSCAN or
a combination of DBSCAN and k-means are the predominant
ways to cluster flight data points. DBSCAN requires two
input parameters; the search radius and the minimum number
of points to build a cluster. It handles outliers and noise
effectively while assigning outliers to an independent cluster.

With the clustered trajectories, information regarding the
system behavior is inferred consecutively. For example, Wang
et al. [22] used Principle Component Analysis (PCA) and
DBSCAN to cluster trajectories and train a neural network for
trajectory prediction. Olive and Morio [23] applied DBSCAN
with kernel density estimation using the Epanechnikov kernel
to cluster trajectories to identify approach procedures at



Toulouse Airport. There, they formed a transition into the
aggregated use of single trajectories to describe procedures
at the airport TMA. Similar approaches were used before,
eg., Gariel et al. [24] applied k-means and DBSCAN to
monitor the airspace and assess its complexity. Basora et
al. [25] used Hierachical DBSCAN (HDBSCAN) to find
that a symmetrized segment-path distance performs better
for precise clustering in confined areas (e.g., TMA) than
the commonly used Euclidean distance. Corrado et al. [26]
developed a weighted distance function for clustering to
account for converging and diverging traffic in the TMA.
Olive et al. [27] applied various deep learning techniques with
autoencoding neural networks to replace standard distance-
or similarity-based clustering like DBSCAN, which showed
satisfactory results and required additional parameters fitting.
These forms of clustering led to one branch where traffic
flows are calculated from trajectory data. In this field, Salaün
et al. [28] used PCA and DBSCAN to create maps of the
local traffic density, potential for conflicts among aircraft, and
outlier aircraft not belonging to dominant traffic flows, using
an average trajectory called centroid to represent flow funnels.
More recently, Eerland et al. [29] applied Gaussian processes
to trajectory data to calculate funnels based on the probability
of deviation from the mean trajectory, where the parameters
were learned with maximum likelihood estimation. Murça et
al. [30] developed a DBSCAN framework to learn traffic
patterns in the TMA for daily operations assessment. This
proved that the patterns of the traffic flows can be determined
reliably from radar data.

D. Optimization Inside Traffic Flow Funnels

Organizing traffic inside flow corridors is an operational
concept to enable individual profile optimization potential in
future air transportation [31]. Studies for this concept are
found in particular for the en-route phase, where large corri-
dors are provided for one traffic direction for aircraft to follow
their individual optimal trajectory. Lindner et al. [32, 33]
showed that corridors derived from weather forecasts uncer-
tainties, as a sub-form of a flow corridor, offer fuel-saving
potential with additional optimization during flight. A further
design philosophy exists as a concept for CDO, embodied by
the ICAO CDO corridor [34], which relies on simulation data
for approach trajectories of several aircraft types and a given
arrival route. If the traffic situation permits it, different aircraft
types with different operating masses are cleared to fly their
optimum descent profile. For ensuring minimum separation
between aircraft, for example, during CDO, a concept of self-
separation is proposed frequently [35–37].

The SIDs for departures, however, are typically standard-
ized routes valid for all aircraft types, which do not offer
any flexibility in lateral optimization, although some stud-
ies already identified a corresponding fuel-saving and noise
abatement potential. Zhou et al. [38] constructed individual
arrival and departure routes within the TMA considering
different weather scenarios. Ho-Huu et al. [39] showed a
multilevel optimization model which combines the design of
routes for terminal operations with the route allocation of
flights to minimize noise and fuel consumption. Although

they show significant fuel (7%) and noise reduction poten-
tial (31%) compared to their reference case in Amsterdam
Schiphol, their lateral trajectory optimization is still limited
to the stringent SID. Chevalier et al. [40] optimized departures
using a search graph with integrated altitude restrictions
and maximum turn angles. They construct the graph from
several rings around the airport, on which nodes are placed
at an angular difference of 5° each. This approach shows
satisfactory results in avoiding obstacles but includes only a
limited vertical profile optimization.

III. METHODOLOGY

A. Concept of Performance-optimized Departure Funnels

This paper evaluates the potential benefit of traffic flow
funnels regarding the flight efficiency of departing flights.
Thus, it emphasizes the generation of such funnels from
either historical flight tracks or optimized departure profiles
and their comparison regarding an optimization potential.
Although the handling and safe control of the traffic flow
is vital for operational implementation, the collision risk
and safety study will be conducted in one of the upcoming
steps, after this fundamental study demonstrated sufficient
optimization potential.

Compared to a conventional SID, the funnel defines a
spatial corridor that permits lateral and vertical optimization.
To achieve the full optimization potential, the funnel must be
designed to permit most aircraft types to reach their optimal
profile in the presence of typical uncertainty sources, like
the variability in the local weather and the actual take off
mass. Furthermore, the funnel must also consider obstacle
clearance, which is achieved with additional lower bounds
where required. The calculation and evaluation of the traffic
flow funnels take place in the following four stages:

1) Historical departure flights from ADS-B data are clus-
tered to various funnels incorporating the actual proce-
dures as a reference scenario to identify benefits of the
funnel concept;

2) These flights are optimized without any route restric-
tion considering a variety of aircraft types, masses,
and weather forecasts using TOMATO with a newly
developed search graph. Then, these trajectories are
clustered to optimized funnels with the same clustering
algorithm;

3) Next, both sets of funnels are simulated with the
same historical flight schedule, where the flights are
optimized according to the weather data valid for this
period but are restricted to fly inside the given funnels
only;

4) The flight efficiency of the two funnel sets is compared
to quantify the efficiency gain of the optimized funnels.

The optimization is applied in the Extended Terminal
Maneuvering Area (E-TMA), which we define as a radius of
100 NM from the aerodrome reference point. Exit points are
given either by the end of the funnels when optimizing inside
the funnels or by the point where the orthodrome between
departure and destination airport intersects with the E-TMA
radius for the unrestricted optimization. The aircraft types are



limited to a set of commonly used commercial jet aircraft.
Therefore, turboprop aircraft, as well as general or military
aviation, are excluded, since their traffic share is neglectable
at major European airports.

B. Trajectory Optimization

A two-stage approach is used to find a feasible optimum
aircraft trajectory within the E-TMA. In the first stage, an
optimum 3D path is calculated in a graph-based on tabulated
aircraft performance values of BADA [6]. The vertices of
this path are then used for the second stage, where the COm-
promized Aircraft performance model with Limited Accuracy
(COALA) [41] calculates the aircraft-specific high-resolution
climb profile to quantify the flight efficiency.

1) Reduced Aircraft Performance Complexity During Path
Finding: The path is calculated in a search graph through
virtual nodes in a 3D space connected by edges. The move-
ment of the aircraft along the graph depends on the flight
performance, which constantly changes due to acceleration,
flight altitude, and over time. However, commonly used
shortest path algorithms rely on independent costs for each
edge; thus, they cannot maintain the information about the
current state of aircraft when moving from one to the next
edge. Nevertheless, the edge costs must consider the flight
performance required to move the aircraft from node to node.
Therefore, the rate of climb ROC, the true airspeed TAS,
and the fuel flow FF are assumed to describe the flight
performance as best as possible given the limited availability
of aircraft state information in the graph search.

For applications where the full Aircraft Performance Model
(APM) cannot be used, BADA 4 [6] provides the Performance
Table Data (PTD) that contains tabulated flight performance
values for most aircraft types. These files are an output of
the BADA APM and are calculated in International Standard
Atmosphere (ISA) conditions without wind for the standard
speed profile of the aircraft type and three classes of typical
aircraft masses segregated into the flight phases climb, cruise,
and descent. Furthermore, the reduction of aircraft mass due
to fuel burn is omitted. With these simplifications, however,

Figure 2: Comparison of the vertical profile from the ADS-B
track data (green) with the BADA PTD files (red) and the
optimization of COALA (blue) of the same aircraft type.

the PTD is suitable for the cost calculation in the path search.
The parameters, including ROC, TAS, and FF , are provided
for a set of 25− 30 flight levels and corresponding pressure
altitudes ranging from the ground to the service ceiling. For
coverage of all altitudes required in the path search, we
interpolate linearly between the values if the required pressure
altitude is not available in the file. While the usage of the PTD
reduces the path optimization to three masses per aircraft type,
the profile calculation is performed individually afterward
based on this 3D path with COALA, which is built upon the
APM and, thus, provides a high-resolution profile without the
limitations from the tabulated values.

The fuel burn during climb FBcl is part of the edge costs
and is calculated as the integral of altitude-dependent FF
over time t, see (1). The altitude h of the aircraft depends on
climb time and the ROC, which only depends on the current
altitude in the PTD, cf. (2) and (3).

FBcl =

∫
t

FF (h(t)) dt (1)

h(t) =

∫
t

ROC(h) dt (2)

dt =
dh

ROC(h)
(3)

By rearranging (1) to (3), an altitude-dependent FBcl can
be calculated (4), which yields the fuel burn required to climb
from the current altitude h1 to the next altitude h2.

FBcl =

∫ h2

h1

FF (h)

ROC(h)
dh (4)

The climb distance is determined as the integral of TAS
over time, see (5). Since the PTD uses ISA conditions, the
resulting distance is the still air distance SAD, i.e., without
wind effect. The effect of the head and tailwind components
is determined utilizing the weather forecast and added to the
edge costs with a dedicated wind cost layer [3].

SAD =

∫
t

TAS(h(t)) dt (5)

2) 3D Pathfinding: Using the flight performance calcula-
tion described before, an individual search graph is generated
to match the performance of the departing aircraft, as shown
in Fig. 3. Each node in the graph is described with a unique
coordinate c(φ, λ, h) with the latitude φ, longitude λ and the
altitude h in [°] and [Pa], respectively. The actual position of
each node depends on the individual flight performance of the
selected aircraft type and mass class from the PTD to ensure
that the aircraft can reach each node accordingly.

As parameters for the grid creation, a set of pressure
altitudes A = {h1, h2, ..., hn}, and an interval angle θ are
defined. θ represents the interval of permitted change in flight
direction from the previous direction. Therewith, it is ensured
that the climb duration between two altitudes from A is
sufficient to turn at least θ with a standard Rate Of Turn (ROT)
ψ̇s = 3°s−1. As A and θ both lead to an exponential growth



of the search path complexity, they must be selected balancing
calculation time and accuracy. Any grid generation starts at
the selected runway threshold (point I in Fig. 3) and follows
the take-off direction until the end of the Take-Off Run
Available (TORA) at runway elevation (point II) because the
actual take-off distance is unknown in the path search. From
point II , a short climb segment continues straight along the
extended runway centerline until reaching 100 m above the
runway elevation (point III). From there, the search graph is
expanded gradually in a conic shape, considering the pressure
altitude steps in A and θ.

Graph expansion in the performance-dependent grid:
The expansion of a graph identifies the neighboring nodes
from a current node, which uses a grid build from the
flight performance of the aircraft PTD. Neighbor nodes are
generated dynamically based on the aircraft state at the current
node and the available climb performance, see Fig. 3.

Let the current node be located at the coordinate c(φ, λ, h)
with the previous flight direction ∇ from where the node
was originally created. The grid is expanded from c with the
following steps:

1) The first node is placed in the direction of ∇ at the next
altitude hi+1 to account for a straight climb without
direction change. For this, (2) is used to determine the
climb duration tcl from h to hi+1 to then calculate the
SADcl with (5).

2) Further nodes are added at hi+1 using SADcl, but
permitting left and right turns in n ∈ N angular steps of
θ up to the maximum angular difference ψmax = ψ̇s ·tcl
to avoid a ROT that exceeds ψ̇s = 3°s−1.

3) For permitting level segments, additional nodes are
inserted at h with turns permitted at n steps of θ
up to ±ψmax. Furthermore, SADcl is used to ensure
that these nodes are located perpendicular below the
previously inserted nodes.

I

II

III h1                        h2                             h3 

θ

c(φ,λ,h0)

cp(φp,λp,h1)

Figure 3: Simplified top view of the 3D path search grid for
the climb with θ = 45°, three different optimization altitudes
A = {h1, h2, h3}. The grid expands at the extended runway
centerline of node III , which is also the current node c,
resulting in a projected neighbor node cp.

If the flight direction has been changed, a new flight
direction ∇p for the projected next node must be calculated:

∇p = ∇± n · θ with |∇ −∇p| ≤ ψmax (6)

With SADcl and ∇p, a coordinate cp described by φp and
λp for the new node p is calculated using the Vincenty’s Direct
Problem [42]. This procedure ensures that the aircraft can
reach all nodes with the given flight performance without
exceeding ψ̇s. Descent segments are not intended for the
optimized climb and are, therefore, omitted.

Shortest path algorithm: For pathfinding in the graph, the
A* search algorithm is used due to its proven completeness,
optimality, and efficiency [43]. The A* uses a heuristic that
estimates costs from the current node to the destination
node to guide the search towards the destination without
unnecessary graph expansions. As a heuristic, we use 90%
of the FB required to reach the destination directly from
the current node, thus avoiding over-estimation for the A* to
work properly.

The actual costs are calculated when visiting the node.
The edge cost C is calculated with the FB of the PTD,
considering either climb or cruise FB based on the node
altitudes. The effect of wind is added to the costs with the
headwind component HW at the given location and altitude.
A default fuel price FP is assumed for all flights. Eq. (7)
describes the calculation of C for a single edge:

C =

(
FB +

HW · FB
TAS

)
· FP (7)

The total actual cost of a node is the sum of the edge cost
along the shortest path from the source. The A* minimizes
the sum of the actual and estimated costs to find the shortest
path to the destination. Fig. 4 shows the obtained costs as an
example for a flight using a color palette, where the yellow
edges to the north yield lower costs and, therefore, are more
efficient to chose than the white edges in the south.

3) Vertical profile with COALA: When the shortest path is
found, it is then simulated with the flight performance model
COALA [41] to optimize the vertical profile compared to the
default speed regime used in the PTD. COALA builds upon
the aircraft-specific data provided by BADA versions 3 and
4 and utilizes an advanced approach with a Proportional–
Integral–Derivative (PID) controller for each flight phase
and a sophisticated engine model for contrail and emission
calculation. With this, the speed profile during the climb is
optimized by maximizing the climb rate to reach altitudes
with reduced fuel burn quickly [10]. The output of COALA
is a high-resolution profile with an accurate fuel burn so that
the fuel-saving potential is quantified adequately.

C. Clustering Algorithm

We consider a set of trajectories Ti, i ∈ {1, .., I}, where
I is the number of trajectories under consideration, each
represented by a sequence of geographic coordinates P k

i ,
where k ∈ N is the kth point of the trajectory Ti. P k

i

is defined in three-dimensional airspace by φ, λ and their



Figure 4: 3D departure search grid from runway 26R to
a northern destination with θ = 30°, ψ̇s = 3°s−1 and
A = {h1, ..., h12} optimization altitudes. The color indicates
altitude and distance-dependent estimated costs to destination
(magenta highest). Map: Google, ©2021, GeoBasis-DE/BKG

altitude in [ft]. The input data is pre-processed to remove
unsuitable data. These include inconsistent flight paths, those
represented by insufficient data points, and abnormal proce-
dures, e.g., rejected takeoff. Subsequently, the flight paths are
truncated at the boundaries of the area under consideration.
In the present case, below 300 ft above the airport elevation
and at a distance of 100 NM from the airport reference
point. For further calculation steps, the geographic data points
are transformed into a local Cartesian coordinate system
returned as xEast, yNorth, and zUp and augmented by linear
interpolation. The origin of the local coordinate system is
located at the reference point of the airport.

The first data points P 1
i of each Ti are assigned to an inner

cluster using the nearest neighbor condition to the runway
threshold respectively P end

i to an outer cluster assigned by a
DBSCAN [2]. Thus, each Ti was assigned to a preliminary
cluster PCa,b, a ∈ {1, ..., A}, b ∈ {1, ..., B}, where A is the
number of runway thresholds (e.g. a = 1 is 26R of MUC)
and B the number of outer cluster resulting from DBSCAN.

Subsequently, it was examined whether flight trajectories
Ti exists, deviating from the other flight paths within their
preliminary cluster. For this, all P k

i which are assigned to
PCa,b were sorted according to their distance flown. Then,
each coordinate P k

i (sorted) ∈ Ti within a preliminary cluster
PCa,b that deviates more than one local standard deviation
from the local mean over a sliding window, were filtered
and clustered by a DBSCAN. The entire trajectory Ti was
deleted from PCa,b and assigned to new sub-clusters PCs

a,b,
s ∈ {1, ..., S} where S number of sub-clusters in PCa,b. The
final clusters Cn equals the sum of PCa,b and PCs

a,b. For all
Cn that contains a minimum number of Ti, all P k

i ∈ Cn were
sorted again based on their distance flown. Then, the mean
trajectory T̄ p

n = (xpn, y
p
n, z

p
n), where p is the pth point along

T̄n, of each Cn was calculated over a sliding window across
neighboring elements of P k

i (sorted) ∈ Cn. The calculated
T̄ p
n were transformed into evenly spaced trajectory points

using a Modified Akima cubic Hermite interpolation. Each

P k
i ∈ Cn was assigned to a trajectory segment T̄ p

n to
T p+1
n , using the shortest Euclidean distance. Finally, the upper

and lower dimensions of the convex hull were calculated
by the maximum and minimum altitude component (zUp)
of the Euclidean distance between the assigned data points
P k
i and the Mean Trajectory segment from T̄ k

i to T̄ k+1
i .

The horizontal dimensions were calculated within three times
the standard deviation of the horizontal Euclidean distance
of P k

i and the spline segment T̄ k
i to T̄ k+1

i . Finally, the
local Cartesian coordinates were converted into geographic
coordinates.

D. 3D Pathfinding Inside the Traffic Flow Funnels

After deriving a traffic flow funnel from clustering, the
flights are reoptimized using the same flight performance
method according to section III-B. For this, two steps are
necessary for each flight from the flight plan. First, the flight
is allocated to the funnel that ends closest to the flight’s
destination. Second, the flight is reoptimized considering the
actual weather forecast while being restricted to the selected
funnel. For this purpose, an additional 3D funnel grid is
developed for the A* different from the grid described in
section III-B2.

1) Funnel Allocation to Flights: The funnel for a particular
flight is selected for the path search based on the mean
coordinate of the last gate, which is closest to the destination
airport in terms of the great-circle distance. This assumption
may lead to an unbalanced distribution of traffic associated
with capacity insufficiency, which will be clarified in later
traffic analysis. Alternatively, the funnels might be allocated
manually or considering the lengths and curves of the funnel
to avoid detours, if desired.

2) Funnel Grid: Each funnel gate consists of coordinates
in a uniform grid with α lateral and β vertical sections, as
shown in Fig. 5. The resulting planar mesh of the gate consists
of available nodes for the A*. All nodes of the next gate
p+ 1 are potential neighbors from a node at the current gate
p. However, it has to be checked whether the current aircraft
can reach the altitude within the available distance dp,p+1

between p and p+ 1. Here, the aircraft-specific PTD is used
again to calculate the required SADcl to reach the altitude
of the next gate’s nodes, cf. (5). Since the target is to climb
to the cruise altitude, descents are prohibited in the funnel
grid as well. It is not allowed for the pathfinding to skip a
gate entirely. However, skipping intermediate altitudes when
flying from p to p+ 1 is permitted if the climb performance
is sufficient.

E. Evaluation Metrics

The evaluation of the identified funnel areas is performed
in two parts. One is the number and size of the determined
funnels, and the other is the flight efficiency that will result
from a modified funnel scenario. The metrics use common
key indicators for aviation.

1) Funnel Dimension: The number of funnels represents
both the complexity in traffic assignment and the required
procedures to be applied therein. In conjunction with the
size of the individual gates, a comparative metric for the
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Figure 5: Simplified 3D funnel grid for two rectangular gates
p and p + 1 with α = 6 lateral and β = 6 vertical sections,
resulting in 49 grid points for each gate.

use of airspace is given hereby. Additionally, the lateral and
horizontal distance of the grid points at each gate is measured,
which forms the optimization grid. Based on this, an overview
of the precision during the optimization is provided.

2) Flight Efficiency: The efficiency of the flight is
measured with the ICAO Global Air Navigation Plan
(GANP) [44] Performance Indicator Route Extension and
with a direct comparison of the fuel consumption. All climb
flights are truncated in the same radius used for the clustering
and funnel calculation. From there on, a direct flight to the
destination is assumed to avoid any other influence on the
actual relative fuel savings. The ground distance is used for
the route extension metric to consider the impact of wind
accordingly.

IV. RESULTS

A. Scenario Definition

The clustering and trajectory optimization steps described
in section III are applied for departures at MUC. This airport
in the northeast of Munich has a two-runway system with
an elevation of 453 m MSL and allows independent parallel
runway operations. According to MUC Aeronautical Infor-
mation Publication (AIP) [45], both runways have published
departure routes to a total of 18 en-route waypoints, already
enabling flight planning towards the destination with only a
few TMA-related detours. As Fig. 8(a) shows, only some of
these waypoints are used frequently, which leads to a larger
scale of air space usage in the area north of MUC. At the
same time, noise abatement measures restrict the arrivals and
departures in the south heavily due to the proximity of the
urban areas of Munich.

For a comprehensible evaluation and for avoiding interfer-
ence from traffic in parallel runway operation, this stage of
work assumes a facilitated traffic scenario where only one
runway with one direction is used. Therefore, the considered
procedures are limited to the runway threshold 26R, which is
the main operating direction due to wind, see Fig. 6. Thus, the
scenario covers the flights to destinations requiring departures
to the northern side of the airport.

The considered ADS-B data set covers flights from 01 to 30
September 2019, so a typical traffic demand for the summer
period. The data is pre-filtered concerning its plausibility

Figure 6: Wind rose for MUC based on METAR data for
2019. The wind direction points towards the center, where
the wind is aggregated in segments with intervals of 10° and
5 m/s. The color of each segment represents wind speed and
the length of any segment the share of observations.

of a continuous climb. Thus, only flights with at least 25
measurements within a radius of 100 NM around the airport
are considered. For the inner clustering, only measurements
with a minimum ground speed of 180 kt after the runway end
are used. The minimum number of flights to form a cluster
is set to 30 and the search radius to ε = 6000 km. The mean
trajectory of a cluster is formed by a spline consisting of
500 sampling points. Based on this, 40 rectangular gates are
determined along the spline that describes the funnel. The
width of each gate is divided into α = 20 and the height
into β = 40 sections, resulting in 800 grid points for each
funnel in the optimization. For the funneling of the optimized
trajectories according to section III-B2, the input parameters
are mostly identical, although the minimum number of flights
per cluster has been reduced to 25, as the clusters would
become too wide for efficient flight control otherwise.

In total, approximately 300 departure profiles were calcu-
lated inside the ADS-B funnels, depending on the specific
traffic volume from the flight schedule. The scheduled flights
were allocated to the runways based on the initial bearing be-
tween departure and destination airport, where flights between
260° and 90° are selected to depart from the analyzed runway
26R, which is the northern runway and therefore should
handle flights destined to the north of MUC. Different weather
scenarios are used to optimize the flights considering typical
weather uncertainty in the resulting funnels. We use the
weather forecasts corresponding to the flight schedule period,
provided by the Global Forecast System (GFS) of the National
Oceanic and Atmospheric Administration (NOAA). These
weather forecasts are available in GRIB2 format with a lateral
resolution of 0.25° four times a day [46]. A further variation



Figure 7: Four of seven 3D departure funnels with rectan-
gular gates (red with unique border colors per funnel) from
clustered flight data (09/2020), with the raw ADS-B points
(blue), and the mean trajectory per funnel (red lines). Blue
points outside funnels are outliers or other runways.

is obtained indirectly from different flight performances of
different aircraft types as given in the flight schedule for each
day in the investigated period. Each aircraft from the flight
schedule is assigned its corresponding BADA 4 aircraft type.
For aircraft types without PTD files, the most similar type
in terms of aircraft size is chosen. Since the mass of each
aircraft is not included in the flight schedule, it is randomly
selected from a value between 60% and 90% of the available
payload plus fuel mass.

B. Funnels of ADS-B and Optimized Clustered Flights

Fig. 7 depicts four clustered departure procedures and the
resulting funnels based on ADS-B tracked flights (blue points,
all recorded flights). Apparent is an ascending altitude of the
corresponding gates combined with an increase in width and
height the further away from the threshold. In total, 1165
flights with valid data for the clustering algorithm departed
from threshold 26R (cluster a = 1) were considered. Using
these movements, a total of 7 funnels aggregate the major
departure directions composed of 40 gates each. Fig. 8(a)
displays all clusters and the resulting funnels in a top view.
The orientation of the funnels shows that the majority of
flights are heading to the west and north. Flights flying
to the east are bundled in a single funnel pointing to the
north-northeast. A look at the raw data revealed that, in
principle, a small number of flights are also heading directly
to the east. However, those flights do not reach the minimum
number of flights required for a cluster and are excluded
accordingly. For these few flights, the flight efficiency will
be underestimated as they are constrained by another, less
optimal funnel compared to the actual operations.

For the scenario with optimized trajectories using the grid
from Section III-B2, 9098 flights were calculated, which
resulted in 35 funnels. The higher number of clusters is caused
by the diversified flights with a more direct and individual
pathing to their destinations, resulting in the fan shape in
Fig. 8. Here, the DBSCAN parameters lead to a homogeneous
area clustered into parts, as constraints were not applied
during the path search. Due to the different number of flights
and clusters examined and despite the minimum number of

Table I. Dimension of departure funnels and grid point
spacing per gate from the ADS-B data and optimized flights.

[m] Percentile Gates ADS-B Gates Opt
Size Spacing Size Spacing

Width
0.5 4793 240 10556 528
0.05 2112 106 1874 94
0.95 7542 377 19797 989

Height
0.5 2946 73 1719 43
0.05 1367 34 434 11
0.95 4612 115 3558 89

flights per cluster already adjusted, the efficiency comparison
is only possible within limits. Additionally, the shape of
funnels is also much wider, as flexible route selection and
direct routing towards the destination broadens the clusters
considerably. In comparison, the flights in the ADS-B funnels
converge due to the transition to the en-route network on
common waypoints at the end of each SID. For the optimized
flights, however, this is not the case. Table I lists an overview
of the spatial dimensions of the gates for both scenarios. Since
the optimized funnels must be integrated into the existing
route network, the funnels could be narrowed significantly
by specifying en-route waypoints as optimization targets.
Furthermore, the high number of clusters could increase the
complexity in traffic handling as well as the separation to
approaching traffic flows. A reduction is advised to balance
optimization and ATC requirements,e.g., by merging of neigh-
boring clusters. According to Table I, the range of the height
of the gates and, accordingly, the vertical extent of the funnels
is smaller compared to the ADS-B scenario. This might be
due to the limited selection of 15 aircraft was available in
TOMATO and COALA, which does not cover the entire
flight schedule with 47 different aircraft types. Additionally,
idealized thrust and velocity profiles might underestimate the
spread in vertical flight performance.

Finally, the selected cluster parameters, in particular radius
and ε for DBSCAN, contribute significantly to the resulting
size and number of the funnels. These parameters were
determined as a sufficiently good trade-off between size and
number of clusters individually per scenario. A quantitative
measure of cluster size is proposed in section V.

C. Flight Efficiency

For examining the effects of the optimized funnels on flight
efficiency, all flights of the flight schedule are re-optimized
in both funnel scenarios, permitting full usage of the funnel
dimensions. For the funnels designed from the optimized
flights, an average saving of 16 kg per departure is achieved.
This corresponds to a value of about 0.4% for the entire flight.
The ground distance until the destination is also reduced by
0.5%. The spread of these values is shown in Fig. 9. Although
these savings appear rather small, only the first half of the
climb phase until FL250 inside the E-TMA was considered
for optimization, which averages to a fuel mass of 956 kg
and a distance of 108 km in total per flight.

V. CONCLUSION AND OUTLOOK

This work differs from the current ATC procedures for
departure and climb profiles following the predefined SID,



(a) ADS-B radar tracks (b) TOMATO optimized flights

Figure 8: Clustered flight tracks of departing flights using runway 26R at Munich Airport.
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Figure 9: Boxplot of flight efficiency (fuel burn, ground dis-
tance) as the result of a transition from ADS-B to optimized
calculated departure funnels.

which are replaced by a procedural space entitled traffic
flow funnels. Limited to these funnels, aircraft can follow
their performance-dependent optimal profile in terms of fuel
efficiency. As the beginning of the funnels is always tied to the
runway threshold and the end aims at as many flight directions
as possible, the resulting shape widens the further away flights
are from the threshold, which must be limited to ensure
separation between aircraft. A set of funnels allows departures
in various directions to minimize the distance to the en-route
network. Clustering of ADS-B tracks departing from MUC
prove that such funnels already exist with a decent vertical
extend, but the lateral spacing is strongly limited due to the
SID design. When optimizing these flights with 30 weather
scenarios for September 2019, a set of optimized funnels
could be created utilizing the same funnel algorithm. While
the consistent implementation offers fuel-saving potential,
the airspace required for these optimized funnels increased
significantly at the same time.

Prior to developing a full traffic concept and the associated
safety assessment, the appropriate size and number of the
funnels should be studied next. Additionally, the integration
of aircraft noise exposure is necessary for lateral pathfinding.
The values of parameters are currently selected qualitatively
for the funneling algorithm. Next, the parameters must be
optimized to maintain the airport capacity, to match the traffic
concept of the arrivals, and to ensure a suitable safety level
regarding collision risks at all times. This results in another
optimization problem, where the traffic flow and the necessary

ATC monitoring play an important role. Alternatively, the
current SID routes might be widened to funnels instead, thus
maintaining the current traffic setup, but offering additional
freedom for optimization without compromising capacity and
safety much. It should be noted that the ADS-B data contains
an unknown share of flights with radar vectors, with might
have induced a spread in the ADS-B funnels. However,
extensive vectoring far off the SID is excluded with the outlier
analysis in the clustering.

While this work explores the fundamental flight efficiency
potential of departure funnels, the control and separation
assurance both inside funnels and where funnels intersect
must be discussed in further steps. Although similar proce-
dural spaces introduced in section II reported positively on
self-separation of aircraft, while methods from point merge
procedure may also be adapted to the funnels.
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[29] W. J. Eerland, S. Box, and A. Sóbester, “Modeling the dispersion of
aircraft trajectories using gaussian processes,” Journal of Guidance,
Control, and Dynamics, vol. 39, no. 12, pp. 2661–2672, 2016.

[30] M. Murça, R. Delaura, R. Hansman, R. Jordan, T. Reynolds, and
H. Balakrishnan, Trajectory Clustering and Classification for Char-
acterization of Air Traffic Flows.

[31] Joint Planning and Development Office, Next Generation Air Trans-
portation System, “Concept of Operations for the Next Generation Air
Transportation System, Version 3.2,” tech. rep., 2011.

[32] M. Lindner, J. Rosenow, T. Zeh, and H. Fricke, “In-flight aircraft
trajectory optimization within corridors defined by ensemble weather
forecasts,” Aerospace, vol. 7, no. 10, 2020.

[33] M. Lindner, T. Zeh, and H. Fricke, “Reoptimizaton of 4D-Flight Trajec-
tories During Flight Considering Forecast Uncertainties,” in Deutscher
Luft- Und Raumfahrtkongress (DLRK), (Friedrichshafen), 2018.

[34] International Civil Aviation Organization, “Continuous descent opera-
tions (CDO) Manual,” Tech. Rep. Doc 9931 AN/476, Montreal, 2010.

[35] N. Takeichi and Y. Abumi, “Benefit optimization and operational
requirement of flow corridor in japanese airspace,” Proceedings of the
Institution of Mechanical Engineers, Part G: Journal of Aerospace
Engineering, vol. 230, 11 2015.

[36] A. Errico and V. D. Vito, Aircraft operating technique for efficient

sequencing arrival enabling environmental benefits through CDO in
TMA. 2019.
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