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Abstract—Safety in ATM at the tactical level is ensured by
human controllers. Automatic Detection and Resolution (CD&R)
tools are one way to assist controllers in their tasks. However,
the majority of existing methods do not account for factors that
can affect the quality and efficiency of resolutions. Furthermore,
future challenges such as sustainability and the environmental
impact of aviation must be tackled. In this work, we propose an
innovative approach to pairwise conflict resolution, by modelling
it as a Multi-Agent Reinforcement Learning (MARL) to improve
the quality of resolutions based on a combination of several
factors. We use Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) to generate resolution maneuvers. We propose a
reward function that besides solving the conflicts attempts to
optimize the resolutions in terms of time, fuel consumption and
airspace complexity. The models are evaluated on real traffic,
with a data augmentation technique utilized to increase the
variance of conflict geometries. We achieve promising results
with a resolution rate of 93%, without the agents having
any previous knowledge of the dynamics of the environment.
Furthermore, the agents seem to be able to learn some desirable
behaviors such as preferring small heading changes to solve
conflicts in one time step. Nevertheless, the non-stationarity
of the environment makes the learning procedure non-trivial.
We argue ways that tangible qualities such as resolution rate
and intangible qualities such as resolution acceptability and
explainability can be improved.

Keywords—Conflict Resolution; Air Traffic Management; Re-
inforcement Learning; Multi-Agent Deep Deterministic Policy
Gradient

I. INTRODUCTION

The mission of air traffic management (ATM) is to make
air traffic possible by means of efficient, environmentally
friendly and socially valuable systems [1], [2]. At the heart
of the current ATM system at the tactical level are human air
traffic controllers (ATCo) who control airspace units known as
sectors. The main duty of ATCos is to guarantee safety, which
is accomplished by communicating and issuing instructions
to pilots, monitoring traffic to maintain safety distances etc.
The ability of controllers to guarantee efficient solutions
that include different quality factors is constrained by their
workload which can be defined as the mental and physical
effort required to manage traffic [3].

In the future, challenges such as sustainability, the environ-
mental impact and fuel consumption will have to be tackled.
As a result, these factors must be also accounted in conflict
resolution, to not only solve them but to assure efficiency and

quality in the resolutions. Conflict detection and resolution
(CD&R) tools are a way to assist ATCos in their conflict
resolution duties. Conflict resolution algorithms have been a
prominent research within the ATM community, with many
models being proposed. For a comprehensive review we refer
the reader to [4]. Early works, such as [5] prescribe fixed ma-
neuvers for particular geometries to conflict aircraft. However
such approaches are not preferred as they are not flexible and
result in inefficient resolutions. In more recent approaches,
various mathematical formulations are used to calculate more
efficient maneuvers. For instance, Pallottino et al. [6] employ
mixed integer programming to solve conflicts where they
consider speed and heading changes separately. However
speed changes alone cannot solve all conflicts (e.g. head-
on situation). Furthermore, they consider immediate heading
changes, which is not realistic. The Model Voltage Potential
(MVP) algorithm proposed by Hoekstra [7] considers airspace
as a potential field and aircraft as particles navigating it. The
predicted future positions of conflict aircraft at the closest
point of approach (CPA) are used to repel each other and
thus displacing the predicted positions at CPA. The avoid-
ance vector is calculated as the vector starting at the future
positions and ending at the edge of the intruder’s protected
zone. Peyronne et al. [8] use b-splines to smoothly and
minimally change trajectories to solve conflicts at the tactical
level. Their approach, however, has several limitations, as they
assume constant speed of aircraft and evaluate their approach
only on academic examples. The approach proposed in [9]
uses probability reach sets to represent aircraft locations and
resolution is performed by separating these sets. This model
suffers when the number of present aircraft is increased and
they only consider that aircraft will be at their intermediate
waypoint of the resolution maneuver at the same time. A
multi-agent approach is considered by Breil et al. [10]. There,
they model each conflict aircraft as an agent, which has
to solve its local conflicts through speed changes. First of
all, as previously mentioned, not all conflicts can be solved
only through speed changes. Furthermore, an agent in this
approach can only choose to cruise, accelerate or decelerate
at fixed rates, which is not flexible and can lead to inefficient
solutions. They extend their approach to also include heading
changes, but also there they only allow for fixed changes.



While these approaches are successful, the majority of
them have limits due to the assumptions they make about
the airspace. Most discretize space to maintain computational
feasibility, which means that they have fixed maneuvers that
they issue. This lowers the flexibility of the solutions which
may lead to inefficiencies in terms of quality of the resolution.
Whereas a method that can handle a bigger or continuous
resolution space could find more efficient solutions. Fur-
thermore, most algorithms make some assumptions about
the dynamics of the environment causing such methods to
fail when faced with conflicts that do not adhere to those
assumptions. Finally, a majority of existing methods optimize
only for resolution, and might not consider the effects of the
solution on surrounding traffic, fuel consumption etc.

Reinforcement learning (RL) and especially deep rein-
forcement learning (DRL) have recently emerged as a very
successful method to tackle decision-making problems. They
have achieved super-human level at playing Atari games
[11] and Go [12], as well as impressive performance in
practical problems such as autonomous driving [13]. These
methods can inherently represent high dimensional state and
continuous action-spaces. There are several works that model
conflict resolution as a RL problem. Pham et al. [14] propose
a similar approach. However, they do not consider a multi-
agent environment and have a less specialized reward func-
tion. Ribeiro et al. [15] consider a single agent approach to
conflict resolution through RL for unmanned aerial vehicles
(UAVs). However, they do not use their model to issue
maneuvers, but to enhance a current resolution algorithm.
In this work, we attempt to overcome these drawbacks by
modelling the resolution of pairwise conflicts as a multi-agent
reinforcement learning (MARL) problem. We use Multi-
Agent Deep Deterministic Policy Gradient (MADDPG) [16]
to train two agents, representing each aircraft in a conflict
pair, that are capable of efficiently solving conflicts in the
presence of surrounding traffic by considering heading and
speed changes. We formalize the underlying Markov Decision
process (MDP) by proposing a novel state representation
which contains information such as position, heading and
speed. Furthermore, we propose a highly specialised reward
function that encourages efficient solutions and discourages
solutions that are too conservative by considering several
factors, such as time until loss of separation, closest point
of approach, fuel consumption and surrounding traffic. The
designed reward function can serve as a template on how to
include the interests of different stakeholders in a resolution.
The agents are trained and tested on real traffic, with a
data augmentation technique to increase the variance of seen
scenarios. Each scenario lasts 20 minutes, which is a common
length for algorithms in the tactical level [8], [14]. Agents
must take an action every 15 seconds, however our results
show that agents are able to solve the majority of conflicts
only in one time step. The agents are able to handle a
continuous action space, with heading changes being capped
at ±45o and speed changes at [v − 6%, v + 3%] [10].

The rest of this paper is organized as follows: in Section
II, we elaborate on the theoretical background necessary for
this paper. In Section III, the experimental setup is presented.

Results are presented and discussed in Section IV, while in
Section V we draw conclusions and propose steps for further
research.

II. THEORETICAL BACKGROUND

A. Reinforcement Learning

Reinforcement Learning (RL) is a paradigm of machine
learning which deals sequential decision making [17]. In
RL, an agent makes decision in an environment to optimize
a certain notion of cumulative reward. The agent improves
incrementally by modifying its behaviour according to previ-
ous experience. Furthermore, the RL agent does not require
complete knowledge of the environment, it only needs to
interact with it and gather information [18].

A given RL problem is usually formalized by a Markov
Decision Process (MDP), which is a discrete time stochastic
control process [19] that consists of a 4-tuple (S,A, T,R),
where:

• S is the state space,
• A is the action space,
• T : S ×A× S → [0, 1] is the transition function which

is a set of conditional transition probabilities between
states,

• R : S ×A× S → R is the reward funtion
Practically, the agent starts at an initial state s0 ∈ S. At
each time step t, the agent has to take an action at ∈ A.
Once this happens, the agent gets a reward rt ∈ R from
the environment. The state transitions to st+1 ∈ S. The
agent stops interacting with the environment when it reaches
a defined goal state. The agent’s behaviour is encoded into
a policy π which is a function that maps states to actions.
Policies can be deterministic or stochastic.

B. Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning (MARL) is an ex-
tension of classical RL where there are more than one
agents in the environment. This is formalized through partially
observable Markov games [20], which are decision processes
for N agents.

Similarly to MDPs, Markov games have a set of actions.
However, in this case, the environment is not fully observable
by the agents. Therefore, the Markov game has a set of
observations O1, ...ON for each agent. Every agent takes an
action according to their policy and obtains a reward. Agents
aim to maximize personal and total expected reward.

C. Multi-Agent Deep Deterministic Policy Gradient

Q-learning [17] is a popular method in RL that makes use
of an action-value function for a policy π. It attempts to
maximize the expected value of the total reward for a given
and all successive steps. Q-learning algorithms that use neural
networks for learning are called Deep Q-Networks (DQN)
[11].

Policy Gradient methods are a group of methods that model
and optimize the policy directly. The policy is modelled with
a parametrized function with respect to parameters θ, πθ(a|s).
The goal of the methods is then to optimize the parameters
θ for the best reward. Policy Gradient methods have been



found to outperform other methods in environments with
stable dynamics [21].

In this work we will use Multi-Agent Deep Deterministic
Policy Gradient (MADDPG) [16], which is an extension
of single agent DDPG [22], where multiple agents must
complete their tasks with only local information. For each
agent, the environment is non-stationary as the policies of
other agents are unknown. This leads to learned policies that
only use individual observations of agents and no model of
the dynamics of the environment.

MADDPG uses an actor-critic architecture, with agents and
the critic being modelled as a neural network. The critic
learns the value function (i.e. Q-learning), meaning that it
is used to criticize the actions that are being taken. The
network is updated from a Temporal Differences (TD) error.
In MADDPG, the critic learns a centralized action-value
function Qπi(o1, ..oN , a1, ..., aN |θQ) for an agent i. Each Q
function is learned separately for all agents. This means that
the critic is augmented with information about the policies of
other agents.

The actor network πi(o1, ..oN , a1, ..., aN |θπ) learns the
policy, meaning that it outputs an action in regard to its output.
The actor only has access to local information and does not
know the policies of other agents. Actors are encouraged
to explore beyond their learned policies at each time step
through Gaussian noise, which means that at each time step
each actor has a probability of not following its policy but
taking a random action. This step has been shown to improve
the learned policies as actors can overfit their learned policies
leading to worse overall performance [17], [20].

A known problem in MARL settings is the high variance
caused by the interaction between agents present in the
environment. MADDPG solves this by introducing policy
ensembles. A collection of different sub-policies are trained
for each agent. For every training episode, one particular sub-
policy is randomly selected. Finally, the gradient update is
done by taking all these sub-policies.

DQN methods, of which MADDPG is part of, often suffer
from sample autocorrelation, leading to unstable training.
Experience replay is used to mitigate such an issue [11]. In
this technique each agent’s experience is stored at each time
step in a replay buffer. The memory is sampled randomly
and is used to update the actor and critic networks. When the
replay buffer becomes full, the oldest samples are discarded.

III. EXPERIMENTAL SETUP

A. Data and Parameters Used

The model is evaluated using traffic data from Eurocon-
trol’s DDR II, from 12.02.2019 [23]. Conflicts were detected
using a simple state based method [24]. The trajectories of the
present aircraft were projected in the future using a lookahead
time of 300s, assuming constant speed and heading. If at any
point during this time a horizontal and vertical separation
infringement occurred (5 NM, 1000 feet at tactical level) the
pair of aircraft were considered in a conflict. A filter was
used to discard conflicts below FL250. Furthermore, except
the conflict pair, we also keep several surrounding aircraft. We
utilize the method proposed in [25], [26] to identify relevant

aircraft. This procedure resulted in a total of 188 conflict
scenarios.

As machine learning methods in general are sensitive to
the data they are trained on, we employ a data augmentation
technique to synthetically increase the variance of conflicts
the model is trained on. For each scenario, we remove one
of the conflict aircraft and create another one in conflict
that has a different intrusion angle, closest point of approach
(CPA) and time of separation loss than the removed conflict
aircraft, while keeping surrounding non-conflict traffic. The
values for the intrusion angle are in [0, 30, 45, 60, 90], while
those for CPA and time of separation loss are in [1, 2, 4]
NM and [60, 120, 300, 600, 1200] seconds, respectively. This
augmentation method is applied to each scenario and each
conflict aircraft. The agents can only observe the 5 closest
aircraft (including ownship).

The resulting scenarios are then divided into training and
test sets with a ratio of 80%/20%. Training and test scenarios
are kept apart in order to test the model in scenarios that it
has never seen before.

Scenarios ran for 20 minutes and the agents had to make
decisions every 15 seconds. The agent stops being active, i.e.
does not make decisions anymore, if the conflict was resolved
and it was back on track, or the scenario lasted longer than
20 minutes.

B. State Representation

One of the most important factors that can impact the
learning capabilities and eventual performance of agents is
how states in the given environment are formalized. Usu-
ally, the state is represented through a vector of a certain
dimensionality, which should provide necessary information
about the environment in order to facilitate the agents to
be successful in their task. However, while providing more
information in the state might result in an overall better
performance [15], it is also followed by an increase in
computational effort required to train a performant model.

Furthermore, the environment is highly non-stationary, as
both conflict aircraft will change their policies in order to
solve the conflict. This adds another layer of complexity to the
representation of the state, which will need to be considered.

This work, represents the first steps to applying MARL
to conflict resolution, therefore we opt for a more simple
representation of the state. More specifically, the state is
formalized through each present aircraft’s position informa-
tion. As we are only dealing with horizontal resolutions,
we only use horizontal positions, i.e. latitude and longitude,
heading and speed. This representation is shown in Figure
2, where 5 aircraft are present. Given a conflict pair present
in the scenario, each conflict aircraft will observe the state
information of the remaining aircraft.

C. The Reward Function

There is a wealth of research that outlines the importance
of a suitable reward function in RL, especially applied to
practical problems [16], [21], [27]–[30]. Ribeiro et al. [15]
and Pham et al. [14] use a reward function solely based on
the number of conflicts and number of losses of separation



Figure 1: Model for conflict resolution.

Figure 2: Position information of each aircraft in a scenario
required to represent the state.

present in the scenario. However, not only are we concerned
with solving the conflicts, we want to solve them as efficiently
as possible. Thus, we take several factors into consideration
to build the reward function:

1) Time until loss of separation and CPA: The model is
encouraged to solve conflicts as soon as possible, in order
to avoid dangerous situations. time until loss of separation
and closest point of approach (CPA) are used to penalize the
agents from slow solutions of conflicts with smallers CPAs.
However, if, for example, the conflicting aircraft are almost in
parallel, the agents will be penalized less if they take longer
to solve the conflict.

2) Difference from track and optimal speed: To solve
conflicts through minimal maneuvers, the agents are penalized
for making big heading and speed changes. In order to achieve
that, we give the aircraft negative reward the further they are
from their track. Furthermore, as we assume aircraft to fly
at their optimal speed, we penalize agents for deviating too
much from it.

3) Fuel consumption: In order to discourage the model
from taking actions that lead to big fuel consumption. In this
work, we use the aircraft performance model OpenAP [31].
As per this model, the aircraft receives a negative reward for

the amount of fuel it consumes each time step.
4) New conflicts: An undesirable behaviour of CDR al-

gorithms is the inducing of new conflicts as a side effect of
the resolution. Therefore, if the resolution proposed by the
model induces a new conflict, for the given lookahead time,
it is severely punished.

5) Airspace complexity: Airspace complexity is usually
not an aspect that CDR algorithms take into consideration.
However, complexity accounts for a large majority of ATCo
workload [32], [33]. While we implicitly consider complexity
by measuring if the resolution causes new conflicts, this alone
is not informative enough in terms of complexity [32]. In this
work, we consider the complexity formulation of Koca et al.
[26]. They propose a hierarchical ecosystem structure, where
relevant aircraft to the conflict are determined based on spatio-
temporal interdependencies. The ecosystem is constructed as
follows: the two aircraft of the conflict pair are the first
order of the ecosystem. Aircraft that are affected by the
conflict resolution are considered of the second order. Aircraft
that are affected from the movement of the aircraft of the
second order are considered of the third order and so on.
To turn the information of the ecosystem into a single score,
we do a weighted sum of the number of interdependencies
for each order. This means that interdependencies get less
and less important the further down the orders. In this way,
we discourage resolutions that leave the airspace in a more
complex situation.

All rewards are negative, as positive rewards can lead to
the agent simply attempting at collecting as much reward and
solving the conflict in an inefficient way [15]. The final reward
is a weighted sum of all the single factors mentioned above.

D. The Model

In this work, we train two agents that represent each aircraft
of the conflict pair. Figure 1 is a visual representation of the
model. Each scenario consists of a conflict which needs to be
resolved. When the conflict is detected, agents are randomly



assigned to the conflict aircraft. The agents then must attempt
to resolve the conflict by maximizing their individual and
global rewards (accumulative reward of single agents). At
each time step while the conflict is not solved, each agent
takes an action that is a combination of a heading and speed
change. At the next time step, the agents receive a reward
on how well the actions they took is perceived from the
environment. The agents gain experience after each scenario
they encounter and we ensure that agents have roughly the
same experience by having only one initial conflict in the
scenario.

The actor networks of each agent dictate what actions they
have to take at every step. As only horizontal resolutions are
considered in this work, the actor network outputs three values
in the range [−1, 1] (i.e. we apply the tanh activation function
to the output layer), where two outputs are the sin and cos of
the heading change angle α. The angle is then tan−1(α) =
sin(α)/cos(α). We put a maximum heading change of ±45◦
per time step. The other output value is used to determine the
new speed of the aircraft. In this work, we consider en-route
traffic, therefore we assume that aircraft are initially flying
at optimal speeds. As a result we limit speed change in an
interval [v − 6%, v + 3%] [10], [34].

As mentioned previously, the critic network is learned
jointly for both agents. Furthermore, given that agents have
the same reward structure, we can assume agents to be
cooperative. However, no communication between agents is
considered, which means that the only way agents are aware
of the other agents policy is through the critic network.

E. Simulation Environment

Simulations were run on the Air Traffic Simulator BlueSky
[35]. The simulator was chosen primarily because it is an open
source tool, which allows for more transparency in the devel-
opment and evaluation of the model proposed in this work.
Furthermore, BlueSky has an Airborne Separation Assurance
System (ASAS), which can support different CD&R methods.
This allows for different resolution algorithms to be evaluated
under the same conditions and scenarios.

IV. SIMULATION RESULTS

A. Conflict Resolution

The algorithm was trained on the Google Cloud Platform1

using an NVIDIA Tesla K80 GPU. The algorithm was then
tested on 195 conflict scenarios with intrusion angles ranging
from 0o to around 140o. Furthermore, scenarios had different
CPAs, and time until the conflict started.

The model shows great promise with around 93% of
conflicts solved using real traffic and considering as objective
function a non-linear combination of reward factors. This
means that the vast majority of conflicts are solved with
both agents being involved in the solution and having no
knowledge of the dynamics of the environment. Nevertheless,
with such a big success rate, it is more informative to analyse
different aspects of the resolutions such as, number of steps
needed to solve the conflicts, maneuvers taken etc.

1https://cloud.google.com
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Figure 3: Number of steps required to solve the conflict. A
time step is 15 seconds long.
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Figure 4: Relation between number of steps needed to solve
the conflict and time before conflict starts.

As previously mentioned, the agents must take an action
at every time step they are active, which means that at each
time step the conflict aircraft must make a heading and speed
change. Figure 3 shows the number of steps required to
solve the conflicts. Scenarios where there were between 2
and 5, and 6 and 10 steps needed are grouped together, while
scenarios that needed 1 step and more than 10 steps were
shown separately. As shown in the figure, 63% of solved
conflicts needed only 1 time steps. This is a promising result,
which shows the model can learn by itself that the preferred
behavior is to solve conflicts in one go.

Furthermore, we observe that conflicts that needed between
2 and 5 time steps to be solved represent around 27% of all
solved conflicts. The other two groups represent less than
10% each. While these behaviors are not preferred, it is
encouraging to see that the majority of conflicts are solved
in less than 5 time steps. This means that the majority of
conflicts are solved in around 1 minute from when the conflict
was detected.

Figure 4 shows the relation between the number of time
steps needed to solve the conflict and the time before the
loss of separation (LOSS) occurred. Furthermore, the Pearson
correlation coefficient between the two is calculated and
resulted to be −0.43. This results indicates moderate negative
correlation, which can also be seen from the figure. However,
from the figure it is clear to see that the majority of conflicts
that took multiple time steps to solve had a very low time
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Figure 5: Distance of each agent from track in nautical miles
when the conflict is resolved.

until LOSS. This means that for the majority of the time,
the agents were trying to solve a LOSS. This is a surprising
result, as one would expect that given the formulation of
the reward function, the agents would react more when a
LOSS is imminent. However, the agents have no model of
the dynamics of the environment, except for the reward they
receive. As a result, the big negative reward the agents get
when the LOSS starts is not informative to the agents, and
does not help them solve the conflict. To further support this
claim, the agents were tested on 15 different scenarios, where
the LOSS had already occurred when the agents were active.
Out of those, they failed to solve the conflict 12 times. These
results show that when given informative rewards from the
environment, the agents are generally successful in solving
the conflicts.

Figure 5 shows the distance from track at the end of the
conflict for each agent. As one can see, both agents can
solve around 65% of conflicts within 0.5 NM of their original
track and around 70% within 1 NM. This result is promising,
as resolutions that minimally displace the aircraft from their
track are preferred. Both agents show a similar performance,
which indicates the resolution would be likely acceptable by
both aircraft. However, in this paper we assume cooperative
agents, which can not always be expected in practice. The
Pearson correlation coefficient between number of time steps
required to solve the conflict and final distance from track
is 0.78, which indicates high correlation. This shows that
agents will increasingly deviate from track the longer they are
not able to solve the conflict. While they eventually manage
to solve the conflict, this resolution can not be accepted in
practice, as it would require a huge deviation, which will
result in major delays.

B. Actions Taken to Solve the Conflicts

In this section, we visualize and and discuss the actions
taken by the agents to solve the conflicts. As mentioned
previously, at each time step the agent could make a heading
change of at most ±45o and a speed change in the range
[v − 6%, v + 3%].

Figure 6 shows as a box plot the heading change made by
each agent to solve each conflict. For conflicts that required
more than one time step to be solved, the average of all
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Figure 6: Average heading change needed to solve each
conflict.
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Figure 7: Average speed change needed to solve each conflict.

time steps is shown. Figure 7 shows the same information
for the speed changes, with changes being the difference in
percentage to the flight speed of the time step (which is
assumed to be optimal). It is interesting to note that speed
changes are almost 0, with each agent having an average
decrease of −0.01%. This is a relevant result, as speed
changes in this time frame are known to not be as efficient
[8] and are not able to solve all conflicts. Furthermore,
the penalization for bigger heading or speeding changes for
the agents were of the same magnitude, meaning that no
preference of actions was induced to the agents. As such,
this result shows the agents’ ability to learn desirable behavior
with no previous knowledge of the environment. We also note
that the majority of changes decrease the speed, which can
be an indication from the performance model that the optimal
speed can be improved.

For heading changes, results show each Agent 1 makes
an average change of around 20o, while Agent 2 makes an
average change of around 31o. An interesting result is the
fact that big heading changes are made rarely by agents, with
the maximum change being taken only once by each agent.
This further shows the effect of the reward function in the
behavior of the agents, as each prefer small changes that solve
the conflict quickly. However, we note that Agent 2 makes on
average a bigger heading change. Nevertheless, the heading
changes are still relatively small, which is preferred.

Furthermore, the fact that the majority of conflicts are
solved only in one time step shows that the learned behavior
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Figure 8: Correlation between final reward and time steps
needed to solve the conflict for each agent.

of the agents can give resolutions that optimize several factors
at once. Additionally, the agents were penalized heavily if
the resolution they proposed would increase the complexity
of the airspace, or even create a new conflict with one of
the surrounding aircraft. We do not observe new conflicts
that were created as a result of a resolution. This is further
evidence of agents being able to learn positive behaviors, as
ATCos do not issue maneuvers that create new conflicts.

C. Agent behavior

In this work, we assume cooperative agents. As such, both
agents have the exact reward structure and furthermore, must
maximize a global notion of reward.

Given the non-linear nature of neural networks, one cannot
expect a linear correlation between the factors that take part
in the reward function and the actions taken to solve the
conflict. For instance, results indicate no correlation between
the magnitude of heading change with the CPA and time until
LOSS. Such a conclusion, however, speaks in favor of the
model, as it shows that the agents are capable of extracting
more complicated relations between reward factors rather
than being highly influenced by one of them. Nevertheless,
the effects of individual factors in the reward function can
be observed through the results. For instance, in Figures
6 and 7, we see that the model learns to prefer heading
changes as opposed to speed changes, which cannot solve
all conflicts. Furthermore, given that in this work we assume
that aircraft are flying at optimal speed, the strategy of small
heading changes and not changing speed comes as a result
of penalising high fuel consumption in the reward function.
Figure 8 shows the correlation between final reward and
number time of time steps needed to solve the conflict. The
results indicate a clear negative correlation, which suggests
that the longer it takes for the agents to solve the conflict, the
more they will be penalized by the reward. While this is an
expected result, it is an important one, as it further confirms
the non-linear relation between reward factors that the neural
networks induce. Furthermore, this result shows why the
agents tend to solve conflicts so quickly. The behavior, which
is influenced by the reward, coincides with usual controller
behavior, as they usually issue one maneuver to solve the
conflict.
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Figure 9: Direction and magnitude of heading of each agent
for 5 example scenarios.

Another interesting aspect of the heading changes is the
direction of the change. To measure it, we compare the
direction of the average heading change for all solved conflict
scenarios. Results show that in 83% of the cases the agents
solve the conflicts by going in the same direction, while in
16% of the cases they go in different directions. Figure 9
shows the heading changes made by each agent in 5 example
scenarios. As it can be noted, Agent 2 in all cases makes a
bigger change, even in cases where the aircraft go in different
directions. This result is unexpected and does not reflect how
conflicts are generally solved in practice. Nonetheless, this
result explains the difference in average heading between
Agent 1 and Agent 2 shown in Figure 6. In this case, Agent 2
has to make a bigger turn to solve the conflicts in the majority
of cases.

In the setting of this paper, where we assume cooperative
agents that do not communicate, this does not affect the
effectiveness of the algorithm, as the ultimate goal is to solve
the conflicts. Furthermore, the agents have no model on the
dynamics of the environments, thus they have no concept
of how conflicts are usually solved. Additionally, a known
problem with MARL algorithms is the high non-stationarity
of the environment. Each agent takes an action at each time
step and they do not know the policy of the other agent.
Thus, they observe the actions taken by the other agent as
a constant change in the environment. As a result, injecting
more expert knowledge into the state representation of the
environment, it can be expected that these peculiarities in
agents’ behavior can be resolved. Furthermore, communica-
tion module between agents, in the form of knowledge of
each other’s policies can be expected to do the same.

Finally, an important result is the fact that both agents are
actively attempting to solve the conflicts. In fact, in only 1%
of the seen scenarios it happens that one of the agents makes
a turn of less than 5o and the other makes a turn of bigger
than 5o. This result shows that the agents successfully avoid
”freeloading”, which is undesirable behavior.

V. CONCLUSIONS AND FUTURE STEPS

A. Contributions

In this paper, we tackle the problem of conflict resolution
at the tactical level in the presence of surrounding traffic by



modeling it as reinforcement learning problem. We utilize,
MADDPG, which is a multi-agent reinforcement learning
algorithm. It consists of a actor-critic architecture, where an
actor corresponds to an agent taking actions and the critic
models the Q-values. To the best of our knowledge, this is
the first work that uses a multi-agent reinforcement learning
approach to conflict resolution.

We propose a novel state representation consisting of posi-
tion information, heading and current speed. Furthermore, we
propose a reward function that not only optimizes for number
of conflicts solved, but encourages efficient solutions. Factors
that are included in the reward function are fuel consumption,
CPA, time to LOSS, the creation of new conflicts and airspace
complexity. The reward function evaluated in this work, can
serve as a template for other research that goes in the same
direction.

The model is trained and tested on conflict scenarios from
real traffic, with a data augmentation technique applied to
increase the variance of encountered conflict geometries. The
scenarios last 20 minute and in each scenario, the conflict pair
will be assigned an agent, which will take actions every 15
seconds. In this work, agents are able to handle continuous
actions space, which means that we do not prescribe fixed
maneuvers to solve the conflict. This overcomes a common
limitation of exisitng research, where fixed maneuvers are
usually issued. Each action consists of a heading (±45o) and
speed change ([v − 6%, v + 3%]).

Results indicate an impressive resolution success rate of
93%. Furthermore, the agents are able to learn several desired
behaviors, while having no model of the dynamics of the
environment. First of all, the majority of conflicts are solved
only in one time step, which emulates how conflicts are solved
in practice. Furthermore, the majority of conflicts are solved
with relatively small heading changes. This indicates that the
proposed reward function directs the agents not only to solve
the conflicts as soon as possible but as efficiently as possible.
Further evidence to this is the fact that the speed changes the
agents make are negligible, with the average being −0.01%.
This is an interesting result, as speed changes are generally
considered to be less efficient and are not able to solve all
conflicts.

B. Challenges and Future Steps

Nevertheless, there are several challenges to be considered
to our initial approach. First of all, the agents are not able to
solve all conflicts. Results are promising, but a safety criti-
cal machine learning approach should come with resolution
guarantees. Furthermore, there are cases where agents behave
in peculiar ways. For instance, in the majority of cases where
they have little time before LOSS, the agents are not able to
solve the conflicts. This is somewhat counterintuitive, as one
would expect the agents to make a bigger heading change to
solve the conflict. A possible explanation to this can be the
calibration of the reward function. Further investigation to the
failed cases indicates that in the aforementioned scenarios, the
agents get penalized too much. As a result, the other factors
in the reward function are unable to guide the agents out of
the conflict.

Additionally, in most cases, agents make their heading
changes in the same direction. To this effect, Agent 1 makes
on average a turn of 20o while Agents 2 makes a turn of 30o,
This is not a natural way of solving conflicts. Furthermore,
such resolutions might not be accepted by ATCos. One
possible solution to this issue could be the inclusion of a
more informative and expressive complexity metric. Such a
metric should give more detailed and multi faceted complexity
information. As a result, agents will be discouraged from
taking actions that increases complexity. In addition, in this
work, after the resolution of the conflict, aircraft are send back
on their tracks with the angle opposite heading and speed
change that they solved the conflict. An interesting addition
to this approach would be to let the agents learn what the best
way back could be. After resolution, positive reinforcement
could be used to incentivize agents to quickly and safely go
back on track.

In this work we assume cooperative agents. While this is
a valid approach, it might not reflect the whole reality of the
situation. In practice, aircraft might not be willing to make
certain maneuvers. Another interesting approach would be to
model different behaviors of the agents, such as competitive
behavior. In such an approach, agents would not have the
same reward structure and would have certain preferences
towards certain resolution methods. This would make for a
valuable comparison in terms of local and global reward opti-
mization. Furthermore, one way to improve resolutions would
be to take feedback from controllers. In such approaches,
the agents get a reward not only from the environment but
also from a teacher, which can help alleviate issues from
the non-stationarity of the environment and eventually make
convergence easier. In addition, the models are trained and
tested on a specific dataset. This dataset is not representative
of all possible conflicts scenarios and geometries and When
the agents are presented with unseen conflict situations, they
may fail to solve them. A solution to this is to introduce
lifelong learning, which is an approach to machine learning
that retrains itself when faced with unseen data.

Ultimately, a conflict resolution tool that is based on ma-
chine learning will still need to be monitored by ATCOs. Such
methods need to have a high degree of explainability. More
specifically, agents need to be able to show some reasoning on
how they picked actions. Ways how these explanations can be
informative in a meaningful way presents a very interesting
research question.
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Multi-agent systems to help managing air traffic structure. Journal of
Aerospace Operations, 5(1-2):119–148, 2017.

[35] Jacco M Hoekstra and Joost Ellerbroek. Bluesky atc simulator project:
an open data and open source approach. In Proceedings of the 7th
International Conference on Research in Air Transportation, volume
131, page 132. FAA/Eurocontrol USA/Europe, 2016.

AUTHOR BIOGRAPHIES

Ralvi Isufaj received his bachelor’s degree in computer
engineering at the Polytechnic University of Tirana, Tirana in
Albania in 2014 and his master’s degree in 2018 in computer
science with a specialization in artificial intelligence at the
University of Freiburg, Freiburg, Germany. Since 2019, he is
pursuing a Ph.D. degree with the Department of Telecommu-
nications and System Engineering, Autonomous University of
Barcelona, Barcelona, Spain. His research line is on Machine
Learning applications to air conflict resolution
David Aranega Sebastia is pursuing a master degree in
mathematical modelling in the Autonomous University of
Barcelona. He graduated as a mechanical engineer in 2019
from Universitat de Lleida. His interests lie in modeling
techniques and artificial intelligence technologies
Miquel Angel Piera received the degree (Hons.) in computer
engineering from the Autonomous University of Barcelona,
Barcelona, Spain, in 1988, the M.Sc. degree in control
engineering from the University of Manchester, Institute of
Science and Technology, Manchester, England, 1991, and the
Ph.D. degree from the Autonomous University of Barcelona,
in 1993. He is a delegate for Technical Innovation Cluster
with the Autonomous University of Barcelona, where he is
currently a full-time Professor with the System Engineering
Department.


