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Abstract— The present paper addresses innovative ATM solutions 
for Demand and Capacity Balance, in particular Dynamic 
Airspace Configuration. Capacity Management processes in these 
environments require more critically the use of support 
complexity metrics tailored to the relevant use cases. An Enhanced 
Complexity Management including both the improvement of the 
metrics introducing demand uncertainty and their integration into 
the overall process is presented. The assessment of this Enhanced 
Complexity Management is presenting, assessing its technical and 
operational feasibility and showing its improvements in capacity 
and cost-efficiency. 
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I.  INTRODUCTION 

In Air Traffic Management the concept of Dynamic 
Airspace Configuration (DAC) pursues higher levels of 
flexibility in the airspace design and configuration process. It 
aims at increasing the capability of the airspace to adapt to the 
traffic demand in nominal situations as well as in case of 
unexpected events and demand. The concept [1] proposes to 
leave traditional pre-defined airspace structures behind and opts 
for a dynamic configuration of the air traffic control sectors, 
which can be continuously adapted to the traffic evolution. DAC 
sector design and configuration process is based on the use of 
elementary volumes of airspace, that are the building blocks to 
consolidate the sector configuration plan most suitable to the 
expected demand. This process runs from the strategic planning 
(weeks before the day of operation) up to the execution phase, 
that is, up to 20 minutes before the final sector configuration is 
implemented.  

Figure 1 compares the results of a traditional airspace design 
vs. a DAC one [2], where additional airspace volumes are used 
to allow higher flexibility in the consolidation of operational 
sectors. 

From the simulations and tests performed, it is foreseen that 
the deployment of DAC airspace design process will multiply 
the possible options of airspace configurations of operational 
sectors and will redound in higher capacity and more flexible 

configurations to accommodate as much as possible the demand 
and the airspace users’ optimal trajectories.  

 

Figure 1.  Traditional vs. DAC Airspace Structure (proposed for 
Spanish Sectors in SESAR 2020 PJ08-W1 AAM Real Time Simulation 

exercise ) 

In order to enable DAC feasibility [3], the determination of 
the capacity for all these sectors built from elementary volumes 
is yet an open question.. This is due to the fact that capacity of 
traditional sectors is established in terms of ‘entry counts’ 
(number of aircraft entries in the sector per time unit), whose 
maximum value is dependent on the operational knowledge 
about the sector of the relevant Air Traffic Controllers (ATCo) 
and other operational staff. However, the use of non-predefined 
airspace structures requires new methods to determine sectors’ 
capacity with a higher support of automation and accounting for 
the quantification of complexity factors affecting the provision 
of the ATC service in a DAC operational sector. One risk of this 
approach is a high risk of capacity planning instability if demand 
uncertainty is not properly taken into account during the sector 
design and configuration process. 

Probabilistic Cognitive Complexity (PCC) assessment 
stands as a solution for addressing these two issues. Air traffic 
complexity is a measure of the implicit difficulty for an ATCo 
when managing traffic in his/her area of responsibility (airspace 
sector). The consensus view among the ATC research and 
operational communities is that complexity drives controller 
workload, which in turn is thought to ultimately limit sector 
capacity. PCC is a complexity metric which biggest asset is that 
it considers complexity factors intrinsic to traffic and sector 
shape to derive their effect on Air Traffic Controllers’ (ATCo) 
cognition, all of this without underestimating the uncertainty of 
the traffic demand on complexity prediction. 



PCC is a key enabler to assure the effectiveness of DAC by 
providing a more accurate estimation of capacity that goes 
beyond ‘entry counts’. This capacity estimation will allow a 
better prediction of actual overloads improving ATCo 
productivity and ensuring a cost effective planning of the 
airspace configuration. Moreover, the higher reliability of the 
capacity estimation will allow reducing capacity buffers needed 
to ensure safety, thus increasing the capacity of the airspace. 

This paper presents the enhancements brought by PCC 
assessment to DAC short-term1 Capacity Management 
(CM), based on an assessment through Fast Time Simulation 
(FTS) techniques focused on the evaluation feasibility, capacity 
and cost-efficiency of the process and resulting airspace and 
traffic picture. The integration of PCC into DAC CM includes 
the development of the mathematical formulation of Cognitive 
Complexity (CC) [4] to best fit DAC CM requirements as well 
as the review of the DAC CM use cases to ensure process 
effectiveness. Specifically, this paper presents the following: 

 Description of Cognitive Complexity mathematical 
formulation and the introduction of traffic demand time 
uncertainty to obtain PCC evaluation (section II). 

 Enhancement of DAC use cases to integrate the use of 
PCC assessment, specifying decision-making 
processes, required automation support and human 
interaction (section III). 

 Summary of experimental results obtained through 
simulation and discussion feasibility, capacity benefits 
and cost-efficiency of the solution (section IV). 

II. PROBABILISTIC COGNITIVE COMPLEXITY 

A. Cognitive Complexity due to Traffic Demand 

Cognitive Complexity (CC) [4] metric estimates controllers’ 
mental workload through a function combining important 
abstractions (parameters) related to the complexity of the traffic: 

Flows interactions (X1) 

For a pair of flows at time t, the interaction between them is 
computed by the following formulae: 

𝑋ଵ(𝑡) = 𝑜𝑐𝑐1 · 𝑜𝑐𝑐2 · 𝑊 

where Occn is the number of flights from Flown that are 
contained in the interaction space between both flows at time t. 
W is the weight considered for each type of interaction (see 
Figure 2). A flow is defined as a group of aircraft that has similar 
flight path and aircraft performance within a specific airspace. 
The clustering of the aircraft can group the flights into different 
flows. The standard flows are the ones that represent the 
majority (over 70%) of the studied traffic sample. The rest of 
flights not assigned to any of the main flows are considered as 
non-standard flights. There are four types of flows interactions 
(ordered from less complex to most complex): 

1) Interaction between two cruise flows; 

                                                           
1 DAC short-term Capacity Management processes are those taking place on 
the day of operations up to 20 minutes before execution time. 

2) Interaction between a climb/descend flow with a cruise 
flow; 

3) Interaction between two climb or descend flows;  
4) Interaction between a climb flow with a descend flow. 

 

Figure 2.  Interaction between Two Traffic Flows 

Potential conflicts (X2) 

For each potential conflict (“trajectories” crossing) between 
a pair of flights at time t, the following formulae is used to 
calculate the complexity due to the conflicts: 

𝑋ଶ(𝑡) = (𝑌ଵ · 𝑌ଶ · 𝑌ଷ · 𝑌ସ · 𝑌ହ)௦௦ 



ୀଵ

 

Being n the number of conflicts at time t, Y1 the difference 
in flight level of both flights, Y2 the difference in time over the 
crossing point, Y3 the distance to the potential conflict, Y4 the 
crossing coincident with a pre-identified crossing-point and Y5 
the relative vertical speed of both flights. 

Number of flights in evolution (X3) 

Number of flights in evolution within the sector at time t.   

Number of flights out of standard flows (X4) 

Number of non-standard flights within the sector at time t. 

In order to give the metric an easily interpretable value, 
Cognitive Complexity is normalized to allow its comparison to 
an ISA scale. The ISA (Instantaneous Self-Assessment) method 
uses a special 5-key level at each working position [5] being 1 
the smallest and 5 the greatest complexity. Several functions and 
techniques have been tested to link up the aforementioned CC 
parameters with corresponding ISA values. The best correlation 
between them was obtained by a mix function given by the 
following formulae: 

𝑓ଵ = 𝐶𝐶 (𝑡)  =   𝑎 + 𝑏 ∗ 𝑋 + 𝑐 ∗ 𝑋ଶ
 + 𝑑

ே

ୀଵ

∗ 𝑒𝑥𝑝(𝑒 ∗ 𝑋)



Where N is the number of parameters, ai, bi, ci, di and ei the 
constants and coefficients and Xi the parameter i. 

B. Cognitive Complexity due to Sector Shape 

The Cognitive Complexity algorithm involving Sector 
Shape (SS) factors reflects the spatial complexity of the 
sectorization in relation to the traffic flows. These factors are 
identified as key variables to be taken into account when DAC 

This paper presents research conducted within COTTON project (Grant 
783222) funded by the SESAR Joint Undertaking as part of SESAR 2020 
Exploratory Research Programme within the framework of the EU’s Horizon 
2020 research and innovation programme. 



solution is implemented. These factors are considered within the 
complexity assessment as: 

Angles and Vertices (D1): 

This factor accounts for the convexity to minimize the 
number of re-entering flights. D1 is the sum of number of the 
vertices and the number of vertices whose angle is less than 90°. 
The more vertices of this type are present in the sector, the higher 
is the complexity since it is more likely that re-entries occur (see 
Figure 3). 

 

Figure 3.  Example of D1 Factor 

Flows Orientation and Position (D2): 

This factor accounts for the orientation and position of main 
flows present in the sector to minimize the number of 
coordination (see Figure 4). D2 takes into account as main 
complexity parameters the centralism and the parallelism of the 
flows with respect the sector borders. The formulae for this 
factor is: 

𝐷ଶ =  ൬ฬ
𝐴1 − 𝐴2

𝐴1 + 𝐴2
ฬ + |𝜇ଵ − 𝜇ଶ| + |𝜇ଷ − 𝜇ସ|൰

௪ 



ୀଵ

 

Being j the number of main flows within the sector, A the 
area at the left/right side of the average flow track and µ the 
angle at the left/right side of the average flow track with respect 
to the sector boundary (four angles for each flow). 

 

Figure 4.  Example of D2 Factor 

Sector Vertical Size (D3): 

This factor accounts for vertical size of the sector to ensure 
a minimum flight crossing duration and a minimum volume to 
resolve the potential conflicts. D3 is the inverse function of the 
number of Flight Levels (FL) present in the sector. The bigger is 
the number of FLs the less complex is the sector. 

𝐷ଷ =
1

(𝑁º 𝑜𝑓 𝐹𝐿𝑠)
 

Crossing Points Distance (D4): 

This factor accounts for the distance between the sector 
boundary and the pre-identified crossing points or major areas 
of interaction. The mathematical formulation is given as: 

𝐷ସ = 
1

𝑠



ୀଵ

(· 2 𝑖𝑓 𝑡ℎ𝑒 𝑆  𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 10𝑁𝑀) 

Being j the number of crossing points and Si the distance of 
each crossing point to the closest sector border. If the distance 
between critical point and sector boundary is less than 10NM, 
there will be less reaction time to resolve possible conflict that 
occurs in such critical point, thus the parameter’s relevance is 
doubled. 

The algorithm concerning sector design factors for DAC 
process is given as follows: 

𝑓ଶ = 𝑆𝑆 =  𝑒 ∙𝐷

ସ

ୀଵ

 

where ei is a weighting coefficient to homogenize the 
dimensions and weights of the four Di factors accounting for 
sector shape complexity to be comparable with the CC values. 
This SS value is a static value per sector. 

C. Uncertainty Quantification for Probabilistic CC Modelling 

The uncertainty is one of the most influencing factors on the 
demand forecast, thus, on the demand and capacity balancing 
(DCB) process. The input to all the four parameters in Cognitive 
Complexity are the trajectories of the flights that are going to 
cross the sector of interest along the time period for complexity 
calculation. The trajectories used for the prediction of 
complexity at a given time horizon (before the execution time) 
are based on flight plans (FP): either available (already filed by 
Airspace Users) in the FP management system at the target time 
horizon or created from historical data. The trajectories are built 
from these FPs assuming the shortest path between two way-
points.  

These predicted trajectories are uncertain, and the actual 
execution of flights will differ from the plans: 

1) In times over the expected points; 
2) In the 2D route flown (flown 2D trajectory way might be 

different from the planned one); 
3) In the flight’s evolution (planned flight levels achieved 

later or sooner than planned, differences in climb or descent 
rates, etc.) 

Other uncertainty sources may be important such as ATCO’s 
instructions for traffic separation or even the weather forecasts. 
Given that the focus is on the DAC Short-Term tactical phase, 
one of the most influencing sources is time variation. A first 
intent is to take into account the time uncertainty among other 
uncertainty sources into the complexity metric and improve this 
methodology by incorporating more uncertainty sources in 
further researches. This means that uncertainty will be 
incorporated in the planned trajectories as variability on the 
Estimated Time Over (ETO) the planned points within the 
sector of interest. Since the uncertainty related to time error is 
only applicable to traffic parameters, then the uncertainty is only 
incorporated into the CC metric, not into the SS metric (fixed 
value for each sector). 



To obtain the variability in ETO for each flight at the sector 
of interest, it is assumed the following: 

 Assumption 1: The variability of ATO (Actual Time 
Over) with respect to ETO for a flight at any point within 
the sector is equal at the Entry point of the flight to the 
sector. 

 Assumption 2: The variability of ATO with respect to 
ETO at the Entry point of a flight to the sector is the 
same for all flights within the same flow inside the 
sector. 

Following these assumptions, the aim is to characterize the 
variability of ATO with respect to ETO at each entry point for 
each flow, that is, the sector (in this case the DAC area) entry 
time error. For flights out of standard flows, the characterization 
is made for the whole set of non-standard flights as a unique non-
standard flow. The characterization uses a representative traffic 
sample of the sector of interest (one month) and is done for the 
FPs available at different time horizons: 12 hours, 3 hours, 1 
hour and half an hour before actual entry time of the flight (see 
T-12, T-3, T-1 and T-0.5 in Figure 5).  

For each flow, it is built a chart counting the number of times 
that a certain error (ATO – ETO) occurs. The Figure 5 represents 
the time uncertainty evolution (X-axis time error in minutes and 
Y-axis frequency of each time interval) along forecast horizon 
(being T the time of actual entrance) within the DAC area for a 
specific main flow. It can be seen that as time approaches to the 
time of execution, the shape of the distribution becomes more 
regular/symmetric and centralized to zero minutes, which is as 
expected since uncertainty is reduced. 

 

Figure 5.  Occurrence of (ATO-ETO) at different time horizons for a 
specific main flow within DAC area 

In order to integrate this uncertainty model into the CC 
assessment, Monte Carlo simulations are used to provide PCC 
values from the abovementioned entry time error distributions. 

The output expected is a probability distribution of the CC 
metric at each instant of calculation. The methodology used is 
as follows (see Figure 6): 

1) To build the probability distributions of the CC at t, the 
calculation consider the flights that are nominally within the 
sector at time t plus the flights that are nominally out of the 

sector but that considering their ETOs and their corresponding 
temporal error assigned depending on the belonging flow they 
can be inside the sector at time t.  

2) Once the set of flights to be considered in the calculation 
is identified, the calculation of the CC is performed N times: 

 N is the number of runs (or required sample size) of the 
Monte Carlo simulation needed to achieve results with 
statistical validity; 

 In each run, the temporal error of ETO for each flight of 
the set is chosen randomly according to the form of the 
corresponding probability distribution of error; 

 The flights are re-positioned according to the error, 
meaning that some flights might be positioned out of the 
sector and some that were outside nominally to be inside 
the sector; 

 The four parameters of the Cognitive Complexity (see 
section II.A) are calculated taking as input the flights 
within the sector according to the re-positions; 

 Each run results in a value of Cognitive Complexity for 
time t. 

3) After N runs, there are N values of Cognitive Complexity 
for time t. From this set of values, it is built a probability 
distribution of the Cognitive Complexity where each value has 
its associated probability of occurrence and from which the 
cumulative probability of Cognitive Complexity being below or 
above certain value can be calculated (percentile). 

 

Figure 6.  Probability Distribution of Cognitive Complexity at time t 
from Monte Carlo Simulations 

III. AIRSPACE CAPACITY MANAGEMENT OPTIMISATION 

A. Enhanced CM Process 

DAC short-term Capacity Management processes are 
proposed to be improved by integrating the use of the presented 
PCC, when the demand accuracy allows a reliable estimation of 
cognitive complexity. Specifically, supporting an FMP (Flow 
Management Position) when performing DCB tasks during the 
day of operations and up to 20 minutes before execution. As part 
of these tasks, the FMP will monitor the status of the DAC sector 
configuration, identify potential hotspots and propose 
alternative sector configuration to solve them. 

In the proposed enhanced CM process, PCC assessment 
could support FMP in the identification and assessment of 



hotspots as well as in the search of appropriate configuration for 
each traffic situation. PCC metric will serve to evaluate the 
congestion and workability of the sector configurations and 
identify if the configurations are able to resolve hotspots. The 
following paragraphs describe how PCC will support FMP 
tasks. 

First of all, when monitoring sectors’ capacity, the use of 
PCC will allow the FMP to easily take into account the 
workability of the sectors configuration according to their 
complexity and the reliability of this information according to 
the uncertainty of the demand. For example, in the figure below, 
the hotspot identification is different depending on the PCC 
percentile use, so there is a 10% probability of having a 14 
minutes hotspot and a 30% probability of a 6 minutes hotspot.  

 

Figure 7.  Hotspot identification supported by PCC assessment 

The FMP may decide, according to the prediction of the 
hotspot, its probability and the planning time, that there is a need 
to apply a DCB measure. In case that the FMP wants to evaluate 
the application of an alternative sector configuration, PCC can 
support him/her either by proposing a set of alternative sector 
configurations solving the hotspot or providing the assessment 
for alternative configurations (what-if functionality). To do so, a 
sector configuration optimization algorithm, based on PCC 
metric assessment, aims at balancing demand and capacity 
dynamically inside the DAC area. The algorithm uses PCC to 
assess sector load of each sector configuration and to identify 
overload according to the following configurable parameters:  

 Peak Complexity Threshold: the maximum 
complexity that is manageable by an ATCo 
instantaneously. 

 Sustained Overload Period: The maximum period of 
time over which it is acceptable to work over a 
Sustained Complexity Threshold.  

 Sustained Complexity Threshold: the complexity 
value over which it is not acceptable to work a time 
interval longer than the Sustained Overload Period.  

Once these configurable parameters are set, the algorithm is 
able to rank sector configurations according to the assessment of 
a selection of the following criteria (in detail in Section 3.2): 

 Minimisation of overload by avoiding those sector 
configurations presenting one complexity value over the 
Peak Complexity Threshold or one set of complexity 
values longer that the Sustained Overload Period over 
the Sustained Complexity Threshold. 

 Minimisation of number of controllers (open sectors). 

 Maximisation of the weighted load balancing over the 
sectors of the configuration.  

 Minimisation of the average complexity of the sectors 
of a proposed configuration.  

 Minimisation of the number of sector difference 
between consecutive configurations. 

As a result, the FMP, supported by the optimisation tool will 
decide which sector configuration plan better matches the 
demand prediction at this planning phase. 

B. Probabilistic Cognitive Complexity for Airspace 
Configuration Optimisation 

The Probabilistic Cognitive Complexity (PCC) assessment 
is based on the combined use of the metrics CC and SS, 
incorporating the time uncertainty into the CC metric (see 
section II). This is done through the integration of the Cognitive 
Complexity function (f1) with the Sector Shape function (f2) 
resulting into a ffinal cost function, which is called OPT value for 
each of the candidate configurations of sectors. The value in 
OPT is used to rank the configurations for a predicted traffic 
demand at a forecast horizon during the period of analysis. The 
different candidate configurations are therefore ordered based 
on the OPT value. 

For evaluating a configuration (structuring the airspace in a 
particular split into sectors), each of the parameters included in 
Cognitive Complexity (section II.A) and in Sector Shape 
(section II.B) are taken into account to build the following 
metrics at a given time t: 

M0: Number of sectors for which the probability of CC 
being greater than the peak overload threshold is above a 
given percentage at time t; 

M1: Number of sectors for which the probability of CC 
being greater than the sustained overload threshold is above 
a given percentage at time t; 

M2: Difference between maximum and minimum values of 
the most probable CC of the set of sectors at time t; 

M3: Average value of the most probable CC of the set of 
sectors at time t; 

M4.1: Average for the set of sectors of the standard 
deviations of the probability distributions of CC at time t; 

M4.2: Mean value of all runs of the mean CC of the set of 
sectors at time t;  

M5: Average value of the SS metric for the sectors of a 
proposed configuration; 

M6: Difference between the maximum and minimum values 
of the SS metric among all the sectors of a proposed 
configuration. 

These parameters are latter used to calculate the different 
variables that compose the integrated OPT cost function as 
follows: 



𝑂𝑃𝑇=ffinal=OPT (f1,f2) = 𝑎·𝑋1+𝑏·𝑋2+𝑐·𝑋3+d·X41+e·X42+f·X5+g·X6 (8) 

Being, 

a, b, c, d, e, f and g the weight of each parameter X.  

X1 is the difference between average M2 during the period 
and its minimum value among all the proposed 
configurations.  

X2 is the difference between the standard deviation of M2 
during the period of analysis and its minimum value among 
all the proposed configurations. 

X3 is the difference between the average M3 during the 
period of analysis and its minimum value among all the 
proposed configurations. 

X41 is the difference between the average M41 during the 
period of analysis and its minimum value among all the 
proposed configurations. 

X42 is the difference between the average M42 during the 
period of analysis and its minimum value among all the 
proposed configurations. 

X5 is the difference between M5 and its minimum value 
among all the proposed configurations. 

X6 is the difference between M6 and its minimum value 
among all the proposed configurations. 

The weight of the variables (a, b, c, d, e, f and g) shall be 
fine-tuned to reflect the business strategy of the Air Navigation 
Service Provider (ANSP) or specific airspace region where the 
algorithm is used. For example, avoidance of overload can be 
prioritised against balancing workload amongst sectors. This 
will determine if more weight shall be put on the parameters 
measuring the balance of complexity between sectors, sector 
shape complexity level or the number or level of cognitive 
complexity itself. The calibration of the weights shall be done in 
two steps: 

1) Normalize the variables so that they contribute equally 
to the OPT function: 

a) Adjust the weight based on the average value of all 
variables of the cost function of the candidate sector 
configurations.  

b) A normalized weight will result for each variable in 
order to make them have the same importance as a basis. 

2) Re-allocate the weights for all variables based on 
operational expert judgement. In the exercise presented in 
this paper, the weights were set to account for an ANSP 
performance strategy where the priorities are to minimise the 
overall average complexity value over the balance between the 
sectors and the CC metric over SS (assuming an environment 
where traffic contributes more to mental workload than the 
shape of the sector). 

The optimisation process follows then a three step approach: 

In the first step, some sector configurations are disregarded 
to ensure that the candidate configurations do not present severe 
overloads, that is evaluate whether the peak threshold might be 

exceeded or whether the sustain threshold might be exceeded for 
sustained periods. To do so, the following conditions were 
assessed:  

 If the percentage of time that M0 is equal or higher than 
one is more than 5%, then the configuration is 
discarded;    

 If the percentage of time that M1 is equal or higher than 
one is more than 80%, then the configuration is 
discarded.  

In the second step, OPT value is calculated for the remaining 
configurations. The configurations whose ‘OPT’ value is lower 
than the average ‘OPT’ are considered as good candidates for 
implementation since the excessive overload is guaranteed 
through the application of the condition assessed in step 1 and 
the evaluation of the Probabilistic Cognitive Complexity is over 
the average value for the remaining sector configurations.   

In the third step, priority is given to those sector 
configurations that, fulfilling the previous requirements, present 
the lowest possible number of sectors. Therefore, the sector 
configurations that survived to step two are ranked based on the 
number of sectors. Sector configurations with the same number 
of sectors are ranked based on the OPT value from least to 
greatest.  

The optimiser will then propose to the user the best choices 
found according to the assessment. In the case of the exercises 
presented in this paper, the tool showed juts the three best-valued 
sector configurations. 

IV. EXPERIMENTAL RESULTS 

A. Test Scenarios 

For the evaluation of the Optimiser tool, different scenarios 
to test its validity have been defined. A date is selected for the 
validation (05/07/2017) for a specific time period (19:00 to 
20:00), which contains real regulation periods with high traffic 
demand over a set of selected Spanish sectors (TER, ZGZ and 
CJI). A list of possible sector configurations (up to 30) has been 
identified as input for the Optimiser to choose the most 
appropriate among them, which means the most suitable for the 
expected traffic demand. 

There is a Reference (REF) scenario, which accounts for the 
baseline of the validation and represents the real situation that 
happened the day of operation. And there is a Solution (SOL) 
scenario, which uses the proposed solution for DAC concept 
improvement. The goal of this test validation is to obtain initial 
results on the operational performance benefits that the tool can 
bring to the DCB process. The workflow for the different 
scenarios is described below. 

Reference Scenario (REF). Cognitive complexity metric is 
chosen for sectorisation selection in DAC reference scenario. 
The input to the tool is composed of the flight plans (DAC traffic 
demand) and all the possible sector configurations to be 
assessed. The tool computes the cognitive metric of each sector 
under each configuration. Finally, the sector configuration 
optimiser contains criteria to select the best-fitted configuration 
as described previously (see Figure 8). 



 
Figure 8.  Reference Scenario workflow (REF) 

Solution Scenario (SOL). The tool is completed with the 
incorporation of time uncertainty distributions to the input 
demand based on historical data. Monte Carlo simulations are 
executed to obtain the probabilistic distributions of CC (PCC) 
for each time t of the period of analysis. The Configuration 
optimiser is adapted to the cost function described previously for 
this scenario (see Figure 9). 

 
Figure 9.  Solution Scenario workflow (SOL) 

The tools needed are completed with a fast time simulation 
tool (RAMS) to validate the efficiency of the proposed 
sectorization through indicators. 

Note that in the next section of results, for the Capacity 
improvement assessment, there will be two different Solution 
Scenarios (SOL1 and SOL2), when assessing the prediction of 
overloads at sector level. This is due to the use of uncertainty 
distribution and will be explained in the corresponding section. 
Whilst for the Cost-efficiency assessment and presentation of 
the sector configuration results, it will be at configuration level, 
then the results are only account for a unique solution scenario, 
applicable for all probabilistic distributions. 

B. Test Results 

The results using the prototype tool evidenced the ability of 
the proposed enhanced methodology of finding an optimal 
sector configuration. Table I shows the result of the optimization 
algorithm per forecast horizon and scenario. The table includes 
the results of the cost function as the “Tool proposal for TOP 3” 

                                                           
2 The sectors shown are in 2D but the vertical profile is presented in the text 
next to each one. 

configurations, together with the human final selection, these 
last sector configurations are depicted in Figure 10. 

TABLE I.  PROPOSED SECTOR CONFIGURATIONS ACCORDING TO 
PROTOTYPE TOOL AND HUMAN SELECTION 

 
It shall be considered that DAC concept allows changing 

configurations until 20 minutes before the start of the period of 
operation. REF proposes a sector configuration change at T-
0.5H, which is later refused at T0 when CONF.14 is not 
considered as one of the most optimal. SOL scenario is more 
stable since the final human selection (based on expert judgment 
and experience) is always the CONF.4, like for SOL scenario. 

 

Figure 10.  TOP 1 sector configurations proposed by the tool2 

It can be highlighted that CONF.4 is, amongst all considered 
options, the one that is more similar to the sector configuration 
that was applied for the period of analysis in the day of 
operations. This proves that the proposed Solution is able to 
propose a feasible configuration from a single set of input traffic 
equaling the selection based on extensive experience and 
knowledge of the target airspace. 

Airspace Capacity Improvements 

The number of remaining hotspots has been evaluated in the 
different scenarios. This indicator measures the number of 
overloads (at configuration level) that eventually could not be 
resolved with the optimal configuration selected. 

A remaining hotspot is identified if a peak overload (CC 
value above 4.7) or a sustained overload (CC value above 3.5 

Forecast 
Horizon 

SCN Tool Proposal for TOP3 
Human 

Selection 
Number of 

Sectors 

T0 
REF 4 8 29 4 3 

SOL 4 28 18 4 3 

T-0.5H 
REF 14 29 6 14 3 

SOL 4 11 6 4 3 

T-1H 
REF 4 29 11 4 3 

SOL 8 4 11 4 3 

T-3H 
REF 4 8 14 4 3 

SOL 8 4 11 4 3 

T-12H 
REF 29 2 6 29 4 

SOL 8 4 11 4 3 
 



for more than 5 minutes and maximum 1 blank minute) is 
computed with flown (simulated with RAMS) trajectory. For 
SOL scenarios, when treating with probabilistic complexity, two 
percentiles are chosen to calculate PCC value: 90% as scenario 
SOL1 and 70% as scenario SOL2. Percentile 90/70 (PCC1/ PCC2) 
are, respectively, the values of PCC in the resulting probabilistic 
complexity distribution such that the probability of PCC being 
less than or equal to them is 90%/70%.  

The severity of the remaining hotspots is also considered, 
both in terms of duration and complexity level. Time Severity 
(TS) is obtained as the overload period divided by the simulated 
period (60 minutes). Complexity Level Severity (CS) considers: 
level 1 between 3.5 and 4; level 2 between 4 and 4.5; level 3 
above 4.5. If more than a sector has a remaining hotspot, the 
average value is considered at configuration level. 

It is considered an improvement in capacity if a change in 
the selected optimal configuration thanks to the proposed 
Solution leads to better accommodation of the traffic demand, 
and thus, the remaining hotspots are reduced with regards to the 
Reference Scenario. In this case, it is considered that there is an 
improvement in suitability of the selected configuration to the 
traffic demand. 

The exercise evaluates as well the capability to effectively 
predict hotspots by counting: 

 Hit (H): a predicted peak or sustained overload, which 
matches an actual one, meaning a minimum 50% match 
between the time periods of both in the case of sustained. 

 Partial hit (P): a predicted sustained overload whose 
duration is partially matched (<50%) by the time period of 
an actual sustained overload. 

 False alarm (F): a predicted peak or sustained overload that 
does not occur when using actual demand. 

 Missed (M): actual peak or sustained overload, which is 
not predicted when using the input demand. 

The calculation of the level of hit is exampled as: An actual 
sustained overload occurs between 19:19 and 19:31. The 
predicted sustained overload estimated is from 19:16 to 19:23. 
The overlapped time period is 5 minutes: from 19:19 to 19:23. 
The percentage of matching is the overlapping time period 
between predicted and actual overload divided by the real 
duration of the overload (13 minutes): 5/13=38%. Thus, this 
overlap is identified as a Partial hit (P). 

These indicators provide, at sector level, an estimation of the 
robustness of the chosen complexity metric (predictability) 
facing uncertainty in demand. An improvement is achieved 
when the Solution Scenarios’ sectors present better hit, false 
alarms and misses rate than the Reference Scenario’s sectors. 

For the considered time horizons and the selected 
configurations there are no peak overloads in any scenario. 
Therefore, the robustness of prediction of peak overload cannot 
be assessed. However, the effectiveness of the OPT cost 
function is highlighted since this indicator has been considered 
as part of the algorithm. 

Table II presents both the prediction of the sustained 
overloads (in terms of H/P/F/M rate) at sector level and the 
remaining hotspots (in terms of nº of remaining hotspots and TS 
and CS severity values) at configuration level for the final 
selected configuration for each scenario at T-12H and T-0.5H 
forecast horizons (the benefits are marked in green with respect 
to the REF scenario). The T-3H and T-1H forecast horizons did 
not present any overload at sector level, thus neither any 
remaining hotspot at configuration level. Therefore, no analysis 
can be done from these results. 

TABLE II.  CAPACITY ASSESSMENT 

 
At half an hour forecast horizon, the selected configuration 

in both solution scenarios is the same CONF.4, whereas in REF 
scenario the configuration is CONF.14. With respect the REF 
scenario, it can be seen that the suitability is significantly 
improved, since the number and severity of the remaining 
hotspots are reduced in solution scenarios. With SOL1 
(PCC1=Percentile 90%) the overload is hit totally and no misses; 
and with SOL2 (PCC2=percentile 70%) the overload is missed.  

The following figures show examples of visualization of 
overload prediction at T-0.5H. Figure 11 and Figure 12 depict 
CJI sector where there is a sustained overload according to the 
actual trajectories. The predicted complexity distribution curve 
with percentile 90 hits the same overload period while the curve 
of the percentile 70% does not forecast any overload. 

12 hours before the start time of analysis period, the REF 
scenario gives the CONF. 29 as the most suitable while both 
solution scenarios give the CONF. 4 as most appropriate.  

In REF scenario, there is one actual sustained overload in 
CONF. 29, which was missed in the prediction. SOL scenarios, 
with CONF.4, provides a capacity improvement in terms of 
remaining hotspots (reduced CS level). However, there is no 
improvement observed in overloads predictability, as 
complexity algorithm was not able to predict them (one missed 
overload).  

 
Figure 11.  Overload prediction for SOL1 scenario for sector CJI at T-

0.5H 

SCN CONF. Nº Sect. 
Suitability 

 
Predictability 

 
Hotspots TS CS H P F M 

T-0.5H 
REF 14 3 2 0.3 2 0 0 0 2 

SOL1 4 3 1 0.2 2 
1 0 0 0 

SOL2 0 0 0 1 
T-12H 

REF 29 4 1 0.1 2 0 0 0 1 

SOL1 
4 3 1 0.1 1 

0 0 0 1 

SOL2 0 0 0 1 
 



 

Figure 12.  Overload prediction for SOL2 scenario for sector CJI at T-
0.5H 

As a summary, forecast horizons T-12H and T-0.5H present 
benefits in predictability and suitability in Solution scenarios 
with respect to the Reference scenario. The incorporation of 
uncertainty to the complexity evaluation adds stability to the 
overload prediction making it very dependent on the percentile 
used to declare a hotspot. i.e. 90% percentile predict better the 
overloads than using 70%. However, in forecast horizon T-3H 
and T-1H the overload prediction and suitability cannot be 
evaluated in the analysed scenarios as there were no remaining 
hotspots. 

Cost-Efficiency in Airspace Configuration 

A benefit is considered achieved in Cost-efficiency if the 
sector configuration proposed by the proposed Solution: 

 Implies no reduction in the number of sectors, but there 
is a reduction of the average occupancies per min 
(OCC/min) and/or a more balanced CC among sectors. 

 Implies a reduction in the number of sectors and still the 
average OCC/min and balance of CC are at a 
manageable level. 

In Table III, the results of this analysis are shown per time 
horizon and scenario. The benefits are marked in green and the 
worse in orange with respect to the REF scenario. In the T-3H 
and T-1H forecast horizons the proposed sector configurations 
(human selection) remain the same for both REF and SOL 
scenarios, thus no reduction in number of sectors nor average 
OCC/min at configuration level is observed. Therefore, no 
analysis can be done from these results. Note that for Cost-
Efficiency assessment, analysis is at configuration level, thus the 
probability of CC is not used in this case. Deterministic CC 
values are shown in the following graphs to compare more 
simply the CC balance among sectors with respect the REF 
scenario. 

TABLE III.  CAPACITY ASSESSMENT 

At T-0.5H, the REF scenario changes to CONF.14 while 
SOL scenario gives CONF.4 as the most suitable. When 

comparing both options, there is no reduction in staffing costs 
but there is a reduction in occupancies per minute and a similarly 
(qualitative) balanced workload (see Figure 13 and Figure 14). 
The reduction in OCC/min in CONF. 4 is possibly due to a better 
match of the airspace configuration to the demand so that more 
flights are only flying through one sector instead of two or three. 

 

Figure 13.  CC distribution for CONF.14 at T-0.5H 

 

Figure 14.  CC distribution for CONF.4 at T-0.5H 

At T-12H, SOL scenario proposes a more cost-efficient 
sector configuration since it implies a reduction in the number 
of sectors and still the average OCC/min is below a manageable 
level (with an increase of 0.5 flights in average with respect to 
the REF scenario). The workload balance is still under a 
manageable level, even reducing the number of sectors (see 
Figure 15 and Figure 16). 

 

Figure 15.  CC distribution for CONF.29 at T-12H  

SCN CONF. Nº of Sectors Nº of ATCo Av. OCC/min 
T-0.5H 

REF 14 3 6 7.7 

SOL 4 3 6 6.5 
T-12H 

REF 29 4 8 5 

SOL 4 3 6 5.5 
 



 

Figure 16.  CC distribution for CONF.4 at T-12H  

As a summary, the benefits in Cost-efficiency can be proven 
since there was in SOL scenarios a reduction in number of 
sectors, in average OCC/min or in a more balanced workload 
distribution. 

V. CONCLUSIONS 

Based on results presented, it can be generally stated that 
there are significant benefits expected from the application of 
the Enhanced Complexity Assessment. A clear evidence of its 
technical and operational feasibility is provided with the 
following summary of work done and operational benefits: 

 Complexity assessment to the DAC concept for DCB 
process enhancement: 

o Cognitive complexity (CC); 

o Sector Shape complexity (SS); 

o Uncertainty assessment (PCC). 

 Sector configuration Optimiser tool: 

o Cost function definition taking into account: 

 Overloads and underloads; 

 PCC threshold and weights calibration; 

 Average and balance between sectors. 

o Applied to enhanced DAC DCB process. 

 Capacity and cost-efficiency improvement assessment, 
resulted in positive results: 

o Capacity: improvement in suitability and 
predictability; 

o Cost-efficiency: improvement in ATCo control 
hours and workload. 

The recommendations for the next research phases are: 

 The stability of the configuration selection along time 
must be ensured to avoid unnecessary changes with no 
significant increase in performance in very short-term.  

 Weighting of the parameters feeding the sector 
configuration optimisation can be further researched as 
dependent of the ANSP strategy. 

 The visualisation of potential benefits of each 
configuration should be provided to help decision-
making.  

As a general conclusion, the proposed sector configuration 
optimiser for the Enhanced DCB management in DAC concept 
provides a clear potential for the airspace capacity improvement 
and further research is recommended for this topic to complete 
the work and implement the solution. 
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